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Curative-intent radiotherapy plays an integral role in the treatment of lung cancer and
therefore improving its therapeutic index is vital. MR guided radiotherapy (MRgRT)
systems are the latest technological advance which may help with achieving this aim.
The majority of MRgRT treatments delivered to date have been stereotactic body radiation
therapy (SBRT) based and include the treatment of (ultra-) central tumors. However, there
is @ move to also implement MRgRT as curative-intent treatment for patients with
inoperable locally advanced NSCLC. This paper presents the initial clinical experience
of using the two commercially available systems to date: the ViewRay MRIdian and Elekta
Unity. The challenges and potential solutions associated with MRgRT in lung cancer will
also be highlighted.

Keywords: magnetic resonance imaging (MRI), external beam radiotherapy, adaptive, image-guided radiotherapy

(IGRT), MR-guided radiotherapy (MRgRT), stereotactic body radiation therapy (SBRT), non-small cell lung
cancer (NSCLC)

INTRODUCTION

Lung Cancer in Context

SBRT plays an important role in the curative-intent treatment of medically inoperable patients with
early-stage NSCLC (1, 2). Radical radiotherapy, either alone or in combination with concurrent
chemotherapy (followed by adjuvant immunotherapy in eligible patients), is the curative-intent
treatment option open to those with locally advanced disease (1, 2). It is therefore crucial to plan and
deliver the radiotherapy using technologies that can fully optimise the therapeutic index. This can be
achieved with strategies that increase the probability of tumor control, while simultaneously
reducing the probability of normal tissue complications (3).
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Intra-fractional anatomical changes, attributed to cardiac and
respiratory motion, pose the greatest challenge for accurate
radiotherapy delivery (4-6).

These changes could lead to under-dosage of the tumor and
over-dosage of the organs at risk (OARs), which could lead to an
increased risk of recurrence or long term toxicity (6-8).
Therefore, there is a clinical need to ensure that the tumor is
receiving the prescribed dose while the dose to the OARs is kept
to a minimum, e.g., to reduce cardiac toxicity and its related
sequelae (7-9). MRgRT has the potential to facilitate this.

The Role of MRgRT in Lung Cancer

MRgRT has a number of potential benefits which could be
exploited in the lung cancer setting. The excellent soft tissue
contrast of MRI may result in the improved delineation of
challenging target volumes, such as those located centrally or
close to and/or invading adjacent structures, and OARs (Figure
1) (10). MRgRT may also enable the potential for daily plan
adaptation and margin reduction, which could lead to
improved OAR dose sparing (11, 12). Daily plan adaptation
could account for anatomical and physiological changes
throughout the course of radiotherapy and thereby has the
potential to improve dosimetric accuracy (12). The “beam-on”
capabilities of MRgRT systems permit real-time monitoring
during radiotherapy treatment. This may allow for motion
mitigation by gating or tracking and therefore again may

Unity MR image including tumor and OAR contours, as described before.

facilitate the use of smaller margins (12). MRgRT may
therefore improve the therapeutic index of radiotherapy
treatment for lung cancer. Another advantage of MRgRT is the
ability to acquire functional imaging to assess response and to
potentially permit adaptive workflows based on biological
information (13).

Ongoing research should help to highlight the specific groups
of lung cancer patients most likely to benefit from MRgRT. Daily
adaptive SBRT continues to be investigated as an option for
(ultra-) central early-stage disease (14-19). MRgRT may also
prove advantageous to patients with locally advanced disease,
especially in more challenging cases where other imaging
modalities, e.g., CT (Computed Tomography) and 18-
Fluorodeoxyglucose-Positron Emission Tomography (FDG-
PET) may fail to provide enough planning information.
Examples of this include the ability to better assess tumor
invasion into surrounding tissue (e.g., mediastinum, chest-wall)
or where the tumor is abutting collapsed lung. Isotoxic dose
escalation may be another option in this patient cohort (20).
Finally, oligometastatic lung cancer patients may benefit from
improved target definition and treatment accuracy, particularly
for sites of disease within the abdomen (21).

There are currently five different MR-radiotherapy delivery
systems documented in the literature but to our knowledge, only
two of these are in clinical use (22, 23). This paper will focus on
the commercially available MRIdian (ViewRay Inc, USA) and

FIGURE 1 | Planning Computed Tomography (CT) image compared with MR image on the Unity. (A) Planning CT image showing small peripheral right lung tumor.
(B) The same planning CT image including tumor and OAR contours (pink = lungs, yellow = heart, red = proximal bronchial tree, blue = oesophagus, cyan = spinal
cord and orange = Gross Tumor Volume). (C) Unity MR image for the same patient, using 3D Vane — balanced Turbo Field Echo (bTFE) sequence. (D) The same

Frontiers in Oncology | www.frontiersin.org

March 2021 | Volume 11 | Article 617681


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Crockett et al.

MRgRT for NSCLC

FIGURE 2 | The two commercially available MR-guided radiotherapy systems. (A) The MRIdian (ViewRay Inc, USA). (B) The Unity (Elekta, Sweden).

Unity (Elekta, Sweden) systems, and their use in the lung cancer
setting (Figure 2).

The MRIdian System

The first commercially available system, the MRIdian, was Food
and Drug Administration (FDA) approved in 2012 and then
introduced clinically in 2014. Initially, it consisted of a three-
headed cobalt source system with a low field magnet (0.35 T)
(24). The second version, which replaced the three-headed cobalt
source with a 6 megavoltage (MV) linear accelerator, was FDA
approved in February 2017 and the first patient was subsequently
treated in July 2017 (24). There are now 34 MRIdian systems in
13 countries across the globe and to date over 10,000 cancer
patients have been treated and more than 95 peer-reviewed

articles have been published (25). ViewRay has also established
a multicentre Clinical Co-operative Think Tank (C*T?) which is
a collaborative group comprising clinical MRIdian users from
over 20 international institutions. Its role is to enable the sharing
of clinical data and best practice as well as ongoing research and
evaluation of MRgRT.

The Unity System

The Unity is the second commercially available system with a
magnetic field strength of 1.5 T and a 7 MV linear accelerator
(24). An international consortium, including teams from seven
research centers from across the United Kingdom, Europe, and
the United States, was set up in 2012 to facilitate the collaborative
investigation of the system and its introduction into clinical
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practice (26). The first patient was treated on the Unity machine
in Utrecht in May 2017, as part of a cohort of patients with spinal
metastases (27). The system received FDA approval in December
2018. Currently, there are 16 Unity systems in 11 countries
across the globe and to date; more than 1,000 patients have been
treated (28). As of March 2020, 236 peer-reviewed publications
on the development and implementation of the system have been
produced (28, 29).

METHODOLOGY

A literature search was performed on PubMed to identify
relevant published literature, including abstracts. It was
performed initially in May 2020 but updated in October 2020.
The search terms used were: (“MR-guided” OR “magnetic
resonance-guided” OR MRI-guided OR “magnetic resonance
imaging-guided” OR MR-Linac) AND (“non-small cell lung
cancer” OR NSCLC OR “lung cancer” OR thorax OR thoracic
OR lung) AND (radiotherapy OR “radiation therapy” OR SBRT
OR SABR OR “adaptive radiotherapy” OR “adaptive radiation
therapy” OR “image-guided radiotherapy” OR “image-guided
radiation therapy” OR stereotactic). Identified articles were
reviewed manually and cross-checked for other relevant papers.

INITIAL CLINICAL EXPERIENCES
Background

The initial clinical experience of thoracic MRgRT has mainly
included the use of SBRT for the treatment of early-stage lung
cancer (30-38). Owing to concerns relating to bronchial toxicity,
SBRT use was initially restricted to those with tumors >2 cm
from the central airways (15, 39). However, in recent years an
increasing number of publications have shown that dose-adapted
SBRT regimens can be delivered in centrally located tumors (14,
19). However, severe toxicities have been reported, particularly in
patients with ultra-central tumors and prospective studies are
needed in this setting (19).

MRgRT with its superior soft tissue contrast and potentially
improved and adaptive planning and treatment delivery
accuracy may help to reduce uncertainties and enable a
reduction in planning margins and volumes (12). This in turn
increases the scope for safer treatment of (ultra-) central tumors.
In addition, the reduction in planning margins could make
conventionally fractionated radiotherapy more attractive for
patients with locally advanced lung cancer, minimising the risk
of radiation pneumonitis and/or acute oesophagitis.

In Silico Studies With the MRIdian

The potential clinical advantage of MRgRT for intrathoracic
disease was initially explored for SBRT of (ultra-) central tumors.
A retrospective in silico analysis of ultra-central thoracic and
abdominal malignancies demonstrated that initial treatment
plans violated OAR constraints approximately 63% of the time
when applied to subsequent daily fraction MR imaging (21).

Online adaptive treatments (re-planning to account for
anatomical changes) could have resolved all violations (21).
Subsequent in silico retrospective analysis of hypofractionated
MRgRT (12 fractions) for (ultra-) central tumors suggested a
similar benefit with this approach (16).

Clinical Experience With the MRIdian

This system was first introduced clinically in 2014 and within the
initial phase, 61 patients with intra-thoracic tumors were treated
(30). The feasibility of MRgRT with daily online adaptive
treatment for SBRT of ultra-central thoracic tumors was
subsequently evaluated in a prospective Phase I study (17).
Five patients were included and all received 50 Gy in five
fractions. Adaptive treatments (to account for anatomical
changes) were required for four out of five patients and in ten
out of 25 delivered fractions. Seventy percent of the adaptive re-
plans were carried out for OAR violations and 30% to improve
PTV coverage. Local disease control was 100% at 6 months, with
no grade 3 or higher toxicities. While patients included in this
study and the two retrospective in silico studies had both NSCLC
and oligometastatic disease from a non-lung primary, there does
not appear to be any significant difference with regard to the
potential benefit of adaptive MRgRT by histology (16, 21).

Other institutions have had similar clinical experiences using
MRgRT to treat lung tumors (primary or oligometastases from
non-lung primaries), but reports of clinical outcomes as a whole
remain lacking for NSCLC (31-33, 35, 36). Adaptive MRgRT for
lung SBRT was found to improve OAR sparing in 88% of
treatments and improve PTV coverage compared to a non-
adaptive plan in a small cohort (34). Daily adaptive MR-
guided SBRT for central lung lesions was also found to
improve PTV coverage in 61% of fractions with a reduction in
the number of OAR violations (18).

More recently, the use of MRgRT to deliver lung SBRT in a
single fraction, under real-time image guidance, has been reported
(37). Re-optimised plans following on-table adaptation showed
improved PTV coverage to 95% compared with 89.8% in
predicted plans. Stereotactic magnetic resonance-guided adaptive
radiation therapy (SMART) has also been used to treat high-risk
lung cancer cases (central tumors, re-irradiation and patients with
interstitial lung disease) (38). Improvements in PTV coverage
were highlighted alongside low rates of toxicity and encouraging
early clinical outcomes. In general, the clinical consequences of
improvements in PTV coverage and OAR sparing have not been
extensively reported, however.

A prospective Phase I-II trial (ClinicalTrials.gov ID
NCT04115254) is currently open. It aims to evaluate the
feasibility and efficacy of SMART in patients with lung,
pancreatic, and renal cancer. Another institutional single-arm
Phase II study with safety lead-in (ClinialTrials.gov ID:
NCT03916419) is open and exploring the role of MR-guided
radiotherapy in the definitive management of inoperable, locally
advanced NSCLC. They are assessing the feasibility and clinical
benefit of MRgRT in hypofractionated (60 Gy in 15 fractions)
concurrent chemoradiotherapy and consolidation with
Durvalumab is being examined.
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In Silico Studies With the Unity

A study assessing the feasibility of treating nine early-stage
lung cancer patients with SBRT found that clinically
acceptable lung SBRT plans were possible (40). Small
differences in dose to the target and OARs (especially
increased dose to skin) were noted with MRgRT, but with
minimal clinical impact expected. This was also found in
patients with locally advanced NSCLC (20). Furthermore,
the improved imaging capabilities meant that PTV margin
reduction was possible, in turn facilitating increased OAR
sparing and isotoxic dose escalation. A subsequent study of
five patients assessed the effects of density overrides on
treatment planning for MRgRT in lung cancer (41). The
team concluded that when using density overrides,
recalculation of optimised plans using the original CT is
essential, to avoid under-dosage of the tumor.

Clinical Experience With the Unity

The Multiple Outcome Evaluation of Radiation Therapy Using
the MR-Linac (MOMENTUM) Study (ClinicalTrials.gov ID:
NCT04075305) has been open since February 2019. It is a
prospective, multi-institutional, international cohort study/
registry investigating the implementation of the Unity MR-
Linac and its ongoing development. All patients treated on the
MR-linac are eligible for inclusion in MOMENTUM across 12
disease sites, including lung cancer (42). The objective of
MOMENTUM is to collect and evaluate technical and clinical
data to allow for optimisation of software with the ultimate aim
of improving local disease control, patient survival, and quality
of life.

At the time of writing this paper, the Medical College of
Wisconsin (MCW) has treated one patient with intrathoracic
disease (inoperable stage III NSCLC) with concurrent
chemoradiotherapy at a dose of 60 Gy in 30 fractions. Their
radiotherapy was delivered using the Adapt To Position (ATP,
virtual couch shift) workflow and was well tolerated (43).

At University Medical Center Utrecht (UMCU), 10 patients
with (ultra-) central tumors have been treated thus far at a
dose of 60Gy in 8 to 12 fractions. All patients were treated by
daily generating a new treatment plan that was optimised to the
daily anatomy visualized on the 3D MR Dataset, using an ATP
and Adapt To Shape (ATS, adapted to anatomical changes)
workflow (43). Treatments have been well tolerated by patients.
In addition to MOMENTUM registration for MR-linac
treatments, all lung cancer patients are prospectively
registered in the Utrecht Cohort for Lung cancer Outcome
Reporting and trial inclusion (U-COLOR). Its “Trials-within-
Cohorts” (TwiCs) design enables efficient, fast, and
pragmatic testing of new interventions in a randomised
fashion (44).

Finally, a team in Shandong, China have treated one patient
with SBRT for stage I NSCLC at a dose of 56Gy in seven
fractions, with an ATP workflow applied to all fractions.
Treatment was well tolerated and a follow-up CT, one-month
post-treatment, showed a good local response.

Table 1 summarizes the clinical experience, to date.

CHALLENGES

The integration of MRI into radiotherapy planning and delivery
systems has led to the need for changes in the radiotherapy
workflow (43, 45). These changes relate to the potential for daily
online imaging, plan adaptation, and re-optimisation while
ensuring patients are comfortable on the treatment couch.
Such workflows are still in development. The ultimate goal is
to have an “MR-only” radiotherapy workflow (46). This concept
incorporates MRI diagnostic scans, MRI use for target
delineation (“planning MRI”), treatment monitoring and real-
time adaption, and finally the use of functional MR sequences
during treatment to assess for early response and enable
adaptation as necessary (13, 46, 47).

Despite its potential benefits, the implementation of MRgRT
into routine clinical practice has proven challenging for reasons
including cost-effectiveness, patient selection, departmental
logistics, changes to workflow, and technical challenges (12,
22, 48).

Cost-Effectiveness

A number of surveys on the implementation of MRgRT have
indicated that health economics and/or accessibility may be the
main reasons behind its slow uptake (22, 48). MRgRT systems
are expensive and the delivery of value-based healthcare has been
acknowledged as a global priority (48, 49). Given their expense it
will be important to carefully define indications for their
clinical use.

Patient Selection

Once a clinical program has been established, and the demand
exceeds the MR-Linac capacity, identifying patients that will
benefit most from MRgRT is crucial (48). At Washington
University, a bi-weekly triage meeting has been established to
review proposed treatments and help determine if and when
MRgRT is appropriate based on clinical indicators and
machine availability.

Departmental Logistics

(Including Training)

The delivery of MRgRT requires input from a multidisciplinary
team comprising physicians, radiographers, and physicists.
Therefore it depends upon adequate staff resourcing, logistical
co-ordination, and appropriate training (12, 23, 50). Access to
multidisciplinary contour training with MRI (e.g., workshops)
for staff is limited. MR contouring recommendations for GTV
and OARs along with multidisciplinary training, in conjunction
with a radiologist, are essential to ensure reproducibility of
delineation (51, 52). MR-specific GTV and OAR contouring
recommendations are currently in development.

Workflow

The use of daily plan adaptation inevitably leads to a longer clinical
workflow time (23, 43, 45). As a result, the number of patients
treated daily on an MR-Linac is much more limited compared to a
standard linac. Overall fraction time can be further extended if the
time between initial image capture and plan acceptance is too long.
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TABLE 1 | Clinical experience to date, by stage.

Disease Team Machine No. of patients Tumor  Fractionation Sequence Immobilization/ Adaption Gating/ Couch time
stage location schedule used positioning tracking (min)
I/l Thomas et al. 2018  MRIdian 5 Peripheral  50-54Gy/3-4# TrueFISP NR NR Tracking >20
(32) Cobalt- and
60 central
Padgett et al. 2018  MRIdian 3 (1 primary Peripheral  50Gy/5# NR NR To NR NR
(34) Cobalt- lung) anatomy
60
De Costa et al. MRIdian 14 (11 primary ~ NR 40-50Gy/5# NR NR NR Both NR
2018 (Abstract) (35) Cobalt- lung)
60
Henke et al., 2018  MRIdian 5 (1 primary Ultra- 50Gy/5# NR NR To Gating Median = 69
(17) Cobalt- lung) central anatomy
60
Finazzi et al. 2019  MRIdian 23 (25 tumors -  Peripheral 54-60Gy/3-8# TrueFISP NR To Gating Median from
(36) Cobalt- 14 primary lung) anatomy changing room
60 or to end of
MR-Linac delivery:
Cobalt-60 = 62
MR Linac = 48
Finazzi et al. 2020  MRIdian 10 (8 primary Peripheral  34Gy/1# TrueFISP NR To Both Median from
(37) MR-Linac  lung) anatomy changing room
to end of
delivery: 120
Finazzi et al. 2020  MRIdian 50 (29 primary  Peripheral 54Gy-60Gy/3- TrueFISP NR To Both Median from
(38) Cobalt- lung) and 12# anatomy changing room
60 or central to end of
MR-Linac delivery:
Cobalt-60 = 60
MR-Linac = 49
Lietal, 2019 Unity 1 Peripheral  56Gy/7# T2 3D Custom vacuum ~ ATP Intermittent <30
(Poster, 14" Elekta bag “motion
MR-Linac monitoring”
Consortium
meeting)
Merckel et al., 2020  Unity 10 Central/ 60Gy/8-12# T2 3D Mattress, arms ~ ATS Nil Median = 39
(Private ultra- down
correspondance) central
1l Straza et al.,, 2019 Unity 1 Peripheral  60Gy/30# 4D Vane Vac fix, arms up ~ ATP “Real-time  30-35
(Private and TFE monitoring”
correspondance) central
% Padgett et al. 2018  MRIdian 3 (2 oligo- Peripheral  48-50Gy/4# NR NR To NR NR
(34) Colbalt-  metastases) and anatomy
60 central
De Costa et al. MRIdian 14 (3 oligo- NR 40-50Gy/5# NR NR NR Both NR
2018 (Abstract) (35) Cobalt- metastases)
60
Henke et al. 2019 MRIdian 5 (4 oligo- Ultra- 50Gy/5# NR NR To Gating Median = 69
(17) Cobalt- metastases) central anatomy
60
Finazzi et al. 2019  MRIdian 23 (25 tumors -  Peripheral  54-60Gy/3-8# NR NR To Gating Median from
(36) Cobalt- 11 anatomy changing room
60 or oligometastases) to end of
MR-Linac delivery:
Cobalt-60 = 62
MR Linac = 48
Finazzi et al. 2020  MRIdian 10 (2 oligo- Peripheral  34Gy/1# TrueFISP NR To Both Median from
(37) MR-Linac metastases) anatomy changing room
to end of
delivery = 120
Finazzi et al. 2020  MRIdian 50 (21 oligo- Peripheral  54Gy-60Gy/3— TrueFISP NR To Both Median from
(38) Cobalt- metastases) and 12# anatomy changing room

central

(Continued)
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TABLE 1 | Continued

Disease Team Machine No. of patients Tumor  Fractionation Sequence Immobilization/ Adaption Gating/ Couch time
stage location schedule used positioning tracking (min)
60 or to end of
MR-Linac delivery:
Cobalt-60 = 60
MR-Linac = 49

An effort was made to include only the most recent data to avoid duplicate reporting of patients. NR, not recorded; ATP, Adapt To Position; ATS, Adapt To Shape; TFE, turbo field echo;

TrueFISP, True Fast Imaging with Steady Precession.

This is due to an increased risk of intra-fractional movement which
may result in the plan no longer being acceptable for treatment (48).
An increase in couch time in combination with the smaller bore size
of the MR-Linac due to the presence of MR coils can lead to
difficulty with patient positioning and potential patient-comfort
related issues with claustrophobia, noise, feeling cold, paraesthesia,
and anxiety (12, 45, 53, 54).

There are multiple steps in the process where optimisation
can be implemented to reduce treatment time or improve
accuracy and reproducibility of adaptive planning. One option
includes the use of specialized MRgRT radiographers
appropriately trained in OAR contouring to improve efficiency
(12, 50). Another option may be to use auto-segmentation of
OARs and even target volumes (55). Nevertheless, it is still early
in the clinical implementation of MRgRT to know which
interventions are most effective, so this remains an ongoing
area of investigation.

Technical Challenges

MR Imaging

Obtaining high-quality MR images for thoracic radiotherapy is
challenging, due to low proton density, large magnetic
susceptibility differences between tissues and artefacts related
to respiratory and cardiac motion (12, 48). The inability to
optimise MR sequences within the MR-Linac workflow also
precludes obtaining high image quality images in instances
where sequences are inadequate but “locked down”. Hardware
differences, e.g., B field strength, gradient specification, and RF
coils, between standard diagnostic MR systems and MR-Linac
systems, also affects image quality and the ability to acquire
quantitative MR data. Both the ViewRay and Elekta systems
permit diffusion-weighted imaging (DWI) to be acquired within
the clinical workflow for certain treatment sites.

Electron Density Information

There is a lack of intrinsic electron density information associated
with MRI. Ways of assigning CT density information to MR images
include bulk density assignment, atlas-based methods or artificial
intelligence approaches (56-58). The generation of a synthetic CT
has been shown to work well in sites with tissue homogeneity such
as prostate but its use in the thoracic region is more difficult (59).
The current solution, used by the Elekta Unity system, is to use bulk
density overrides of the OARs taking the mean electron density of
each OAR from the CT.

Effect of the Magnetic Field

The effect of the magnetic field on dose distribution needs to be
considered. The electron return effect (ERE) describes the effect
of the magnetic field (Lorentz force) on secondary electrons (12,
48). The deposition of these secondary electrons at air-tissue
interfaces can lead to increased doses. The ERE is reduced by
modulating the treatment fields which is done as part of the
Monaco plan optimisation (12). This is less of a concern with the
MRIdian system due to its lower field strength (60).

Physiological Motion
The final challenge relates to the effects of cardiac and respiratory
motion. The use of breath-hold imaging, respiratory gating, and
4D MRI are additional functions that would be beneficial in
MRgRT for thoracic tumors (59, 61, 62). While both systems
have the ability to monitor target movement (2-dimensionally)
during treatment delivery, only the MRIdian can currently utilize
real-time tumor imaging to modulate beam-on time during
respiration. On the other hand, 4D MRI is not currently
possible on either system. This may be less of a concern when
4D CT is used with initial planning for a single target such as
SBRT, and especially if respiratory gating can be implemented
with adaptive fractions (MRIdian only). However, in the absence
of a complementary 4D CT and respiratory gating or the setting
of multi-target treatment (as with locally advanced NSCLC), the
lack of 4D MR imaging can pose a challenge.

An overview of the technical challenges related to MRgRT use
in lung cancer has been summarized in Table 2, alongside their
potential solutions (60, 62-64).

CONCLUSION

This review presents the initial clinical experience of MRgRT in
lung cancer. The potential benefits of MRgRT for lung cancer
include improved target and OAR delineation and improved
dosimetric accuracy. To unlock its full potential, we will still need
to overcome some technical challenges, in particular the further
optimisation of motion management.

To date, most of the clinical experience gained in the lung
cancer setting has been with SBRT for stage I/Il NSCLC or
thoracic oligometastases from non-lung primaries, including
(ultra-) central tumors. Overall, there appears to be a trend
toward improved dosimetric accuracy with MRgRT, however,
long-term clinical outcome data is awaited.
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TABLE 2 | Technical challenges and potential solutions associated with MRgRT in the thorax.

Challenge Result

Low proton density in lung tissue producing low

MRI signal difficulties with tumor and OAR
delineation

Respiratory and cardiac motion during image Motion artefacts and larger planning

acquisition margins

Susceptibility differences at air-tissue interfaces Reduced geometric accuracy and low

resulting in susceptibility induced field signal

inhomogeneities

Lack of intrinsic electron density information
(including subsequent difficulty with synthetic CT
generation)

Electron return effect (ERE)

calculation

tissue interfaces
Physiological motion during patient setup
Physiological motion during treatment

Poor quality images resulting in

Inaccurate electron density information
leading to difficulties with dose

Development of “hot spots” at air-

Unrepresentative setup image
Necessity for larger planning margins

Potential solution/solution

Vendor provided optimised thoracic MR sequences, lower field strength,
UTE sequences, hyper-polarized gas imaging or oxygen enhancement (10,
63, 64)

Breath hold imaging, 4D-MRI, gating or tracking (10, 62-64)

Lower field strength or FSE sequences (59)

Bulk density overrides from planning CT, research ongoing in specialized
acquisition techniques, e.g., UTE sequence or the use of Al approaches
(©2)

Accounted for by planning algorithms or lower field strengths (60, 64)

Acquire a new planning image
Mid-position treatment, gating or tracking (64)

MRI, magnetic resonance imaging; OAR, organ at risk; FSE, fast spin echo; CT, computed tomography; UTE, ultra-short echo time; Al, artificial intelligence.

Ongoing clinical studies will focus on the feasibility of the
definitive treatment of inoperable stage III NSCLC. In parallel,
ongoing research into strategies aimed at overcoming the
associated technical challenges will be required.
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