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As a CRISPR-Cas9-based tool to help scientists to investigate gene functions, Cancer
Dependency Map genes (CDMs) include an enormous series of loss-of-function screens
based on genome-scale RNAi. These genes participate in regulating survival and growth
of tumor cells, which suggests their potential as novel therapeutic targets for malignant
tumors. By far, studies on the roles of CDMs in gastric adenocarcinoma (GA) are scarce
and only a small fraction of CDMs have been investigated. In the present study, datasets
of the differentially expressed genes (DEGs) were extracted from the TCGA-based (The
Cancer Genome Atlas) GEPIA database, from which differentially expressed CDMs were
determined. Functions and prognostic significance of these verified CDMs were evaluated
using a series of bioinformatics methods. In all, 246 differentially expressed CDMs were
determined, with 147 upregulated and 99 downregulated. Ten CDMs (ALG8, ATRIP,
CCT6A, CFDP1, CINP, MED18, METTL1, ORC1, TANGO6, and PWP2) were identified to
be prognosis-related and subsequently a prognosis model based on these ten CDMs was
constructed. In comparison with that of patients with low risk in TCGA training, testing and
GSE84437 cohort, overall survival (OS) of patients with high risk was significantly worse. It
was then subsequently demonstrated that for this prognostic model, area under the ROC
(receiver operating characteristic) curve was 0.771 and 0.697 for TCGA training and
testing cohort respectively, justifying its reliability in predicting survival of GA patients. With
the ten identified CDMs, we then constructed a nomogram to generate a clinically
practical model. The regulatory networks and functions of the ten CDMs were then
explored, the results of which demonstrated that as the gene significantly associated with
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survival of GA patients and Hazard ratio (HR), PWP2 promoted in-vitro invasion and
migration of GA cell lines through the EMT signaling pathway. Therefore, in conclusion, the
present study might help understand the prognostic significance and molecular functions
of CDMs in GA.
Keywords: Cancer Dependency Map, gastric adenocarcinoma, TCGA, prognostic model, invasion and metastasis
INTRODUCTION

As the third most common malignant tumor (1), GA has a high
mortality rate. Due to the much progress made in diagnosis and
treatment over the past few decades, the survival of patients with
early GA has improved dramatically (2). It is still an unfortunate
fact that the survival of patients with advanced GA remains
rather poor, despite the much progress made in chemotherapy,
targeted therapies and immunotherapy. The effectiveness of the
aforementioned therapies needs to be verified by more further
studies (3). Therefore, it is still an urgent task for us to design
novel strategies through elucidating the molecular mechanisms
giving rise to GA (4).

Initiated by the Broad Institute and the Dana-Farber Cancer
Institute, a project named “Defining a Cancer Dependency Map”
was performed to discover genes that promoted growth of cancer
cells and negatively affected survival of GA patients, the results of
which were published in Cell on July 27, 2017 (5). This important
study clarified how important some specific genes were to growth
and proliferation of human cancer cells. These identified genes
might be utilized as targets to develop novel targeted drugs. In
this study, more than 500 human cancer cell lines representing
20 different malignant tumors were studied. As cells that can
grow infinitely, the aforementioned cancer cell lines were
adopted to study the effects of turning off certain genes on
proliferation and growth. Cancer cell lines were transduced
with a lentiviral vector expressing the Cas9 nuclease under
blasticidin selection (pXPR-311Cas9) (6). Subjected to a Cas9
activity assay, each Cas9-expressing cell line was utilized to
characterize the effects of CRISPR/Cas9 on these cell lines. Cell
lines that were detected with less than 45% measured Cas9
activity were unqualified for further screening. In this study,
769 genes were found to be crucial to survival of cancer cells.
Although most of these genes were cancer-specific, about 10% of
them were, however, proven to participate in multiple malignant
tumors, suggesting their core cellular functions. Although a large
number of cancer cell lines were used in their study, the authors
along with other researchers pointed out that more further
studies were needed to construct a complete map. Workman
along with other researchers also stated that cooperation among
countries was crucial to a complete cancer dependency map (7).
In this study it was also concluded that the best way to predict
this dependence was to study gene activity patterns instead of
focusing on whether a single gene was defective, which surprised
us remarkably (8). With the continuous progress of the research
and real-time updates, more related genes were discovered and
uploaded to the website https://depmap.org/portal/ (6). In the
last update of the dataset, a total of 1,246 genes were included in
2

the analysis and proved to be common and essential in the
occurrence and development of various cancers.

In the present study, data of GA were downloaded from
TCGA, from which differentially expressed CDMs were
identified and the potential functions and mechanisms of these
CDMs were explored. A CDM-based prognostic model was also
developed and validated as some CDMs could be used as
potential prognostic biomarkers.
MATERIALS AND METHODS

Data Processing
Relevant RNA-sequencing and clinical datasets of GA were
extracted from the TCGA (https://portal.gdc.cancer.gov/)
database. All the downloaded expression profiles were acquired
as HT-seq read counts and interpreted using the Ensembl
reference database (http://www.ensembl.org/info/data/ftp/
index.html). In total, the data of 1,246 CDMs genes were
extracted from https://depmap.org/portal/ (6). mRNA that
were differentially expressed (DEMs) between GA tissues and
normal gastric tissues were identified using the “DESeq2” (9)
package of R software. DEMs were defined when adjusted P-
values <0.01 and log2|fold change| values >0.5 were obtained.
The “limma” (10) package of R software was used to normalize
the RNA expression profiles and perform variance stabilizing
transformation. During the whole process of this present study,
the publication guidelines and data access policies of TCGA were
abided by. Volcano plots were visualized with the “ggplot2” (11)
packages and heatmaps by “pheatmap” (12) packages.

The validation dataset of GC, including the transcription
profile based on GPL6947 platform (Illumina HumanHT-12
V3.0 expression BeadChip) and clinical information, were
obtained from GSE84437 in GEO (https://www.ncbi.nlm.nih.
gov/gds/?term=GSE84437), followed by background correction
and quantile normalization using R package “limma”. All mRNA
expression values were log2-transformed and standardized for
comparability with the TCGA set as above described. The
association analyses in the validation study were also
conducted using Cox regression models.

GO Enrichment and KEGG
Pathway Analysis
The co-expression of the ten prognosis-related genes was
calculated via function and pathway enrichment and CDMs
were assessed with the Pearson correlation test. In order to
minimize false positives, we only included co-expressed
Prognosis-related DEMs for function and pathway enrichment
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analyses when a positive correlation coefficient of >0.3 was
achieved. Based on the projection at a specific level of GO
terms or KEGG pathways, genes were classified using the
“clusterProfiler” (13) package in R software. It was through a
hypergeometric distribution with a significance threshold of P <
0.05 that functional enrichment analyses were performed for GO
terms and KEGG pathways.
Construction and Validation of
Prognostic Models
After deleting patients with incomplete follow-up time and
clinical information such as TNM staging, datasets of GA in
TCGA-STAD (Stomach adenocarcinoma) were randomly
assigned into training cohort or testing cohort. Survival R
package was adopted to perform univariate Cox regression
analysis on the identified differentially expressed CDMs. And
statistical significances of these candidate genes were determined
by performing log-rank test.

Subsequently, the variables proven by univariate Cox
regression analysis were included in multivariate Cox regression
analysis, from which genes with independent predictive ability
were verified. The genes with independent predictive ability were
used to establish a proportional-hazard regression model, based
on which the risk score (RS) was calculated to assess outcomes of
patients. The RS formula was illustrated as follow: RS= b1*Exp1 +
b2*Exp2 + bi*Expi, in which b stood for coefficient value while the
gene expression level was represented by Exp. Patients diagnosed
with GA were assigned into low-risk group or high-risk group
according to the median RS survival analysis. Overall survival of
patients in the two aforementioned subgroups were compared by
performing log-rank test. The ‘survivalROC’ package of R software
was used to evaluate the predictive capability of the
aforementioned prognostic model, where the testing cohort
from TCGA database was adopted as the validation group. The
prognostic significance of the identified hub CDMs in GA was
further verified with the Kaplan-Meier plotter online tool (https://
kmplot.com/analysis/) which the main verification datasets are
GSE14210, GSE15459, GSE22377, GSE29272, GSE51105 and
GSE62254. Ultimately, in order to forecast the likelihood of OS,
we established a nomogram with R package, and a statistically
significant difference was recorded when the corresponding P was
less than 0.05.
Biology Network
To understand the mechanisms and functions of hub CDMs in
GA, we created a protein-protein interaction (PPI) network of hub
CDMs significantly associated with prognosis under the condition
that betweenness was greater than 1 using Cytoscape 3.8.0, utilizing
the data from STRING 11.0 (https://string-db.org/). Subsequently,
we identified the key modules from the previously constructed PPI
network with scores more than 6 and node counts more than 5 as
the screening condition using the MCODE Molecular Complex
Detection (MCODE) plug-in of Cytoscape software.
Frontiers in Oncology | www.frontiersin.org 3
Cell Culture and siRNA Transfection
The gastric cancer cell lines used in our study including AGS,
HGC27 were bought from the Shanghai Institute of Cell Biology,
Chinese Academy of Sciences (Shanghai, China). After being
rewarmed, HGC27 cell line was cultured on dishes filled with
RPMI-1640 (Shanghai XP Biomed Ltd., Shanghai, China), while
AGS cell line on dished with DMEM/F-12(HAM) medium
(Shanghai XP Biomed Ltd., Shanghai, China). Both the two
aforementioned culture media were supplemented with 10%
fetal bovine serum (FBS; Sage Creation Science Co., Ltd.,
Beijing, China) and 1% penicillin and streptomycin (Beijing
Solarbio Science & Technology Co., Ltd., Beijing, China). The
two cell lines were cultured at 37°C in an atmosphere filled with
5% CO2 and were detected with no mycoplasma contamination.
Guangzhou RiboBio Co. Ltd. (Guangzhou, China) was
responsible for designing and synthesizing GenOFFTM si-h-
PWP2 siRNA and negative control siRNA oligonucleotides, the
sequences of which were presented in Supplementary Table 2.
Under instructions provided by the manufacturer, we performed
the siRNA transfections with 100nm pooled siRNA and
riboFECT™ CP Transfection Kit (Guangzhou RiboBio Co.
Ltd., Guangzhou, China,18881-1-AP).
RNA Extraction and Quantitative
Real-Time PCR
RNA fast 2000 Reagent (Fastagen, Shanghai, China) was used to
extract total RNA from HGC27 and AGS, which was then
quantified using the NanoDrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). Then under the
instructions provided by the manufacturer, we reverse-
transcribed 1mg of total RNA using a PrimeScriptTM RT
Reagent Kit produced by Takara (Dalian, China). Two
microliters of cDNA was put into a 20 ml reaction tube to be
utilized in quantitative real-time PCR performed by CFX96 Real-
Time PCR Detection System (Bio-Rad, Shanghai, China). The
PCR primer sequences used in our study were as follows:
GAPDH(F) : ACAACTTTGGTATCGTGGAAGG ; GAPDH
(R): GCCATCACGCCACAGTTTC ; PWP2(F) : CCACTCG
GTACAACGTCAAGT ; PWP2 (R ) : TCAGGGG
AGAAGGACACACTG. All the aforementioned reactions were
performed in triplicate without any template control used in each
run. The expression of each target gene was standardized with
GADPH as the endogenous control and the relative target gene
level was determined using the 2-DDCT method.
Transwell Assay
Twenty-four-well Transwell plates (8 mm pore size; Corning);
were used to perform Transwell assays. After PWP2 siRNA or
control siRNA was successfully transfected into AGS and
HGC27 cell lines, 5×104 cells of both cell lines cultured in 200
ml of serum-free medium were seeded into the upper chamber
with the lower chamber filled with 800 ml 10% FBS-
supplemented medium. The chamber was then washed using
February 2021 | Volume 11 | Article 617289
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phosphate-buffered saline (PBS) after incubation for 24 h.
Afterwards, the residual cells within the upper chamber were
removed using cotton swabs while cells having migrated to the
lower chamber were fixed using methanol, stained with Giemsa.
Then, the stained cells were visualized and photographed using a
microscope (Olympus CKX53). The acquired images were then
processed using ImageView (X64, version 4.7.14963). For
invasive assays, the procedures were basically the same except
for 10% Matrigel (BD Biosciences) precoated within upper
chamber and doubled number of seeded cells.
Western Blotting
After being washed using PBS, the cells were lysed with RIPA
(radioimmunoprecipitation assay) solution containing a protease
inhibitor. The acquired proteins were then quantified using a
bicinchoninic acid protein assay (BCA) kit, after which 20 mg of
total protein was separated on 8% or 10% sodium dodecyl sulfate
polyacrylamide gel (SDS-PAGE) under electric field. The
separated proteins were blotted onto a polyvinylidene
difluoride (PVDF) membrane (Millipore, USA), which was
then blocked with 5% bovine serum albumin (BSA) solution
for 1 h and incubated with primary antibodies against GAPDH,
E-cadherin, N-cadherin and PWP2 (1:1,000, Proteintech Group,
USA) overnight at 4°C. On the second day, the membrane was
incubated with secondary antibodies (1:2500) at room
temperature for 1 h after three times of washes with TBST
(Tris-buffered saline-Tween). After being washed for another
three times, bands of conjugate proteins were visualized via a
ChemiDoc™ MP Imaging system (Bio-Rad Laboratories) with
GADPH as the internal control.
Statistical Analysis
For categorical and continuous variables in testing cohort and
training cohort, associations were compared using c2 test.
Candidate CDMs significantly related with OS were statistically
confirmed with univariate CPHR (Cox proportional hazards
regression) analysis and Kaplan-Meier method. Both
significant clinical variables and the risk score formula were
determined by stepwise multivariate CPHR analyses. It was
through Kaplan-Meier method that survival curves were
plotted, which were then tested by the method of log-rank
tests. The specificity and sensitivity of the model in predicting
patients,survival at each time point were assessed via a time-
dependent ROC curve. Based on both CDMs and independent
clinical variables, a nomogram was constructed via multivariate
CPHR analyses and validated by plotting C-index and calibration
curves. For in-vitro functional assays in the three aforementioned
independent experiments, all quantitative data were demonstrated
as mean ± standard deviation. Differences between the two groups
were compared using t-test. The statistical analyses involved in the
present study were performed via SPSS software (version 23.0), R
software (version 3.6.3), or GraphPad Prism 5.0 (GraphPad, La
Jolla, CA, USA). A statistical significance was recorded when P-
value smaller than 0.05 was obtained unless otherwise indicated.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Differentially Expressed Cancer
Dependency Map Genes in Gastric
Adenocarcinoma
The flowchart of the present study was demonstrated in
Figure 1. After removing genes whose log2|fold change| do not
meet statistical significance (P > 0.05). It was revealed by
“DESeq2” (9) package in R software that among the CDMs in
GA, 246 genes were differentially expressed with 147 upregulated
and 99 downregulated. After that, we used volcano plot
performed by the ggplot2 package to exhibit significantly
differentially expressed genes. Then we used the pheatmap
package to explore the 246 differential high and low expression
genes among the normal and tumor tissue with log2-
transformed. (FDR < 0.05, log2|fold change| > 0.5, Figure 2).
GO and KEGG Pathway Enrichment
Analysis of the Differentially Expressed
Cancer Dependency Map Genes
To explore the functions of these differentially expressed CDMs
and mechanisms through which they promoted progression of
GA, we performed functional analyses of these downregulated and
upregulated CDMs via “clusterProfiler” package in R software. As
shown in Figure 3, significant differences were observed in
functional enrichment of downregulated and upregulated
CDMs. As for localization within the cell, downregulated CDMs
were enriched in related functions of mitochondria and cell energy
metabolism. Molecular functional analysis demonstrated that
downregulated CDMs participated in structural constituent of
ribosome, 4-iron, 4-sulfur metal cluster forming the iron−sulfur
cluster. Biological process analysis showed that downregulated
CDMs were related to metabolic processes of the whole cell and
mitochondrial function, while upregulated CDMs were mainly
involved in DNA replication and cell division. As for cellular
localization, upregulated CDMs were significantly enriched in
centromeric region, condensed chromosome, spindle,
kinetochore, centromeric region, nuclear chromosome part, and
chromosomal region (Figure 3A).

Additionally, as shown in Figure 3B, it was also revealed that
downregulated CDMs were significantly enriched in synaptic
vesicle cycle, thermogenesis, ribosome, carbon metabolism,
citrate cycle (TCA cycle), oxidative phosphorylation, non
−alcoholic fatty liver disease, Parkinson disease, amyotrophic
lateral sclerosis, and Huntington disease while the downregulated
ones mainly participated in ribosome biogenesis in eukaryotes,
aminoacyl-tRNA biosynthesis, mRNA surveillance pathway,
transport and degradation of RNA, and spliceosome.
Protein–Protein Interaction Network
Construction and Key Module Screening
In order to enable us to help us better understand potential
molecular functions of these aforementioned differentially
expressed genes in GA, we established a protein-protein
February 2021 | Volume 11 | Article 617289
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co-expression network via Cytoscape and the STRING database.
As shown in Figure 4, a total of 246 nodes and 3,377 edges were
included in this established PPI network and upregulated genes
are marked in red, downregulated genes are marked in green
(Figure 4A). At the same time, protein-protein interaction of 246
differentially expressed genes was also shown which the number
and color of the connections at different points represent the
Frontiers in Oncology | www.frontiersin.org 5
level and quantity of evidence of the connection. In the figure,
some nodes have spiral structures inside, which means that the
three-dimensional structure of the protein is known, if it is
unknown, the nodes are empty (Figure 4B). Subsequently,
potential critical modules were detected through analyzing the
co-expression network via the Cytoscape, in which the top three
most significant modules were determined. 54 nodes and 1,325
FIGURE 1 | Flowchart of this study.
A B

FIGURE 2 | Volcano plot and heatmap of 1,246 Cancer Dependency Maps (CDMs) in Gastric Adenocarcinoma patients from TCGA-STAD Project. (A) Volcano plot
of 1,246 CDMs in gastric cancer samples from TCGA-STAD Project. Green and red indicated downregulated and upregulated CDMs, respectively. (B) Heatmap of
1,246 CDMs in gastric cancer samples from TCGA-STAD Project. Green represents low expression, red represents high expression. N stands for normal tissue and
T stands for tumor tissue [FDR(False discovery rate) < 0.05].
February 2021 | Volume 11 | Article 617289
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edges were included in module 1 (Figure 4C) while module 2
included 23 nodes and 224 edges (Figure 4D) and module 3
included 17 nodes and 49 edges (Figure 4E). It was revealed by
GO and pathway analyses that genes from module 1 mainly
participated in DNA replication, chromosome segregation,
DNA-dependent DNA replication, DNA conformation change,
Human T-cell leukemia virus type 1 infection, oocyte meiosis,
and cellular senescence, while genes in module 2 were
significantly involved in metabolism, biogenesis, and
processing of rRNA, processing and metabolism of ncRNA,
ribosome biogenesis in eukaryotes, and RNA polymerase.

Prognosis-Related Hub Cancer
Dependency Map Genes
After 246 differentially expressed genes were shown, to further
analyze the effects of CDMs on the prognosis of GA patients, the
relationship between the differentially expressed CDMs and OS
were assessed through the univariate Cox regression analysis and
Kaplan-Meier method, the results of which suggested that 19
candidate hub CDMs were significantly associated with OS
through the univariate Cox regression analysis (Supplementary
Table 1). Afterwards, how these 19 candidate hub CDMs
impacted OS were evaluated by Cox multivariate analysis, the
results of which demonstrated that ten hub CDMs were
independent prognostic predictors for GA patients (Table 1).
Frontiers in Oncology | www.frontiersin.org 6
Construction and Validation of
Prognostic Model
A predictive model based on the aforementioned ten hub CDMs
was then established. According to the formula: RS (risk score) =
(−0.051* Exp ALG8) + (−4.247* Exp ATRIP) + (0.009* Exp
CCT6A) + (0.092* Exp CFDP1) + (0.179* Exp CINP) + (−0.170*
Exp MED18) + (0.080* Exp METTL1) + (−0.145* Exp ORC1) +
(0.766* Exp PWP2) + (0.343* Exp TANGO6), RS of each
individual patient was assessed. The predictive capability of RS
was evaluated by survival analysis. According to the median RS,
the 187 patients from GA TCGA training cohort were assigned
into low-risk group and high-risk group. Results of survival
analysis demonstrated that compared with those in low-risk
group, patients in the high-risk group had significantly poorer
OS (p<0.001, Figure 5B). In order to further evaluate the
prognostic capability of the ten identified hub CDMs, we
subsequently performed a time-dependent ROC analysis,
results of which revealed that the area under the ROC curve
(AUC) of this CDMs RS model was 0.761 at 3 years (Figure 5C),
indicating moderate diagnostic performance of this model. The
survival status of patients, RS and expression heatmap of the
signature consisting of ten hub CDMs in the two subgroups were
presented in Figure 5A. To further verify the validity of the ten
CDMs-based predictive model, the 184 GA patients included in
the TCGA testing cohort were then analyed, the results of which
A

B

FIGURE 3 | GO and KEGG pathway enrichment analysis of the differentially expressed Cancer Dependency Maps (CDMs). (A) GO pathway enrichment of
downregulated and upregulated CDMs. (B) KEGG pathway enrichment of downregulated and upregulated CDMs.
February 2021 | Volume 11 | Article 617289
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showed that compared to patients with low-risk score, those with
high-risk score had significantly worse OS (P < 0.05, Figure 6B).
As could be seen from Figure 6C, AUC of the TCGA testing
cohorts were 0.614 at 3 years, justifying its good sensitivity and
specificity. The survival status of patients, RS and expression
heatmap of the ten hub CDMs in the TCGA testing cohorts were
shown in Figure 6A. Additionally, the prognostic significance of
different variables were assessed among patients of TCGA
training and testing cohort by Cox regression analysis, the
results of which demonstrated that for both cohorts, both
tumor stage and RS could independently predict OS (P < 0.05,
Figures 7A, B). The prognostic values of the ten hub CDMs were
also further investigated by GSE84437 cohort (Figure S1) and
Kaplan-Meier plotter website (Figure S2), the results of which
revealed that all the ten hub CDMs were not only significantly
associated with OS in TCGA but also an independent GEO
Frontiers in Oncology | www.frontiersin.org 7
dataset. In summary, considering all the aforementioned results,
we could draw the conclusion that the ten CDMs-based
prognostic model was reliable in predicting outcomes of
GA patients.

Building a Predictive Nomogram
A clinically practical model enabling physicians to evaluate
survival of patients with GA was then generated by
constructing a nomogram with the ten identified hub CDMs
(Figure 8). According to results of multivariate Cox analysis,
each individual variable was given a corresponding point based
on the point scale obtained in this nomogram. The point of each
variable was determined by drawing a horizontal line. Then the
points of all the variables were added up to obtain the patient’s
total score, based on which the survival rate of each patient at 1, 3
and 5 years were estimated.
A B

D

E

C

FIGURE 4 | Protein-protein interaction (PPI) network and module analysis. (A, B) PPI network for Cancer Dependency Maps (CDMs); (C) critical module 1 in PPI
network; (D) critical module 2 in PPI network; (E) critical module 3 in PPI network.
February 2021 | Volume 11 | Article 617289
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PWP2 Promoted In Vitro Migration and
Invasion of Gastric Adenocarcinoma Cells
For this part, whether these identified Prognosis-related CDMs
promoted the development and progression of GA was explored.
As a tool using CRISPR-Cas9 whole-genome drop out screens to
assess dependencies of cancer cells to help guide precision cancer
medicines, genetic screens (https://score.depmap.sanger.ac.uk/)
was used to identify gastric cancer dependencies. After being
assessed for gene fitness effects through CERES (6) which is a
computational method to estimate gene dependency levels from
CRISPR-Cas9 essentiality screens while accounting for the copy-
number-specific effect (Figure S3), PWP2 was selected out of
these ten Prognosis-related CDMs for further functional assays
Frontiers in Oncology | www.frontiersin.org 8
since it had the greatest impacts on hazard ratio (HR=2.152,
P<0.05, Table 1) and also appeared in critical module 2 in PPI
network(Figure 4D). The expression level of PWP2 in GA
tissues and normal tissues were evaluated using the data
downloaded from TCGA-STAD Project (Figure 9A), revealing
a significantly higher level in GA tissues than that in normal
gastric tissues. A panel of cell lines including AGS, SGC7901,
MGC803, N87, HGC27, and MKN28 were cultured and their
baseline levels of PWP2 were measured, which revealed greater
levels in AGS, MGC803, and HGC27 (Figure 9B).

Subsequently, PWP2 siRNA were transfected into AGS and
HGC27 cell lines. Then, quantitative real-time PCR analyses
were performed, revealing significantly downregulated PWP2
TABLE 1 | Ten Cancer Dependency Maps (CDMs) significantly associated with overall survival in the TCGA-STAD Project.

ID Coef HR HR.95L HR.95H P value

ALG8 -0.05107 0.950208 0.89973 1.003517 0.066669
ATRIP -4.24778 0.014296 0.000171 1.192412 0.059837
CCT6A 0.009201 1.009244 1.00174 1.016803 0.015662
CFDP1 0.092187 1.09657 1.03851 1.157876 0.000896
CINP 0.179328 1.196413 0.977263 1.464708 0.082358
MED18 -0.16993 0.843725 0.747413 0.952448 0.006
METTL1 0.080107 1.083403 1.000883 1.172728 0.047503
ORC1 -0.14509 0.864948 0.720126 1.038894 0.120701
PWP2 0.766357 2.151913 1.092021 4.240512 0.026807
TANGO6 0.342845 1.40895 0.977994 2.029809 0.065694
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ruary 2021 | Volume 11 | Artic
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FIGURE 5 | Risk score analysis of ten-Cancer Dependency Maps (CDMs) prognostic model in the TCGA training cohort. (A) The risk score distribution, overall
survival (OS) status and heatmap of the ten-CDMs signature in the training cohort. (B) Kaplan-Meier curves for OS based on the ten-CDMs signature in the training
cohort. The tick marks on the curve represent the censored subjects. The number of patients at risk is listed below the curve. (C) Time-dependent ROC curve
analysis of the ten-CDMs signature for predicting OS in the training cohort.
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levels in AGS and HGC27 after transfection (Figure 9C). It was
demonstrated by Transwell assays that the migratory and
invasive capabilities of AGS and HGC27 cells significantly
decreased after knockdown of PWP2 (Figures 9D, E).

As a crucial process during occurrence and progression,
epithelial-mesenchymal transition (EMT) was indispensable to
invasion and metastasis of GA (14, 15). With the aim of exploring
whether PWP2 was involved in EMT, we then quantitatively
assessed the expression levels of EMT markers in PWP2-siRNA-
transfected GA cells using Western blotting, which demonstrated
that the expression level of epithelial marker E-cadherin increased
while that of mesenchymal marker N-cadherin decreased (Figure
9F). This finding suggested that PWP2 was likely to enhance the
migration and invasion of GA cells through promoting the
EMT pathway.
DISCUSSION

It is usually quite difficult for us to predict genes essential for
tumor survival, as most malignant tumors originating from
epithelial tissues harbor quite many genetic mutations. These
genetic mutations are associated with growth of cancer cells and
specific vulnerabilities to specific damages. Some of these genetic
mutations have been reported to have potential as compelling
therapeutic targets (16). The challenge is in finding each targetable
Frontiers in Oncology | www.frontiersin.org 9
vulnerability with the current tools for every cancer (17). Using
diverse human cancer cell lines, Aviad Tsherniak and his
teammates performed analyses of 501 genome-scale loss-of-
function screens (5), in which they developed an analytical
framework called DEMETER that segregates on-from off-target
effects of RNAi. Scientists dedicating to DepMap by far have
profiled hundreds of models based on cell lines to elucidate
genomic information and explore cancer cells, sensitivity to
genetic and small molecule perturbations. These large-scale
databases have been searched for information with the hope of
determining genetic targets for developing novel therapies,
identifying patients responsive to a certain treatment, and
enabling physicians to better understand vulnerabilities of cancer.

The Cancer Dependency Map project has committed to
remain open accessed, i.e. under a Creative Commons license
making all the data produced by this project freely available to
the public. These datasets are released in the form of pre-
publication with a quarterly interval and can be downloaded
from https://depmap.org/portal/depmap/. As a systematic and
novel research method, Cancer Dependency Map has been used
to determine the priority targets and drug sensitivity of specific
cancer types. And it will ultimately accelerate the process of
discovering novel targeted therapies and promote the progress of
precise treatment (18).

However, by far, studies on the expression patterns and roles
of CDMs are scarce (19, 20). In the present study, based on GA
A B

C

FIGURE 6 | Risk score analysis of ten-Cancer Dependency Maps (CDMs) prognostic model in the TCGA testing cohort. (A) The risk score distribution, OS status
and heatmap of the ten-CDMs signature in the testing cohort. (B) Kaplan-Meier curves for OS based on the ten-CDMs signature in the testing cohort. The tick
marks on the curve represent the censored subjects. The number of patients at risk is listed below the curve. (C) Time-dependent ROC curve analysis of the ten-
CDMs signature for predicting overall survival (OS) in the testing cohort.
February 2021 | Volume 11 | Article 617289

https://depmap.org/portal/depmap/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Cancer Dependency Gene Prognostic Model
data extracted from TCGA, a total of 246 differentially expressed
CDMs were identified. Relevant biological functions and
pathways were then comprehensively analyzed. Additionally, it
was revealed by univariate and multivariate Cox regression
analysis, and ROC analysis that ten hub CDMs were
significantly associated with survival of GA patients. Based on
the ten identified hub CDMs, a risk model was established in the
training cohort and further validated in the corresponding
testing cohort. By ROC analysis, this risk model was proven
reliable in predicting survival of GA patients. To improve its
clinical practicality, we then constructed a nomogram to evaluate
survival of GA patients at one year, three years and five years.
These findings may enable us to better understand the
mechanisms involved in the occurrence and progression of GA
and explore new biomarkers for diagnosis and predicting
prognoses of GA patients.

It was subsequently revealed by functional and pathway
analysis that the upregulated CDMs mainly participated in DNA
replication, chromosome segregation, DNA conformation change,
DNA-dependent DNA replication and cell cycle pathway while
the downregulated ones were mainly involved in cell cycle,
mitochondrial inner membrane, organelle inner membrane,
mitochondrial matrix and oxidative phosphorylation, citrate
cycle (TCA cycle) pathway. Over the past few years, aberrant
DNA metabolism (21–23) and DNA processing (24–26) have
been reported to play vital roles in various diseases.

To explore the prognostic significance of the ten CDMs, we
performed Cox survival analysis for these differentially expressed
CDMs among GA patients. A total of ten CDMs that included
ALG8, ATRIP, CCT6A, CFDP1, CINP, MED18, METTL1,
ORC1, TANGO6, and PWP2 were proven to be prognosis-
Frontiers in Oncology | www.frontiersin.org 10
related. Consistent with our findings, Yi Xuan demonstrated
that as a long non-coding RNA, SNHG3 enhanced progression
of gastric cancer through regulating methylation of a
neighboring MED18 gene (27), and ORC1 is one of the key
gene involved in promoting growth, proliferation, and migration
of gastric cancer cells (28, 29).

As a cancer with remarkable heterogeneity, gastric cancer is
related with various prognoses among different patients (30–32).
Therefore, a more sophisticated and reliable prediction model is
still urgently needed. At present, a few prognostic models have
been established to predict survival of gastric cancer patients, in
which, however, the relationship between predicted indicators
and gastric cancer has not been clarified (33–35). Subsequently,
based on the ten identified hub CDMs, a risk model predicting
prognoses of GA patients was established with the TCGA
training cohort. It was demonstrated by ROC analysis that this
risk model based on the ten CDMs was in selecting out GA
patients with poor prognosis, which was further validated by the
TCGA testing cohort. The reliability of this risk model described
above was also confirmed by Kaplan-Meier analysis.
Additionally, revealed by multiple Cox regression analysis of
the test cohorts, RS could independently predict prognoses of GA
patients. All the aforementioned findings of our study pointed to
the clinical practicality of this ten CDMs-based prognostic
model. To enable a more intuitive method for the physicians
to predict patients’ survival at one year, three years, and five
years, we constructed a nomogram.

Responsible for recognizing DNA damage-induced structure
and regulating cellular responses to DNA damage and replication
stress, ATR-interacting protein (ATRIP) has been proven to
interact with MCM complex to promote ATRIP chromatin
A B

FIGURE 7 | The prognostic value of different clinical parameters. The prognostic value of different clinical parameters. (A) Univariate (red) and multivariate (green)
COX regression analysis of different clinical parameters in TCGA training cohort. (B) Univariate (red) and multivariate (green) COX regression analysis of different
clinical parameters in TCGA testing cohort.
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loading and ATRIP phosphorylation (36). Ying et al. reported that
CCT6A could suppress SMAD2 function in NSCLC cells and
promote metastasis through TGF-b signaling pathway (37). It was
reported by Wu et al. that CINP was identified through genome-
wide association and large-scale follow-up analyses as one of the
16 new loci affecting lung function (38). In a study published by
Tian et al., METTL1 was reported to be correlated with poor
survival of HCC patients and enhance progression of
hepatocellular carcinoma via PTEN (39). PWP2 belonged to the
WD family and was indispensable to the assembly of 90S pre-
ribosomal particle. Conditional depletion or decrease of PWP2
protein expression in yeast significantly impaired pre-rRNA
processing at sites A(0), A(1), and A(2), resulting in a
remarkable decrease in levels of 18S rRNA and 40S ribosomal
subunit. It was indicated in the present study that independent of
the U3 small nucleolar ribonucleoprotein essential for the initial
assembly steps of the 90S pre-ribosome, PWP2 formed part of a
stable particle subunit (40). However, roles of PWP2 and the
Frontiers in Oncology | www.frontiersin.org 11
specific mechanisms through which it contributed to GA
remain unclear.

Then we accomplished further functional studies on one of the
ten CDMs significantly related with OS, PWP2. It was proven by
Transwell assays that knocking down significantly reduced the
invasive and migratory abilities of GA cells. As a vital contributor
to invasion and metastasis of GA cells, EMT was remarkably
inhibited after PWP2 was knocked down as the epithelial marker
E-cadherin was upregulated while the mesenchymal maker N-
cadherin was downregulated, suggesting silencing PWP2 might be
utilized to reduce invasion and metastasis of GA cells.

But limitations of the present study are not to be neglected.
Firstly, despite the fact that TCGA database has been widely used
in various aspects of researches (41, 42), some important
preoperative and postoperative parameters such as neoadjuvant
chemotherapy, radiotherapy, and immunotherapy were not
included, making it impossible for us to perform a
comprehensive analyses of these potential parameters. Secondly,
February 2021 | Volume 11 | Article 617289
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FIGURE 8 | A Prognosis-related Cancer Dependency Maps (CDMs) signature-based nomogram to predict 1-, 3-, and 5-year overall survival (OS) in gastric cancer
patients. (A) Nomogram for predicting OS. Instructions: Locate each characteristic on the corresponding variable axis, and draw a vertical line upwards to the points
axis to determine the specific point value. Repeat this process. (B, C) Calibration plots of the nomogram for predicting OS at three years in the training cohort (B)
and the testing cohort (C). The 45-degree dotted line represents a perfect prediction, and the red lines represent the predictive performance of the nomogram. The
blue point represents the actual value, the red curve and the point represent the predictive value, and black marks at the top of the figure represents the position of
each patient and their survival status in the model.
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the data used in the present study were downloaded from an open-
accessed database, making our study retrospective in nature. Thus,
further prospective clinical studies are warranted to validate our
findings and determine whether the risk model and nomogram
can accurately predict survival of GA patients.

In conclusion, we comprehensively investigated the
prognostic values and potential functions of differentially
expressed CDMs in GA. A risk model that can reliably predict
prognosis of GA patients was constructed based on the ten
identified CDMs and validated by the TCGA testing cohort. A
reliable and clinically practical nomogram predicting prognosis
and aiding in individualized management was constructed.
Furthermore, the functions of PWP2 in GA was explored,
demonstrating that it could promoted invasion and metastasis
of GA cells through inducing EMT.
Frontiers in Oncology | www.frontiersin.org 12
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FIGURE 9 | PWP2 enhances the invasion and migration of gastric cancer cells in vitro. (A) The expression of PWP2 in samples from TCGA-STAD Project.
(B) Quantitative real-time PCR analysis of PWP2 expression in AGS, SGC7901, MGC803, N87, HGC27, and MKN28 cells. (C) Quantitative real-time PCR analysis of
PWP2 expression in PWP2-silenced cells and scrambled-siRNA-treated cells. (D) The migration and invasion abilities of AGS and HGC27 cells were assessed with
Transwell assays after the knockdown of PWP2. (Left panel) Representative images of migration (upper) and invasion (lower) assays. (E) The number of cells that
migrated or invaded are shown in the histogram. (F) The protein levels of E-cadherin, PWP2, N-cadherin were detected by Western blotting in the PWP2-
knockdown group. Data are represented as the mean ± standard deviation of triplicate determinations from three independent experiments. Statistical significance
was assessed with an unpaired Student’s t-test (two-tailed test). ***P < 0.001.
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