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Background: Quality management and safety are integral to modern radiotherapy. New
radiotherapy technologies require new consensus guidelines on quality and safety.
Established analysis strategies, such as the failure modes and effects analysis (FMEA)
and incident learning systems have been developed as tools to assess the safety of
several types of radiation therapies. An extensive literature documents the widespread
application of risk analysis methods to photon radiation therapy. Relatively little attention
has been paid to performing risk analyses of nascent radiation therapy systems to treat
moving tumors with scanned heavy ion beams. The purpose of this study was to apply a
comprehensive safety analysis strategy to a motion-synchronized dose delivery system
(M-DDS) for ion therapy.

Methods: We applied a risk analysis method to new treatment planning and treatment
delivery processes with scanned heavy ion beams. The processes utilize a prototype,
modular dose delivery system, currently undergoing preclinical testing, that provides new
capabilities for treating moving anatomy. Each step in the treatment process was listed in
a process map, potential errors for each step were identified and scored using the risk
probability number in an FMEA, and the possible causes of each error were described in a
fault tree analysis. Solutions were identified to mitigate the risk of these errors, including
permanent corrective actions, periodic quality assurance (QA) tests, and patient specific
QA (PSQA) tests. Each solution was tested experimentally.

Results: The analysis revealed 58 potential errors that could compromise beam delivery
quality or safety. Each of the 14 binary (pass-or-fail) tests passed. Each of the nine QA and
four PSQA tests were within anticipated clinical specifications. The modular M-DDS was
modified accordingly, and was found to function at two centers.
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Conclusion: We have applied a comprehensive risk analysis strategy to the M-DDS and
shown that it is a clinically viable motion mitigation strategy. The described strategy can be
utilized at any ion therapy center that operates with the modular M-DDS. The approach
can also be adapted for use at other facilities and can be combined with existing safety

analysis systems.

Keywords: 4D therapy, carbon ion therapy, failure modes and effects analysis, motion-mitigation, patient safety,
quality assurance, motion-synchronized dose delivery

INTRODUCTION

Quality, safety, and radioprotection are integral parts of
radiotherapy facilities (1). Radioprotection and area
monitoring systems are designed to protect staff under the
principles of justification, optimization and limitation (2).
During regular operation, the critical safety operations of each
accelerator are regulated by the main treatment control room
and, for redundancy, by independent safety interlock systems
(3). Medical systems used for radiotherapy, including
accelerators, treatment control systems, and safety systems,
typically take into account safety considerations during the
design, construction, preclinical, and clinical phases. In
addition, safety is considered in regulatory processes, e.g., in
the USA, the 510k premarket clearance by the Food and Drug
Administration (FDA) (21 C.ER. § 807.81-807.97). Once in
clinical use, exhaustive safety, and quality assurance testing must
be periodically performed. Quality management has been
an integral part of modern radiotherapy and is essential for
safe and effective treatments. Organizations such as the
American Association of Physicists in Medicine (AAPM),
American College of Radiology (ACR), the American Society
for Radiation Oncology (ASTRO), the International
Atomic Energy Agency (IAEA), and the European
Society for Radiology and Oncology (4) have established
safety standards and guidelines (5). Radiotherapy device
manufacturers and therapy centers typically agree upon test
procedures as part of the acceptance testing process and
guidelines are published for verifying the performance and
safety of radiotherapy equipment during commissioning and
periodic quality assurance testing (6-10). Beam commissioning
and QA standards have been established for proton beams in the
AAPM Task Group 224 report (11) and are being established for
ion beam therapies through the PAR-13-371 National Cancer
Institute (NCI) grant (12). As the complexity of modern
treatment planning and delivery technologies, such as scanned
ion beam therapy, has increased, additional consideration of
safety is necessary. There is typically a lag between implementing
modern therapies into the clinic and developing consensus
safety guidelines for these therapies. The AAPM’s Task
Group 100 (TG-100) wrote a report (13) on an analysis
methodology that aims to reduce this lag. The report is a
framework to prospectively assess all aspects of workflow for
possible critical safety errors in existing and new therapy
methods (13, 14).

Broadly, the methods of safety analysis and risk mitigation
are mature, rich, and generally applicable. Several major
analysis strategies have been applied to clinical radiotherapy.
For example, the AAPM and the Joint Commission
on Accreditation of Healthcare Organizations (JCAHO)
recommended the failure modes and effects analysis (FMEA),
adapted from aviation safety to radiotherapy, as a general
guidance for performing safety analyses (15). Additionally,
guidelines have been developed by groups such as the
“Accidental and unintended exposures in radiotherapy”
(ACCIRAD) project of the European Commission (EC), the
Radiation Oncology Incident Learning System (RO-ILS; ASTRO,
Arlington, VA), which are based on pooled data on reported
adverse events (16, 17). Many photon therapy clinics have
adopted these methods (18, 19), while others have developed
their own variations (20). However, knowledge of the safety of
emerging radiation therapy technologies is inherently
incomplete. Furthermore, emerging technologies have been
identified as a common source of delivery errors (21). It is not
yet clear how best to address the safety of emerging technologies,
particularly for systems that treat moving tumors. It has been
suggested that developing and simultaneously performing
quality assurance during clinical trials of emerging
technologies decreases safety errors (22). Prospective analyses,
such as FMEA, could be a useful tool for emerging technologies
(23), including conformal ion therapy for treating moving
tumors (24). Though several motion handling strategies with
ion beams exist (25-28), few of these motion handling
strategies are integrated into their beam delivery systems (29).
Relatively less is known about the safety risks of a modular
motion-synchronized dose delivery system (M-DDS) for ion
beam therapy (30), and no comprehensive assessment of
the safety of a dose delivery system with integrated motion
compensation has been reported in the scientific literature.

The purpose of this study was to apply an established
method to analyze safety risks from a novel, modular,
motion-synchronized dose delivery system for scanned
ion beams. The system is in the late stages of preclinical
development and testing. Here, we focused on the
beam delivery process, identified motion-related errors,
and implemented corresponding solutions. The performance of
the M-DDS has been previously described by Lis et
al. (2020). We developed and performed sample
commissioning-style tests and quality assurance (QA) tests.
These results provide information for subsequent clinical
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safety assessments of a novel, modular motion-synchronized
dose delivery system in development.

MATERIALS AND METHODS

This work describes a safety assessment of a dose delivery system
(DDS) that is undergoing pre-clinical testing at two ion therapy
centers. The M-DDS is an extended version of a clinical products
used at the National Center for Oncological Hadrontherapy
(CNAO) and MedAustron that have undergone full safety
certification. The two most important extensions to the DDS
were to make it portable and to allow for motion mitigation by
synchronizing beam delivery to anatomical motion. The
performance of the prototype motion-mitigation DDS was
previously demonstrated, including preliminary tests such as
the delivery of conformal, motion-synchronized beams (30).
These results focused on proof of concept and the preliminary
characterization of performance, but not safety. However,
failures in the functionality of the M-DDS components could
theoretically compromise patient safety. To minimize this risk,
safety was integrated into each stage of development, in an effort
to maintain the existing safety system for reintegration of the M-
DDS into CNAO.

The assessment strategy described in this work applies an
established methodology from AAPM Task Group 100 (13). This
strategy is a prospective risk analysis method that has been
widely used in the medical and other industries. With this
strategy, we first defined each step of the treatment process, in
detail, with a process map. We then identified possible errors that
could occur at each step and quantified the effect on patient
treatment with an FMEA. Finally, we identified the causes of
errors with a fault tree analysis (FTA). After determining the
potential safety risks, we developed and tested solutions for these
errors (13).

The prospective risk analysis was performed on a DDS, with
integrated capabilities for target motion compensation (30). For
convenience, the general characteristics of the M-DDS are
summarized here. The DDS was adapted from the DDS found
at CNAO to function with the therapy research line (Cave M) at
GSI Helmholtz Center for Heavy Ion Research (GSI). The DDS is
composed of commercial field programmable gate arrays
(FPGAs) (PXIe-1085; National Instruments, Austin, TX),
which control each beam delivery component, including the
scanning magnets, beam monitoring detectors, timing system,
and interlock system. The DDS has been modified to synchronize
the delivery of 4D-optimized plan libraries (24, 31) to detected
target motion.

Motion mitigation features are integrated into the M-DDS.
The first step of motion synchronized dose delivery is creating
4D treatment plan libraries from 4DCTs, where each plan in the
library contains delivery information for a motion phase within
the 4DCT. During beam delivery, a motion-monitoring device
continuously monitors the tumor position, from which the M-
DDS determines the current motion phase (32, 33). The delivery
progresses in sequence until the tumor position has entered into

another motion phase and delivery is redirected to the plan from
the plan library that corresponds to the detected motion phase.
Further information on the M-DDS is described by Lis et al. (30).
Good manufacturing practices were followed through the
development of the M-DDS. Critical processes in the M-DDS
were maintained from the clinical M-DDS design and all changes
were evaluated experimentally in the clinical environment. The
implemented software design choices were based on the existing
software structure, so most uncovered sources of error were
found to be related to unclear workflow and limitations to
memory or signal speed. All changes and additions were
documented. In the following sections, we describe a safety
assessment strategy for the M-DDS. Additionally, we provide
example safety and quality assurance tests for the M-DDS.

Process Steps

The first step of the prospective risk analysis was to identify the
sub-processes that occur through the course of treatment with a
process map. A process map is a visual representation of a
process that demonstrates the flow of each step from start to end.
We divided the process of treating a patient with scanned ion
beams into 10 main stages, based on the guidelines proposed by
the World Health Organization (34). In this study, we focused on
six of these stages—planning, simulation, patient setup,
treatment delivery, treatment verification, and monitoring—as
these were the most relevant to treating moving targets. For each
of these stages, we identified the sub-processes that occur at an
ion beam therapy center (21), such as delivery of an iso-energy
slice (IES) during the course of treatment. We then amended
each stage to include any additional sub-processes when
delivering motion-synchronized ion beams with the M-DDS,
such as redirecting the plan delivery to compensate for detected
motion. Modes of failure were then identified for each of these
sub-processes.

Failure Modes and Effects Analysis

The FMEA assesses the likelihood and impact of failures from
each step of a process. An FMEA was applied to each of the
identified process steps and potential modes of failure at each
step were described. Each of the failures were assigned a rank
value on a numerical scale of 1 to 10 for each of three safety
indices: the severity index (S) is the extent of harm of the failure
on the patient, the occurrence index (O) is the likelihood that a
cause will result in a failure, and the detection index (D) is the
likelihood that a failure will not be detected. All three of these
indices are estimated under the assumption that there was no
safety check in place for that failure. The corresponding
definitions for the rankings of each of these values are
summarized in Table 1. This data has been adapted from the
TG-100 (13). The failures were then ranked by calculating the
risk priority numbers (RPN), which is the product of these three
indices (RPN = S x O x D). RPN values of above 125 were
considered high risk, and any S score above 5 was also considered
high risk. One example error is the gradual drift of the scanning
magnet throughout the course of delivering an IES. This could
potentially cause limited toxicities or overdose, as the drift may
be on the scale of a few mm, and would potentially occur for
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TABLE 1 | Numerical scale used to assign rank values to Severity Index,
Occurrence Index, and Detectability Index for each failure.

Rank Severity Index Occurrence Index Detectability
value (mean time between Index
failure)
1 No effect on patient care + 4 years Impossible to
miss
2 Inconvenience or delay in 2 years “
care
3 “ 1 Highly likely to
notice
4 Minor dosimetric error 6 months Easy to detect
5 “ 1 month Fairly easy to
detect
6 Limited toxicity or 2 weeks Fairly difficult
overdose to detect
7 Potentially serious under- 1 week “
or overdose or toxicity
8 “ 3 days Nearly
undetectable
9 Very serious under- or 1 day “
overdose or toxicity
10 Patient death 1 hour Undetectable

These data have been adapted from the TG-100 report on failure modes and effects
analysis (FMEA). For each case, a rank of 1 was considered harmless, and a rank of 10
was catastrophic. Chosen rank values were based on observed or estimated.

every delivery in the absence of position feedback. Such an error
would be difficult to detect without monitoring. The resulting
RPN would then be 6 x 10 x 7 = 420. Selected FMEA indices
were agreed on by a consensus group of experts, including the
authors on this work.

Fault Tree Analysis

Causes of each identified failure were mapped out with a fault
tree analysis (FTA). The FTA allows for visualizing potential
points to perform quality management procedures and to
minimize the propagation of errors (35). Each failure mode
was traced back to its potential causes using a logic tree.
Possible failure modes include user errors, such as selecting the
wrong delivery setting or incorrect patient setup, software errors,
equipment failures, and patient non-compliance. For the
example of an error in delivery of an IES, the cause could be
traced back to a faulty position feedback from the beamline
monitors to correct the scanning magnet power supplies. Other
causes of the error could also be postulated, including slow scan
speeds and incorrect magnet calibration. Once causes for each
failure were identified, methods to eliminate the cause or to
detect the possibility of each failure were developed.

Solutions and Tests

After identifying the potential solutions for the safety risks,
appropriate solutions were implemented and error-handling
tests were designed and performed. Solutions for failure modes
can be classified into several categories: permanent corrective
actions, error states and interlocks, commissioning and quality
assurance tests, and plan verifications. Permanent corrective
actions are changes in the workflow of the planning or delivery
software or user protocols in order to eliminate the possibility of
that failure mode occurring. This can include implementing

redundancies, such as redundant devices and communication
protocols. Pass-fail tests were performed by simulating error
states and checking that the delivery system entered an error
state or triggered an interlock. Commissioning and QA tests are
tests that verify that the system consistently works according to
manufacturer specifications and within acceptable fault
tolerances. Plan verification tests verify the accuracy of patient
plans. For example, scan magnet position errors can be
prevented in several redundant ways. Two position-monitoring
chambers are used during delivery to monitor the accurate
delivery of beam spots within an IES. Additionally, interlocks
are in place in the case of failure of one of the monitoring or
scanning magnets. Finally, daily QA is performed to confirm the
functionality of the entire delivery system. Whenever possible,
permanent corrective actions were implemented.

Description of Error Handling Tests

Error handling tests were created for each of the failures
identified in the FT'A. Pass-fail test cases were written for each
of these failures. Corresponding software tests were then created
that inject error scenarios into the delivery process to confirm
that the DDS can respond to the respective error. In the case that
an error-handling test failed, the underlying delivery software
was modified to prevent the error from occurring. In other cases,
an interlock was also implemented to trigger the interruption or
termination of treatment in the presence of a motion
synchronization error. The implemented interlocks were also
tested by injecting error scenarios into the delivery process.

Daily, Weekly, and Annual QA

The performance of the accelerator and beam delivery components
was characterized through a series of quality assurance
measurements. While existing QA protocols (11) will confirm the
functionality of most aspects of motion-synchronized dose delivery,
additional tests must still be performed to ensure the performance
of additional features, including the motion monitoring system and
4D plan library. QA tests were designed that prioritized a simple set
up, are multi-purpose, are fast and use well-characterized
phantoms. A QA concept was designed to test the safety and
reproducibility of motion-deliveries. Where possible, the current
clinical protocols at ion therapy centers, such as those used at
CNAO (36) were extended to include motion scenarios. Each test
was verified experimentally in a clinical setting at CNAO.

Daily QA tests were designed and performed for measuring
field uniformity, beam spot positions, and beam reproducibility.
Setups with water-equivalent plastics (RW3 slab phantom; PTW,
Freiburg, Germany) and radiochromic films (EBT3 Gafchromic;
International Specialty Products, Wayne, NJ) were selected, as
their assembly time is fast and they are both well-characterized
systems. The daily QA procedures found at CNAO were
modified and applied to test the delivery quality of motion
compensation with the M-DDS. This allowed faster delivery
that was not dependent on additional custom-made software for
analysis. The daily QA setup, a radiochromic film, mounted
behind 2 cm of water-equivalent plastic, was mounted on top of a
linear stage with programmable motion patterns (M-414.2PD;
Physik Instrumente GmbH, Karlsruhe, Germany). Motion
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amplitudes, detected from an optical laser distance sensor
(OD100 — 35P840; SICK, Waldkirch, Germany), were
converted into motion states (30). For each test, the clinical
(non-moving) procedure was performed first, followed by the
motion-compensation variant. For these beam deliveries, the
linear stage moved with 20 mm amplitude sinusoidal or Lujan2
motion (37-40) while delivering a uniform square profile with
eight surrounding spots. The purpose of each test and the
measurement criteria are summarized in Table 2.

All films were calibrated in a series of steps. Before the QA tests,
standard dosimetry was performed (44), and calibration films,
composed of eight squares with fluences from 2 x 10° to 4 x 107
particles/mm, were acquired for each batch of films. The
calibration plan was delivered with 280 MeV/u carbon ions to
films placed behind 2 cm of water-equivalent plastic. After
delivery, the QA films were scanned with a laser film scanner
(VIDAR DosimetryPRO Advantage Red; VIDAR System
Corporation, Herndon, VA, USA) in landscape orientation,
using 16 bit sampling and a 300 dpi resolution. A batch-specific
optical density correction was applied to each film by subtracting
out the optical density of an unirradiated area of the film, using an
image analysis software (ImageJ version 1.52a; National Institute
of Health, Bethesda, MD). The calibration films were used to apply
a calibration curve, converting optical density to particle
intensities. Each film was cropped, aligned, and corrected for
linear energy transfer (LET) quenching effects (43), by applying a
relative efficiency (RE) correction curve as follows:

Dssontev /u(1netOD)
D, abs

where Dagomev/u(netOD) is the 280 MeV/u carbon ion dose
needed to produce the measured, corrected optical density, and
D,ps is the actual dose delivered with carbon ions to the film.
After, calibration, the films were analyzed.

RE(LET) =

TABLE 2 | Description of the purpose and pass criteria for each quality
assurance test.

Test type Quantity tested Pass
criteria

Daily QA

Field uniformity Homogeneity index (41) >95%

Spot shape FWHM in X and Y direction Symmetrical

across scan field (11)

Spot position Distance to agreement (42) <+1mm

Motion-monitoring system Function test Functioning

functionality

Weekly QA

Beam monitor calibration Coefficient of variation (43) <1%

reproducibility

Annual QA

Dose distribution with Percent error from expected <5%

homogeneous phantom dose (36)

Dose distribution with Percent error from expected <5%

heterogeneous phantom dose (36)

QC

Motion-monitoring system Distance to agreement (42) <0.1 mm

performance

The uniformity was assessed through the homogeneity index
(HI), which is defined as

Dmax B Dmin

D,

HI =100 -

where D, and D,,,;,, are the maximum and minimum measured
absorbed dose, respectively, and D,, is the prescribed dose. The
HI was measured in the center 70% of the target volume. HI
values above 90% were considered clinically acceptable.
Additionally, the beam spot position accuracy was assessed by
measuring the relative distance between each pair of beam spots
in 2D profiles of the films. The beam spot shape and distortion
was measured by determining the FWHM in the horizontal and
vertical directions. Beam reproducibility tests were performed by
comparing the delivery results across several weeks with a
coefficient of variation (45). Finally, the increases to QA
delivery time were assessed by measuring the setup and
delivery time for each test and estimating the increased time
for QA, when performing motion-specific testing alongside the
currently performed QA tests in each treatment room.

Equipment quality control (QC) is generally also performed
daily to verify the functionality and accuracy of treatment
equipment. To verify the performance accuracy of the motion-
monitoring equipment (a linear stage and an optical distance
(OD) laser) the linear stage was programmed to move in an
increasing stepwise motion pattern. The measured OD laser
signal was compared to the motion files for the linear stage.

Annual QA is a series of extensive tests to measure machine
performance. Annual QA tests were performed to measure dose
distributions with a 3D homogenous setup and a 3D
inhomogeneous setup. First, 4DCTs of an heterogenous
phantom (CIRS 062 electron density phantom; CIRS, Norfolk,
VA, USA) and a water tank (MP3-P; PTW, Freiburg, Germany)
were acquired. 60 x 60 x 60 mm® cubes were delivered to 12
small-sized ionization chambers (PinPoint 3D ion chamber
model T31015; PTW, Freiburg, Germany) in a water tank for
both setups. For the 3D inhomogeneous setup, density
compensation measurements were performed by the
heterogeneous phantom mounted in front of the water tank.
Both deliveries were performed without motion, and with
motion compensation. Standard deviations for measured doses
of < 5% were considered acceptable.

Patient Plan Verification

Plan verification, or patient specific quality assurance (PSQA), is
performed to assure the accuracy of a treatment plan. Treatment
planning and treatment delivery errors, unique to the motion
mitigation system, can be discovered through PSQA testing.
Errors may include selecting the wrong motion trajectories
during planning or delivery, or planning with an unintended
motion compensation strategy. If not detected, these errors could
lead to severe dose degradations. Several plan verification
methods were chosen to test the extent to which planning and
delivery errors related to mitigating for respiratory motion can
be detected. The chosen PSQA tests included patient verification
protocols that are used in ion therapy clinics, including 1) 3D
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dose measurements with small-sized ICs, 2) repeat 2D
measurements at three depths with a 2D ionization chamber
array detector (Octavius 1500 XDR; PTW, Freiburg, Germany),
and 3) log file analysis. Additionally, 3D dose measurements
were also performed with 4) a stack of radiochromic films (46).
These measurements were analyzed with standard deviation
calculations, gamma index analysis, and through the evaluation
of dose volume histogram (DVH) metrics, respectively. To
perform these measurements, the detector or film was placed
into its respective holder, and the holder was mounted onto a
linear stage. 4D-optimized patient plan libraries were delivered
to each detector setup. The linear stage was programmed to
move with trajectories derived from the patient 4DCTs. Other
aspects of PSQA were also considered when designing each
setup, including favoring simpler phantom setup processes and
higher resolution of the recorded data.

3D dose measurements were performed by delivering patient
plans to 12 small-sized ICs. These ICs were selected, as they are
used in several clinical ion facilities for patient verification (47-
49). The ICs were inserted into a custom removable holder,
connected to a linear stage that generated the motion of the ICs
(Figure 1). The linear stage was mounted on top of a water tank,
similar to the commercially used water tank phantoms, and the
water tank was filled with water. Each patient plan was delivered
to this phantom, with the linear stage moving with the patient’s
breathing pattern. Each IC recorded a dose measurement and
standard deviations were calculated from these doses. The
chosen prescription dose was 6 Gy per fraction. Standard
deviations of < 5% are typically considered acceptable.

2D dose measurements were performed by delivering the
patient plan to a 2D ionization chamber array detector at three

tumor depths. The chosen depths corresponded to the proximal
end, middle, and distal end of the tumor depth. The appropriate
thickness of water equivalent plastic (RW3; LAP GmbH,
Liineburg, Germany) was placed in front of the detector for
each case (Figure 2). This setup was mounted on the linear stage
to generate patient motion and a patient plan was delivered to
the detector with and without motion. The delivery results were
compared to the planned doses for each depth with the gamma
index analysis (42), where a criterion of 3%/3 mm was used, with
a dose threshold of 5% of the prescription dose. Pass rates of
>90% for measurements made at all three depths were
considered passing.

3D measurements with a stack of films were made to acquire
higher resolution dose distributions. Seven 5” x 4” radiochromic
films were slotted into an in-house built film holder phantom. The
phantom was composed of a stack of 15 x 13 x 1 cm’ polymethyl
methacrylate (PMMA) plastic slabs, with slits for the films, as seen
in the technical drawing in Figure 3. This setup was mounted on
top of the linear stage, which generated periodic motion. Each film
was numbered and labeled at the top right corner before delivery.
Each patient plan was delivered to the film stacks, in the presence
and absence of motion. After delivery, the films were processed as
described in section above. Each film was then analyzed with the
gamma index analysis. The average gamma index pass rates for each
film stack were evaluated using an in-house developed research
software for data analysis, ArrayParser, where each film was
compared to the respective treatment plan at the appropriate
tumor depth. Gamma index pass rates of above 90% were
considered clinically acceptable.

Log file analysis has been used to decrease PSQA
measurement time. The patient plan was delivered to the IC

FIGURE 1 | Experimental setup for patient-specific quality assurance (PSQA) measurements with (A) a water tank and (B) a linear stage mounted on top. The linear
stage is programmed to move a variety of attachments in periodic, respiratory-like motion patterns. Here, (C) a holder with (D) 12 small-sized ionization chambers
(IC) inserted inside is attached. This IC holder aligns with the isocenter markings on the water tank phantom, which is filled with water.
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IC array detector

linear stage

FIGURE 2 | Schematic of the ionization chambers (IC) detector array setup.
The IC array detector is placed inside of a 5 mm polymethylmethacrylate
(PMMA) holder, mounted onto a linear stage. Water-equivalent plastic of
thickness “d,” corresponding to the distal, middle or proximal depths of a
target, are then placed in front of the detector.

array detector and log files from the scanner magnets and nozzle
detectors were used to reconstruct the delivered doses on the
planning 4DCT, using TRiP4D (30). The motion signal from the
linear stage was used directing plan delivery during motion-
compensation. However, a simulated motion signal could also be
used for these measurements. The dose reconstructions were
then compared with planned dose distributions using the gamma
index analysis to a criterion of 3%/3 mm, where > 90% pass rates
were considered acceptable.

RESULTS

Process Map

A process map was created to map out the sub-processes of
patient treatment at a typical ion therapy center. The processes
for moving tumors are presented in Figure 4. This map consists
of five main workflow steps, starting with patient imaging
through the last fraction of treatment delivery. Patient-specific
verification procedures were included as well. Several of these
steps were critical to patient errors.

FIGURE 3 | Schematic of the film stack. The film stack contains up to nine
slabs of polymethylmethacrylate (PMMA) with precisely machined slots for
holding radiochromic films (5” x 4”) as well as several slabs of additional
PMMA to vary the delivery depth. The phantom measures 15 x 13 x 9 cm®
when nine slabs are in place. The slabs are aligned and held together by
plastic screws at each corner of the phantom. The lateral cutouts (blue circle)
are used for easy access of the irradiated films (yellow) without the need to
disassemble the film stack phantom.

Failure Modes and Effects Analysis
A systematic evaluation of the process map identified 58 failures.
A subset of these failures is shown in Table 3, including the
highest ranked failures during treatment delivery. Values for S,
O, and D indices were estimated based on the metrics from
Table 1 and were used as a guide to determine the highest
risks for conformal, motion-synchronized therapy. All failures
with an RPN of 125 or greater and all failures with a severity > 5
were considered in this study. In total, 41% of failures were
identified to be low risk (RPN = 1-75), 33% were found to be
medium risk (RPN = 76-125) and 26% were found to be high
risk (RPN > 125). The highest ranked failures, with an RPN score
of 294 were caused by delivery errors due to patient movement
and absolute changes to breathing position. Potential failures
that are common to both static site and moving site treatments
were not included in the analysis, such as miscommunications
between physicians and technicians and certain treatment
planning errors.

Fault Tree Analysis

Fault tree analysis was performed to identify sources for the
potential errors identified in the FMEA. Solutions for each error
in the FMEA were identified, implemented, and tested. A sample
fault tree can be seen in Figure 5 for the case of gating magnet
failure. Identified causes of error included human error, such as
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FIGURE 4 | Process map for motion-synchronized dose delivery as commonly

setting the treatment to the wrong delivery mode, machine
errors, such as noise on the motion signal, and treatment
errors, such as changes to the breathing patterns between
image acquisition and treatment. Proposed solutions for these
errors varied for each error type, and included disabling the
option for gating when a 4D plan library is loaded, implementing
a noise reduction filter on the motion signal, and using a
monitoring method that compares planned to measured
motion and gates delivery when out of range. Following
implementation, the solutions to the identified errors
were tested.

Safety Testing
Solutions were implemented to prevent the identified errors from
occurring and each solution was tested. The implemented
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found in ion therapy clinics. The treatment process is broken down into five

permanent corrective actions included noise filtering to
smoothen the respiratory signal, automatic extraction and
setting of the number of motion phases from the treatment
plan library, and implementing a checkpoint to prevent the
beginning of delivery until the motion-monitoring system is
calibrated and sending a motion phase. Many errors were
identified to be due to mistakes made by the user. Some
examples include setting up the motion-monitoring system in
an orientation other than what was used during planning image
acquisition, and not accounting for changes to the tumor
position, relative to isocenter (50). In these cases, the proposed
solutions included performing a second check by another
clinician or reimaging the patient periodically. Additionally,
using a checklist to check the patient setup before treatment
could reduce the incidence of user errors.
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TABLE 3 | Summary of failure modes and effects analysis (FMEA) results for
potential errors during patient therapy with motion-synchronized ion beams using
a DDS with integrated motion compensation controls. Risk priority numbers
(RPNs) of over 125 were considered high risk.

Failure mode Severity Occurrence Detectability RPN

Patient movement 7 6 7 294
Absolute change in breathing 6 7 7 294
position

Patient alignment 7 5 6 210
No gating during sporadic 5 5 8 200
movements

Gating window too large 6 8 4 192
Beam sweeping distance dose 3 8 9 192
Sending incorrect motion phase 7 3 7 147
info

Error creating of slice files 7 3 7 147
Failure to gate 9 2 8 144
Position calibration incorrect 8 2 7 112
Changes to respiration pattern 7 8 2 112
Setup of motion management 9 2 6 108
device to wrong position

Patient not re-imaged after 7 3 5 105
anatomy change

Position feedback missing/not 4 5 5 100
working

Determined wrong number of 6 2 5 90
motion phases

Incorrect motion direction 9 2 5 90
Loading wrong treatment plan 4 2 10 80
Motion data recording stops 4 2 9 72
Failure to progress to next slice 6 2 5 60
Plan incomplete 6 2 5 60
Motion signal loss 9 2 3 54

Pass Fail Tests

A series of error handling tests were created to test each of the
implemented solutions. These tests included pass-fail tests,
where the expected results included either triggering a
temporary interlock, aborting treatment, or entering the “setup
error” state. The summary of pass-fail test results is listed in
Table 4.

Daily, Monthly, Annual QA

QA tests were proposed for identifying errors in the functionality of
the motion-synchronized delivery components. These tests are
summarized in Table 2. QA setups were chosen that are available
or are similar to those found in ion therapy centers. Delivered
profiles were analyzed for uniformity, agreement with the treatment
plan, and for beam reproducibility, the uniformity index, and
gamma index analysis were chosen as analysis metrics.

Delivery uniformity with motion-compensation was determined
by assessing a square profile for a single energy of 240 MeV/u,
delivered with motion-compensation, to a radiochromic film. HI for
the static and 10 phase compensation deliveries were 95.3 and
94.8%, respectively. The spot position accuracy was found to be
within + 0.5 mm from the expected position. The beam spot shape
was determined through a measurement of the FWHM in the X-
and Y-directions, where the X-direction was the direction of
motion. For static deliveries, this was found to be 3.9 and
3.4 mm, respectively, and for the 10 phase deliveries, this was

found to be 4.7 and 3.3 mm, respectively. The observed broadening
of the beam in motion direction is an indication of the residual
motion both within and between the motion phases, and spot size
increases of up to + 0.5 mm were tolerated.

The increased time to perform both static and motion
compensation QA tests was measured and compared to static
QA alone. For the current clinical QA procedures, setup and
irradiation time was found to be 5 and 3 min, respectively, and
for the motion compensation QA, the setup, and irradiation time
was found to be 5 and 10 min, respectively. The estimated
increase in QA-personnel time for a facility with three
treatment rooms is 3 X 7 = 21 min, based on current QA
methods and experience.

Annual QA tests included measuring 3D uniformity in a
homogeneous and heterogeneous phantom. The static cube
delivery measured a homogeneity of + 1.2% and the motion
compensated delivery measured a homogeneity of + 3.5%. The
static cube delivery of 10 Gy, through the heterogeneous
phantom, measured a homogeneity of + 2.1% and the motion
compensated delivery measured a homogeneity of + 2.3%.

The basic functions and accuracy of the motion-monitoring
equipment were also determined. The measured motion was
within + 0.5 mm for all steps within the measurement range of
—30 to 20 mm, as seen in Figure 6A. The agreement between the
programmed linear stage positions and measured positions from
the distance sensor are seen in Figure 6B, where the linear
relationship indicates a high degree of measurement accuracy.

Patient Specific QA Results

Patient plan verification tests were performed to compare the
measured accuracy of the delivered 4D plan libraries. Patient
verification deliveries were found to be within clinical
requirements; however, the measurement resolution varied for
each approach. Results are summarized in Table 5. The small-
sized IC measurements were found to be within + 2.4 and + 8.9%
of the prescription dose for static deliveries and 10 phase motion
compensation deliveries, respectively, where + 5% is ideal, but
due to residual motion, + 10% was considered acceptable at this
stage; however, higher precision may be necessary before clinical
use. The measurements at three depths, with an ionization
chamber array detector were assessed using the gamma index
analysis. Pass rates (Pearson correlation score) for the static
delivery were found to be 84.1% (0.9883), 100.0% (0.9947), and
99.4% (0.9983), for distal, middle, and proximal profiles,
respectively. As only the distal measurement did not meet the
pass criteria, log file analysis was performed to verify delivery
quality. Pass rates (Pearson correlation score) for the motion-
compensated delivery were found to be 91.6% (0.9901), 98.6%
(0.9954), 90.9% (0.9971) for distal, middle and proximal profiles,
respectively. The average gamma index pass rates for the film
stacks were 92.4%, and 90.4% for conventional 4D optimized and
robust 4D optimized deliveries, respectively. The average pass
rate for the static delivery was 92.2%. The homogeneity for
robustly optimized and conventionally optimized 10 phase
motion compensated deliveries was 90.6% and 92.4%,
respectively. Delivered dose data (DDD) log files were
reconstructed and compared to planning simulations. The
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FIGURE 5 | A fault tree analysis for the case of gating failures during motion-synchronized dose deliveries.

gamma pass rates were found to be 99.4 and 96.0% for static and
motion-compensated deliveries, respectively. The measured
motion signals were used to reconstruct the delivered beam
spot position. The comparability of the data for each setup was
limited by the lack of direct correlation between analysis methods
(51). The small-sized IC and film stack phantoms were found to
have a relatively fast setup and execution. Due to the limited
number of detectors, small-sized IC measurements provided less
information in cases where results were nearly passing. In those
cases, DDD dose reconstructions were necessary to determine the
dose distributions. 2D dose measurements with the IC array
detector took multiple times longer to deliver than the film stack
and small-sized IC measurements, due to the multiple
measurements at varying depths.

Each PSQA method was also assessed for the ability to detect
motion-specific planning and setup errors. Errors in positioning
and orientation of the motion-monitoring system were visible for all

PSQA methods, but were least apparent in the film stack deliveries.
Selection of the wrong number of motion phases were only visible in
log file reconstruction and films, but had little impact on the delivery
results. Delivering a few beam spots to the wrong positions, not
delivering a few beam spots and using the wrong motion file during
planning were both only visible in the log file reconstructions, but
there were no measurable changes to the treatment delivery quality.
Finally, selecting the incorrect motion compensation strategy was
visible on film stack images and IC detector array measurements but
was not immediately clear without log file reconstructions. Log file
reconstructions were quicker than other methods, due to requiring
no phantom setup time. Likewise, log file analysis, and to some
extent, film analysis, did not require precise positioning. IC array
detector measurements took nearly three times as long as small-
sized IC measurements, but provided a higher number of
measurement points. In both cases, measurement analysis
programs are available to assess plan accuracy. Films require
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additional time for digitizing and show a non-linear dose response.
Calibrating the dose response of a film requires considerable effort
before it can be used for QA measurements.

DISCUSSION

We have designed and tested a prospective risk analysis strategy for
the motion-synchronized dose delivery system, developed for
scanned ion beam therapy of moving targets. We created this
strategy specifically to assess the safety of the motion mitigation
portion of the DDS for its eventual use in the clinic. Additionally, we
have implemented and tested solutions for possible errors related to
motion mitigation. The major finding of this study is that we have
identified the sources of and solutions to major errors with a
comprehensive risk assessment strategy. We also obtained pre-
clinical test results that suggest the clinical reliability in motion-
synchronized dose delivery. The results of this study have determined
that the proposed safety assessment tests can be utilized at ion
therapy centers, which operate with the modular M-DDS.

The implication of this study is that the described
comprehensive risk analysis strategy and proposed tests can
serve as an example during initial safety, commissioning, and
QA tests leading to implementation of the M-DDS into clinical
use. This assessment is part of a larger effort to confirm and
maintain the clinical safety of the M-DDS from the design stage
through clinical implementation. The M-DDS has been
implemented following good manufacturing practices,
including testing at several stages and maintaining extensive
documentation. The described preliminary safety tests suggest

TABLE 4 | Summary of pass-fail tests and results.

Error Expected action Result

Incorrect plan library structure
Wrong number of beam spots in
plan library

Missing motion information in plan
header

Particle numbers below or above
limitations

Plan library larger than size
limitations

Beam delivery errors

Motion signal lost

Motion trajectory deviating from
expected trajectory

Scanning magnet failure

Gating magnet failure

Delivery of a beam spot skipped
MMD file recording error

Setup error state Passed

« “

« “

Beam aborted “
Temporary gate

Interlock “
Treatment is halted “
Treatment stops, errors message,
and file dump

Delivery data recorded

Beam gate activated “

Treatment stops prematurely
Motion calibration incomplete
before delivery starts

Treatment setup errors

Wrong motion compensation
strategy selected

Motion system not fully set up or
not on

Set automatically from plan “

Delivery cannot start “

that the M-DDS is safe, reliable, and ready for additional tests,
leading to eventually treating patients. Further, the proposed
error tests and QA tests could be performed within clinically
reasonable timeframes. The safety tests are not the final solution
for commissioning and QA procedures within the clinic, but
rather are an example of a general safety strategy for the M-DDS,
which can be modified and extended to meet the specific needs of
a particular clinic. Full acceptance testing and commissioning
will be performed before re-implementing the modified DDS
into the clinic.

This is the first implementation of a comprehensive,
prospective safety assessment for pre-clinical testing of a
motion-synchronized dose delivery system. The results of this
study are coherent with the recommendations found in the TG-
100 and other AAPM reports (2, 6, 11, 13, 52). All plan
verification and QA tests were within clinical specifications. Log
file analysis provided the additional benefit of recognizing
individual beam spot errors and indicating other errors during
treatment preparation that could otherwise be unnoticed and
should be performed alone or along with regular plan verification.
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FIGURE 6 | (A) Correlation of motion position to the measured signal of the
motion-monitoring device (an optical distance laser sensor) for a step-wise
motion pattern. The motion positions, in mm, (red) are uploaded onto the
linear stage as a motion file and used to move the linear stage. The motion-
monitoring device then records the relative displacement (blue) as an analog
signal. The left and right portions of the motion signal show where the
motion-monitoring device is out of signal range. (B) A plot of position
accuracy between the optical distance laser signal (in arbitrary units) and the
linear stage position (in mm).
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TABLE 5 | Summary of patient specific quality assurance results for four measurements.

QA test Metric (pass criteria)
Pinpoints Dose deviation (+ 5%)

Log files (planned to reconstructed) Gamma index analysis (>90%)

Film stacks Gamma index analysis (>90%)

IC detector to log file reconstructions Gamma index analysis (>90%)

Static results Motion mitigation results

+2.4% +8.9%

99.4% 96.0%

92.4% 90.4%
Distal 84.1% (0.9883) 91.6% (0.9901)
Middle 100.0% (0.9947) 98.6% (0.9954)
Proximal 99.4% (0.9983) 90.9% (0.9971)

These measurements included calculating 3D dose measurement agreement with 12 small-sized ionization chambers (IC), and calculating gamma index analysis pass rates for
comparisons between log file reconstructions and treatment plans as well as IC array detector measurements. Acceptable criteria and analysis results are summarized.

Several studies have applied the safety assessment protocols
presented in TG-100 to ion therapy (21, 53). To our knowledge,
no studies have been performed to apply this approach to new
technologies in ion therapy, including motion mitigation
systems. Additionally, several studies have assessed the
practicality of QA procedures. One study, by Hara et al. (54),
describes a plan verification procedure for moving tumors. This
strategy involves delivering patient plans to a 2D IC at three
depths, and performing gamma analysis on each measurement.
This study also concluded that this procedure is a beneficial QA
procedure for moving tumors. Another study (55) described the
process of plan verification with small-sized IC deliveries. The
procedure and phantoms were modified in our study for motion
compensation. Further, Matter et al. (56) investigated the
capabilities of various plan verification procedures to ensure
the integrity of treatment plans under a variety of planning
errors. Of the measured errors, two cases were relevant
considerations for motion-synchronized deliveries with the M-
DDS: the “all spots shifted randomly” case, and the “increase in
spot weights” case. In particular, residual motion within a
motion phase can be as high as 1-2 mm, and is accounted for
in planning margins. In contrast, small increases in spot weights
may be possible when the beam is frequently gated or when there
are frequent jumps in the scan position due to non-optimally
created plans can result in non-trivial increases to the integral
dose. As such, we conclude that log file analysis could provide a
supplement to plan verification measurements. This study did
not consider failures associated with using real-time imaging to
monitor target motion. This is a vital part of motion-mitigation
and will be investigated in future studies. Though a variety
of imaging techniques and motion monitoring devices
can be integrated with the M-DDS, additional risk analysis
must be performed to identify and mitigate for failures
associated with these devices.

Our study has several strengths. One is that this method is
based on established methods (e.g., FMEA, FTA) that have been
applied in clinics worldwide. It can be extended to any modular
device with integrated motion mitigation strategies. Yet, it allows
for identifying errors that may specifically occur when using
motion synchronized delivery devices. Further, the strategy uses
the official risk assessment proposed by the AAPM, can be
applied to any motion-synchronized dose delivery
implementation, and to any clinic that integrates the described
M-DDS to their treatment systems. This strategy is a well-
developed, well-known, and comprehensive risk analysis

strategy. Though clinic-specific modifications will need to be
made, the described approach can provide insight into potential
complications, which could arise with the M-DDS. Finally, the
presented quality assurance tests were designed with phantoms
that are regularly found in proton and ion therapy clinics. These
tests were performed at an ion therapy center (CNAO) under
clinical conditions, with interlocks in place. QA and most PSQA
tests were also performed at CNAO and GSI, except the film
stack analysis, which was only performed at GSI.

One limitation of this study is that all safety procedures were
tested with a predefined, 1D movement, generated by a motion-
phantom. The motion patterns were well known and in complete
agreement between the measured and actual motion. This is not
a major limitation, as the delivery results with irregular motion
will be characterized in future studies. Another limitation of this
study is that no high-precision 3D dose distributions could be
measured. 3D gels could potentially provide nearly instantaneous
3D dose distribution information. Gels produced by Maryanski
et al. (57), which are readout with optical CT have recently been
developed for 3D dosimetry of carbon ions. However, this
strategy is still in the early stages of testing and has only been
optimized for high doses for carbon ions. Another dosimeter for
high precision 3D dose measurements would be measurements
with a 2D IC array detector in a water tank phantom (58, 59).
Though this strategy automatically provides high-resolution 3D
dose information, this strategy requires delivering prohibitively
long times for patient specific QA and assumes no phase
dependence for motion-compensated deliveries; therefore, this
method is better suited for beam commissioning. Another
limitation of this study is that no independent dose
calculations, such as Monte Carlo (MC) based dose
calculations, were performed. However, this is not a major
limitation, as MC dose calculations are typically time
consuming; therefore, they are currently mainly performed to
verify dose distributions when patient QA measurements do not
pass. Additionally, the proposed patient verification methods are
example solutions, and each clinic should select their appropriate
plan verification method. Finally, MC performed at CNAO
showed that MC simulations are sensitive to input conditions
and simplifications to the MC models (60). Nevertheless, MC
verification of patient plans has been growing in popularity and
can serve as a powerful tool for independent dose calculation on
well-characterized data sets.

The M-DDS is substantially complete and the current version
has been transferred back to CNAO for use in the research room
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there. Additional features are still in development that aim to
handle irregular respiratory scenarios and other complications
related to respiration; these will be completed before the M-DDS
is implemented for clinical use. Additionally, interoperability
with other centers and full compatibility to DICOM and I-HERO
standards will be implemented, along with any necessary
regulatory approvals for human use, followed by a full clinical
commissioning. Before clinical use, the plan library structure
must also be implemented into commercial treatment
planning systems.

CONCLUSION

We have applied a comprehensive safety assessment strategy for the
motion-synchronized portion of the dose delivery system. This
work has shown that M-DDS is a clinically viable motion
compensation strategy. The efficacy of possible QA procedures for
motion-synchronized deliveries have been confirmed. Importantly,
this strategy is specific to the motion-synchronized dose delivery
system, but not to a specific clinic. Therefore, the presented methods
can be adapted to other facilities using the M-DDS.
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