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Purpose: To develop and validate a nomogram for differentiating invasive
adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and minimally invasive
adenocarcinoma (MIA) presenting as ground-glass nodules (GGNs) measuring 5-10mm
in diameter.

Materials and Methods: This retrospective study included 446 patients with 478 GGNs
histopathologically confirmed AIS, MIA or IAC. These patients were assigned to a primary
cohort, an internal validation cohort and an external validation cohort. The segmentation of
these GGNs on thin-slice computed tomography (CT) were performed semi-automatically
with in-house software. Radiomics features were then extracted from unenhanced CT
images with PyRadiomics. Radiological features of these GGNs were also collected.
Radiomics features were investigated for usefulness in building radiomics signatures by
spearman correlation analysis, minimum redundancy maximum relevance (mRMR) feature
ranking method and least absolute shrinkage and selection operator (LASSO) classifier.
Multivariable logistic regression analysis was used to develop a nomogram incorporating
the radiomics signature and radiological features. The performance of the nomogram was
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assessed with discrimination, calibration, clinical usefulness and evaluated on the
validation cohorts.

Results: Five radiomics features remained after features selection. The model
incorporating radiomics signatures and four radiological features (bubble-like
appearance, tumor-lung interface, mean CT value, average diameter) showed good
calibration and good discrimination with AUC of 0.831(95%CI, 0.772~0.890).
Application of the nomogram in the internal validation cohort with AUC of 0.792 (95%
CI, 0.712~0.871) and in the external validation cohort with AUC of 0.833 (95%CI, 0.729-
0.938) also indicated good calibration and good discrimination. The decision curve
analysis demonstrated that the nomogram was clinically useful.

Conclusion: This study presents a nomogram incorporating the radiomics signatures
and radiological features, which can be used to predict the risk of IAC in patients with
GGNs measuring 5-10mm in diameter individually.
Keywords: ground-glass nodules, computed tomography, radiomics, lung cancer, invasive adenocarcinoma
INTRODUCTION

Lung cancer is one of the most commonly diagnosed human
malignancy and the leading cause of cancer-related death
worldwide (1). Adenocarcinoma is the most common histologic
type of lung cancer and its incidence has increased over the past
few decades, accounting for more than 40% of the total nowadays
(2). It was classified into atypical adenomatous hyperplasia
(AAH), adenocarcinoma in situ (AIS), minimally invasive
adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) in
the 2015World Health Organization (WHO) classification of lung
tumors (3). Patients with IAC have a higher risk of recurrence and
are usually treated with lobectomy (4). Nowadays, segmentectomy
is suggested for selected patients with clinical N0 IAC of no more
than 2cm in diameter (4). Patients with AIS orMIA(AIS/MIA) are
managed with active surveillance or sublobar resection because of
excellent prognosis (5). The subtypes of adenocarcinoma are
currently determined mainly by biopsy or postoperative
pathological sections in clinical practice, which are invasive and
risky. Discriminating IAC from AIS/MIA before surgery could
help clinicians to assess prognosis in order to improve clinical
decision making and avoid over- or undertreatment, without the
need for invasive procedures.

Adenocarcinoma frequently presents as pulmonary nodules
including ground-glass nodules (GGNs) and solid nodules on
computed tomography (CT). Radiological features such as air
bronchogram, margin, pleural indentation have been found to be
related with the malignancy or tumor histology of GGNs (6–8).
These features are subjective, qualitative, and sometimes are not
easily to be determined in small nodules with a diameter less than
10mm. Nodules with diameter less than 5mm are usually benign
(9), however, some nodules less than 10mm have been
pathologically confirmed as IAC (10).

Radiomics refers to high-throughput extraction of large
amounts of image features from radiographic images (11, 12).
Radiomics features can be calculated by computational
2

methodologies to quantify the characteristics of tumor tissues
and provide a detailed and comprehensive characterization of
the tumor phenotype (13). Compared with conventional
biomarkers, radiomics-based features are three-dimensional
and the process of image acquisition is easy to perform, non-
invasive and cost-effective. Several studies have shown the value
of radiomics-based features in differentiating tumor subtypes by
using different medical imaging modalities such as CT (14),
magnetic resonance imaging (MRI) (15, 16) and positron
emission tomography (PET) (17). Radiomics biomarkers have
also been shown to be associated with several clinical events or
endpoints, including tumor diagnosis (benign/malignant) (18),
tumor subtyping (19), treatment response (20), patient survival
(21), tumor recurrence and distant metastasis (22), tumor gene
expression (23).

The purpose of this study was to investigate the ability of CT
radiomics features combined with CT radiological features to
differentiate IAC from AIS/MIA, and develop a nomogram
incorporating CT radiomics signatures and radiological
features to provide an individual, preoperative assessment of
the risk of IAC in patients with GGNs measuring 5-10 mm.
MATERIALS AND METHODS

Patient Cohort
Surgical datasets of three hospitals were reviewed. Patients were
selected if they presented as lung nodules on chest CT scans and
were diagnosed as pulmonary adenocarcinomas on the basis of
pathologic analysis of surgical specimens. The nodules with the
histopathological results AIS, MIA or IAC and the average
diameter of nodule between 5mm and 10mm in CT scans were
included. The exclusion criteria were as follows: 1) no routine CT
examination had been performed in the month before surgery;
2) a series of consecutive CT images with a thickness of more
April 2021 | Volume 11 | Article 618677
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than 1 mm; 3) CT images with severe respiratory motion
artifacts; 4) the average diameter of nodule was smaller than
5mm or larger than 10mm; 5) the nodule presenting as a solid
nodule. Some patients may have more than one nodule. These
nodules were analyzed independently because they may be of
different types.

A total of 354 eligible patients from hospital 1 and 2 were
included, 219 patients with 230 GGNs between September 2015
and December 2017 in the primary cohort and 135 patients with
154 GGNs between January 2018 and July 2019 in the internal
validation cohort. A total of 92 patients with 94 GGNs in hospital
3 between October 2016 and October 2020 were included in the
external validation cohort. The flowchart of patient selection is
listed in Figure 1. The study was approved by the institutional
review boards of participating hospitals.

Image Acquisition
An unenhanced chest CT examination was performed to obtain
a whole lung scan in each patient. All patients were scanned
while breath holding after deep inspiration. The CT images were
obtained by any of four CT scanners, i.e., Brilliance 64 (Philips
Frontiers in Oncology | www.frontiersin.org 3
Medical Systems Inc., Netherlands), SOMATOM Definition AS
(Siemens AG, Munich, Germany), SCENARIA (Hitachi Ltd.,
Tokyo, Japan), or Aquilion One (CanonMedical Supply Co., Ltd,
Tokyo, Japan). The CT scan parameters of the above devices
were as follows: tube voltage 120-130 kV; tube current 100-150
mAs; rotation time 0.5-0.75s; pitch 0.828-1.2; matrix 512*512
and standard resolution algorithms; reconstruction kernel of
lung window, standard(B) (Brilliance 64), B60f sharp
(SOMATOM Definition AS), Lung Sharp (SCENARIA), Lung-
Std Axial (Aquilion One); lung window settings (width/level)
1200/-600 HU; mediastinal window settings (width/level) 400/40
HU; voxel dimensions 1×1×1-mm. The lung algorithm was used
to reconstruct 1mm-thick sections of CT images.

Radiological Features Extraction and
Radiomics Features Extraction
Several radiological features were recorded. Two quantitative
features were average diameter (defined as the mean of the
longest diameter of the nodule and its perpendicular diameter
at the same maximum axial slice) and mean CT value (measured
for a sufficiently large round or oval regions of interest within the
FIGURE 1 | Flowchart of patient selection procedure.
April 2021 | Volume 11 | Article 618677
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nodule on the maximum axial section). Qualitative features
included nodule location (right upper lobe, right middle lobe,
right lower lobe, left upper lobe, left lower lobe), type of nodule
(pure GGN or mixed GGN), bubble-like appearance, pleural
indentation, air bronchogram, pulmonary blood vessel change,
margin defined as lobulation, spiculation or tumor-lung
interface. Bubble-like appearance was defined as air-attenuated,
vesicle-like lucency within the nodule. Air bronchogram sign was
defined as the presence of ladiolucent bronchi within lesions.
Vessels convergence or vessels dilatation within GGNs indicated
pulmonary blood vessel change. Lobulation was defined when a
portion of the nodule’s surface showed a wavy or scalloped
configuration. Spiculation was defined as the presence of strands
extending from the margin of the nodule into the lung
parenchyma without reaching the pleural surface. Tumor-lung
interface was recorded as clear if the nodules were well-defined.

The measurements were performed by two radiologists with
more than 5 years of experience in chest radiology. The two
radiologists measured each imaging feature independently, and
the difference was reevaluated by the third radiologist with more
than 20 years of experience in chest radiology. Any
disagreements were resolved by consensus.

Nodule segmentation was performed semi-automatically with
in-house software (24) and manually reviewed slice by slice by a
radiologist with 6 years of experience in chest CT imaging and
confirmed by another radiologist with 20 years of experience. A
slice example of the nodule segmentation was provided in
supplementary figure 1. After nodule segmentation, radiomics
features were extracted from each nodule with open source
PyRadiomics software (https://pyradiomics.readthedocs.io/en/
latest/index.html) using the default settings. The software
automatically calculated radiomics features for each
included nodule.
Radiomics Feature Selection
A total of 1525 features were extracted from CT images (the
detailed radiomics features list was described in supplementary
material). First, the variance of features close to 0 were removed.
Pair-wise Spearman correlation analysis was performed to
identify the redundant features. Features with the mean
absolute correlation higher than 0.9 was considered redundant
and eliminated. Then, a multivariable ranking method
(minimum redundancy maximum relevance [mRMR]) was
used to identify the most important features based on a
heuristic scoring criterion, and only the top-ranked features
were kept. Next, the top-ranking radiomics features were input
into the least absolute shrinkage and selection operator (LASSO),
which is suitable for regression of high-dimensional data, to
obtain the optimal subset of radiomics features to build the
radiomics signature for the evaluation of IAC and AIS/MIA. The
receiver operating characteristic curve (AUC) was plotted versus
log(l) in order to identify the optimal value of log(l). The
optimal value was identified by the minimum criterion. The
radiomics score (rad-score) of each GGN was calculated via a
linear combination of selected features that were weighted by
their respective coefficients.
Frontiers in Oncology | www.frontiersin.org 4
Model Building and Performance
Assessment
The significance of associations with IAC and AIS/MIA was
evaluated using the Fisher exact test for qualitative features and
Mann-Whitney U test for mean CT value and average diameter.
Two-sided p<0.1 was considered to indicate significant difference
for qualitative features and p<0.05 for quantitative features.

The significantly different radiological features between the
IAC group and the AIS/MIA group in the primary cohort
combined with rad-score were included in the subsequent
multivariable logistic regression analysis. Forward and
backward step-wise selection was applied using the likelihood
ratio test. We determined the optimal combinations of the
features using the AKaike information criterion (AIC) (25). A
nomogram was then constructed based on the multivariable
logistic model. The discrimination of the nomogram was
assessed with the AUC and validated in two validation cohorts.
The calibration curves were used to assess the calibration of the
nomogram. The goodness-of-fit of the nomogram was assessed
with the Hosmer-Lemeshow test.
Clinical Usefulness of Nomogram
To evaluate the potential clinical diagnostic effects of the
nomogram model, a decision curve analysis was performed,
which quantified the net benefits of using such a model at
different threshold probabilities.
Statistical Analysis
Statistical analyses were conducted with R software (version 3.6.3).
The spearman correlation analysis was performed using the
“caret” package. LASSO logistic regression was performed using
the “glmnet” package. Logistic regression, nomogram construction
and calibration plots were performed using the “rms” package.
The decision curve was plotted using the “rmda” package. The
Hosmer-Lemeshow test was done with the “vcdExtra” package.
The ROCs were plotted and the DeLong test was used for pairwise
comparisons between models using the “pROC” package. A two-
sided p value <0.05 was considered significant.
RESULTS

Patients’ Characteristics
Patients’ basic characteristics and nodule information in the
primary and the validation cohorts are listed in Table 1. There
were no statistically significant differences in gender distribution
and age group between the primary cohort and the internal
validation cohort, or between the primary cohort and the
external validation cohort. Spiculation, lobulation, air
bronchogram, and pulmonary blood vessel change didn’t show
statistically significant difference between the IAC group and the
AIS/MIA group either in the primary cohort or two validation
cohorts. Mixed GGN and bubblelike appearance were significantly
more common in the IAC group both in the primary cohort and
two validation cohorts. Average diameter andmean CT value were
April 2021 | Volume 11 | Article 618677
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significantly higher in the IAC group both in the primary cohort
and two validation cohorts.

Radiomics Features Selection and
Radiomics Model Building
A total of 97 features with variance close to 0 were removed.
Subsequently, after pair-wise spearman analysis, 246 features
with the mean absolute correlation less than 0.9 remained. These
features were ranked by mRMR, and then the top 100 features
were selected. The LASSO classifier was trained on the primary
Frontiers in Oncology | www.frontiersin.org 5
cohort using the top 100 features. Five features with nonzero
coefficients in the LASSO logistic model were selected (Figure 2).
The rad-score was calculated for each patient based on the
formula presented in the supplementary material.

The patients in the IAC group generally had higher
rad-score than that in the AIS/MIA group in primary cohort
(-0.46 ± 0.75 vs -1.32 ± 0.69, p<0.001), internal validation
cohort (-0.49 ± 0.68 vs -1.17 ± 0.72, p<0.001) and external
validation cohort (-0.24 ± 0.67 vs -0.94 ± 0.63, p<0.001). The
AUC of radiomics model was 0.805 (95%CI, 0.741-0.869) with
TABLE 1 | Characteristics of the patients in the primary cohort and validation cohorts.

Variable Primary cohort (n=230) Internal validation cohort (n=154) External validation cohort (n=94)

AIS/MIA (n=166) IAC (n=64) p-
value

AIS/MIA (n=116) IAC (n=38) p-
value

AIS/MIA (n=69) IAC (n=25) p-
value

Gender 0.175 0.823 0.600
Male 37 20 25 9 18 5
Female 129 44 91 29 51 20

Age (years) 0.115 0.025 0.313
≦40 27 11 28 6 15 2
40~65 124 41 74 20 46 20
≥65 15 12 14 12 8 3

Type of nodule <0.001 <0.001 0.002
PGGN 130 28 86 15 54 11
MGGN 36 36 30 23 15 14

Location 0.479 0.002 0.917
Left upper lobe 47 18 32 13 11 4
Left lower lobe 27 11 16 5 11 4
Right upper lobe 46 22 32 18 16 6
Right middle lobe 12 6 9 2 6 3
Right lower lobe 34 7 27 0 9 3

Lobulation 0.233 0.692 0.130
No 69 21 37 14 51 14
Yes 97 43 79 24 18 11

Spiculation 0.883 0.575 0.156
No 88 35 51 19 57 17
Yes 78 29 65 19 12 8

Tumor-lung
interface (clear)

0.086 0.039 0.598

No 35 21 20 13 17 8
Yes 131 43 96 25 52 17

Bubblelike
appearance

0.062 0.056 0.047

No 139 46 99 27 58 16
Yes 27 18 17 11 11 9

Air bronchogram 0.126 0.565 0.475
No 112 36 74 22 62 21
Yes 54 28 42 16 7 4

Plumonary blood
vessel change

0.314 1.000 0.467

No 45 13 22 7 27 7
Yes 121 51 94 31 42 18

Pleural
indentation

0.044 0.080 0.261

No 138 45 93 25 57 18
Yes 28 19 23 13 12 7

Average
Diameters (mm)

7.34 ± 1.38 8.08 ± 1.03 <0.001 7.39 ± 1.30 8.34 ± 1.17 <0.001 7.86 ± 1.19 8.52 ± 1.03 0.012

Mean CT value
(HU)

-534.73 ± 127.15 -393.86 ± 168.02 <0.001 -522.95 ± 152.19 -424.04 ± 147.42 <0.001 -537.74 ± 112.66 -409.25 ± 136.30 <0.001

Rad-score -1.32 ± 0.69 -0.46 ± 0.75 <0.001 -1.17 ± 0.72 -0.49 ± 0.68 <0.001 -0.94 ± 0.63 -0.24 ± 0.67 <0.001
April 2021 | V
olume 11 | Article
AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; PGGN, pure ground-glass nodule; MGGN, mixed ground-glass nodule; HU,
Hounsfield units; Rad-score, radiomics score.
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75.0% sensitivity and 78.9% specificity in the primary cohort,
0.753 (95%CI, 0.666-0.841) with 63.2% sensitivity and 75.9%
specificity in the internal validation cohort and 0.792 (95%CI,
0.680-0.904) with 72.0% sensitivity and 85.5% specificity in the
external validation cohort.

Nomogram Model Building, Assessment,
and Validation
The radiological features that showed significant difference in
univariate analyses in the primary cohort were included in
multivariable logistic regression analysis. The predictors
associated with IAC were bubble-like appearance, tumor-lung
interface, mean CT value and average diameter.

A nomogram model that incorporated these predictors and rad-
score was developed (Table 2) and presented as the nomogram
(Figure 3). The nomogrammodel yielded an AUC of 0.831 (95%CI,
0.772-0.890) in the primary cohort (Figure 4A), 0.792 (95%CI,
0.712-0.871) in the internal validation cohort (Figure 4B) and 0.833
(95%CI, 0.728-0.938) in the external validation cohort (Figure 4C).
Frontiers in Oncology | www.frontiersin.org 6
This model outperformed the radiomics signatures model and
radiological features model both in primary cohort and two
validation cohorts, though there was no statistically significant
difference neither between nomogram model and radiological
features model (p=0.225 in the primary cohort, p=0.778 in the
internal validation cohort and p=0.785 in the external validation
cohort) nor between nomogram model and radiomics signatures
model (p=0.568 in the primary cohort, p=0.218 in the internal
validation cohort and p=0.600 in the external validation cohort).

The calibration curves of the nomogram are shown in Figure 5.
The Hosmer-Lemeshow test yielded a nonsignificant p value in the
primary cohort, 0.225 in the internal validation cohort and 0.115 in
the external validation cohort, which indicated good
calibration power.

Clinical Usefulness of the Nomogram
The decision curve analysis showed that the nomogram had a
higher overall net benefit, which indicated that the nomogram was
clinically useful (Figure 6A). With a threshold probability of 10%,
use of the nomogram could provide an added net benefit compared
to the “treat-all” or “treat-none” strategy. Moreover, the similar
findings were also observed in the internal validation cohort
(Figure 6B) and the external validation cohort (Figure 6C).
DISCUSSION

We developed and validated a nomogram incorporating
radiomics signature and radiological features for individualized
preoperative predicting the risk of IAC in patients with GGNs
A B

FIGURE 2 | Radiomics feature selection using LASSO regression model. (A) Optimal feature selection according to AUC (area under curve) value. The dotted
vertical lines were plotted at the optimal l values based on the minimum criteria and 1 standard error of the minimum criteria. The optimal l was selected.
(B) LASSO coefficient profiles of the 100 radiomics features. Vertical line was drawn at the selected value using 10-fold cross-validation, where optimal l resulted in
five non-zero coefficients.
TABLE 2 | Independent predictors identified in multivariable logistic regression.

Feature OR 95%CI p-value

(Intercept) 0.610 0.044~8.234 0.710
Bubble-like appearance 2.333 1.036~5.271 0.040
Tumor-lung interface (clear vs not clear) 0.518 0.237~1.130 0.097
Mean CT value 1.003 1.000~1.007 0.071
Average diameter 1.371 1.015~1.871 0.042
Rad-score 3.525 1.630~8.255 0.002
OR, odds ratio; CI, confidence interval; Rad-score, radiomics score.
April 2021 | Volume 11 | Article 618677
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measuring 5-10mm. The results showed that the discrimination
and calibration of the nomogram model was favorable. This
study provided a non-invasive preoperative prediction tool to
identify patients with GGNs in a high risk of IAC.

The nomogrammodel finally incorporated the rad-score, based
on five radiomics features, and four radiological features, according
to AIC. Bubble-like appearance was more common in the IAC
group than that in the AIS/MIA group, whichwas also found in the
former study (26). Nodule diameter has always been considered as
an important indicator in nodule management. Our model also
identified the average diameter as an independentpredictor for IAC
prediction. In our study, clear tumor-lung interface was more
common in the AIS/MIA group than that in the IAC group both
in the primary cohort and the internal validation cohort, which was
contrary to twoprevious studies (27, 28). The studybyWuet al. (27)
included atypical adenomatous hyperplasia as preinvasive lesion. If
atypical adenomatous hyperplasia was excluded, there was no
significant difference in terms of tumor-lung interface between
the IAC group and the AIS/MIA group, which was consistent with
that in our external validation cohort. The study by Jin et al. (28)
includednoduleswithdiameter less than30mm,while the diameter
of nodules in our study was between 5-10mm. In addition, both
studies (27, 28) includedpureGGNonly. Further studies areneeded
Frontiers in Oncology | www.frontiersin.org 7
to confirm the relationship between tumor-lung interface and the
invasiveness of lung adenocarcinoma.MeanCTvaluewas higher in
the IAC group in our study, which was consistent with the study by
She et al. (29). Increased mean CT value reflected the increased
heterogeneity of GGN (30). Zhao et al. (31) constructed a model
included radiomics signature and mean CT value to predict the
invasiveness of nodules. Another study (32) demonstrated that the
AUC of a model constructed to distinguish between invasive and
non-invasive lesions including only mean CT value reached 0.808.

The present radiomics signatures consisted of five radiomics
features. Root mean squared (RMS) is first-order histogram feature.
It also remained in radiomics model in the study byWeng et al. (33)
and in the study by She et al. (29). RMS is related to the
characteristics of the intensity distribution in the pulmonary
nodules. Both dependence entropy and large dependence high
gray level emphasis are gray level dependence matrix features
which indicate the relationship between the gray-level intensity of
CT voxels and the invasiveness of GGNs. The higher value indicated
more heterogeneity in the texture patterns. Wavelet.LHL_
gldm_DependenceEntropy and gradient_ glszm_ZoneEntropy are
radiomics features undergoing image transformation with a filter.
Both are calculated from gray-level intensity features. The higher
values of these features in the IAC group meant that IAC was more
FIGURE 3 | Nomogram of the model combining radiomics signatures and radiological features for predicting the risk of invasive adenocarcinoma. IAC, invasive
adenocarcinoma; Rad-score, radiomics score.
April 2021 | Volume 11 | Article 618677
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heterogeneous than AIS/MIA. The radiomics signatures including
four gray level related features showed that the gray-level intensity
value might be of importance in predicting the risk of IAC of GGNs.

A radiomics model aiming to diagnose IAC in the study byWu
et al. (34) had a higher AUC of 0.98. One reason might be the
study included only part-solid nodules. The radiomics model
combined ground-glass and solid features. In addition, the larger
diameter of the pulmonary nodules in that study might be another
reason. Even so, there are some limitations in this study. First, the
ratio of the IAC group and the AIS/MIA group was consistent
with the actual clinical scenario. We didn’t selectively collect the
samples to balance the two groups, so the imbalanced sample ratio
of IAC and AIS/MIA may have had an impact on the nomogram
model. Second, the CT images in this study came from four
different CT scanner, which may cause potential variability
because of different parameters. Third, the reconstruction matrix
of 512*512 for small GGNs may limit the diagnosis ability of
radiomics. Scanning and reconstruction of local regions of the
target images can reduce the size of pixels and increase the
information of segmented areas of small GGNs, thus improving
the diagnosis ability. Higher pixel matrix, such as 1024*1024 or
2048*2048 could break the limitation of CT image reconstruction
matrix and improve the diagnosis ability. Last, the data collection
is retrospective, a larger prospective longitudinal cohort is needed
to confirm the performance of our nomogram model.

In summary, this study presents a nomogram incorporating
radiomics features and radiological features of CT images to
predict the risk of IAC in patients with GGNs measuring 5-
10mm in diameter. The nomogram can serve as a potential tool
to guide individual diagnosis and help clinician choose the
optimal intervention.
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