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Complementing Prostate SBRT
VMAT With a Two-Beam Non-
Coplanar IMRT Class Solution to
Enhance Rectum and Bladder
Sparing With Minimum Increase
in Treatment Time

Abdul Wahab M. Sharfo™”, Linda Rossi’, Maarten L. P. Dirkx', Sebastiaan Breedveld’,
Shafak Aluwini? and Ben J. M. Heijmen'’

" Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands,
2 Department of Radliation Oncology, University Medical Center Groningen, Groningen, Netherlands

Purpose: Enhance rectum and bladder sparing in prostate SBRT with minimum increase
in treatment time by complementing dual-arc coplanar VMAT with a two-beam non-
coplanar IMRT class solution (CS).

Methods: For twenty patients, an optimizer for automated multi-criterial planning with
integrated beam angle optimization (BAO) was used to generate dual-arc VMAT plans,
supplemented with five non-coplanar IMRT beams with individually optimized orientations
(VMAT+5). In all plan generations, reduction of high rectum dose had the highest priority
after obtaining adequate PTV coverage. A CS with two most preferred directions in VMAT
+5 and largest rectum dose reductions compared to dual-arc VMAT was then selected to
define VMAT+CS. VMAT+CS was compared with automatically generated /) dual-arc
coplanar VMAT plans (VMAT), i) VMAT+5 plans, and ii) IMRT plans with 30 patient-
specific non-coplanar beam orientations (30-NCP). Plans were generated for a 4 x 9.5 Gy
fractionation scheme. Differences in PTV doses, healthy tissue sparing, and computation
and treatment delivery times were quantified.

Results: For equal PTV coverage, VMAT+CS, consisting of dual-arc VMAT
supplemented with two fixed, non-coplanar IMRT beams with fixed Gantry/Couch
angles of 65°/30° and 295°/-30°, significantly reduced OAR doses and the dose bath,
compared to dual-arc VMAT. Mean relative differences in rectum Dmean, D1ce, Vaoayeq @nd
Veoayeq Were 19.4 + 10.6%, 4.2 + 2.7%, 34.9 = 20.3%, and 39.7 + 23.2%, respectively
(all p<0.001). There was no difference in bladder D1., While bladder Dyean reduced by
17.9 = 11.0% (p<0.001). Also, the clinically evaluated urethra Dso,, D1go, and Dsg,
showed small, but statistically significant improvements. All patient Vi with X = 2, 5, 10,
20, and 30 Gy were reduced with VMAT+CS, with a maximum relative reduction for Voa,
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of 19.0 £ 7.3% (p<0.001). Total delivery times with VMAT+CS only increased by 1.9 +
0.7 min compared to VMAT (9.1 + 0.7 min). The dosimetric quality of VMAT+CS plans was
equivalent to VMAT+5, while optimization times were reduced by a factor of 25 due to
avoidance of individualized BAO. Compared to VMAT+CS, the 30-NCP plans were only
favorable in terms of dose bath, at the cost of much enhanced optimization and delivery
times.

Conclusions: The proposed two-beam non-coplanar class solution to complement
coplanar dual-arc VMAT resulted in substantial plan quality improvements for OARs
(especially rectum) and reduced irradiated patient volumes with minor increases in

treatment delivery times.

Keywords: non-coplanar, beam angle optimization, class solution, automated planning, prostate SBRT

INTRODUCTION

Stereotactic body radiation therapy (SBRT) is becoming the
standard treatment radiotherapy option for several primary
and metastatic tumors (1-8). In prostate SBRT, volumetric
modulated arc therapy (VMAT) has been promoted because of
its short treatment delivery time (9-11). On the other hand,
several studies have shown that use of non-coplanar beam
arrangements minimizes doses in the normal tissues compared
to coplanar VMAT, at the cost of enhanced treatment delivery
times (12-14). To overcome the prolonged treatment times of
non-coplanar IMRT beam arrangements, recent work has been
focusing on increasing the delivery efficiency by employing non-
coplanar arcs instead. This showed promise due to a drastic
reduction in the treatment time, while obtaining a high plan
quality (15-18). Recently, we proposed a novel treatment
approach for liver SBRT, designated VMAT+, complementing
VMAT with a few non-coplanar IMRT beams with computer-
optimized, patient-specific orientations to enhance plan quality,
while keeping delivery time low (19). However, plan
optimization times for VMAT+ were long, in the magnitude of
2-3 days, because of the need for individually optimized beam
angles (BAO).

In this study, we used our in-house developed algorithm for
automated multi-criterial planning with integrated BAO to
explore opportunities for enhancing prostate SBRT dose
distributions by complementing dual-arc coplanar VMAT
with non-coplanar IMRT beams. To keep the total delivery
time limited, the investigated maximum number of
complementary non-coplanar beams was five (VMAT+5).
Based on the selected beam orientations in the VMAT+5
plans, a class solution (CS) for the non-coplanar beams was
defined. Final VMAT+CS plans were benchmarked against
automatically generated i) dual-arc coplanar VMAT plans
(VMAT), ii), VMAT+5 plans, and iii) 30-beam non-coplanar
IMRT plans with computer-optimized beam orientations (30-
NCP). Differences in dosimetric plan parameters, computation
and treatment delivery times were analyzed. Dose
measurements were performed to verify deliverability of
generated plans at the treatment unit.

MATERIALS AND METHODS

Patient Data

Planning CT-scans of 20 randomly selected, low-risk prostate
SBRT patients were included in this study. In all CT-scans the
rectum (outer contour), rectal mucosa (3mm wall), bladder,
urethra, femoral heads, scrotum, penis and prostate were
delineated. Patients had implanted fiducials for image-guidance.
The average planning target volume (PTV) size was 91.2 cc [57.8 -
142.3 cc] (PTV was defined as prostate plus 3 mm isotropic
margin). Dose was delivered in 4 fractions of 9.5 Gy (38 Gy total
dose), emulating high-dose rate (HDR) brachytherapy with highly
heterogeneous dose distributions in the peripheral zone while
restricting the urethra dose (20). PTV coverage aim was 95%, with
a maximum dose of 62.5 Gy. Plan acceptability was subject to the
dosimetric constraints presented in Table 1. While always staying
withing imposed hard constraints (Table 1), the primary planning
aim was to obtain adequate target coverage, followed by a
reduction of high rectum doses and other OAR and patient dose
reductions. In line with the ALARA principle, the aim was to
always maximally reduce healthy tissue doses.

Automated Plan Generation
For each patient, the Erasmus-iCycle multi-criterial optimizer
was used to automatically generate one treatment plan per

TABLE 1 | Clinically applied dose constraints for prostate SBRT.

Structure Parameter Tolerance Limit
PTV Drnax 62.5 Gy
Rectum Dinax 38 Gy
Dice 32.3 Gy
Rectum mucosa Dinax 28.5 Gy
Bladder Dmax 41.8 Gy
D1cc 38 Gy
Urethra Dsop 45.5 Gy
Dio% 42 Gy
Dso% 40 Gy
Femoral heads Drmax 24 Gy
Penis/Scrotum Dinax 1.5 Gy
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investigated technique (VMAT, VMAT+CS, VMAT+5, 30-
NCP) that is both Pareto-optimal and clinically favorable (21).
For practical and legal reasons, Erasmus-iCycle plans are not
directly used clinically. Instead, the Erasmus-iCycle plan is
automatically converted into a clinically deliverable plan by the
Monaco treatment planning system (TPS) (Elekta AB,
Stockholm, Sweden) (22). For this purpose, a patient-specific
Monaco template is automatically made based on the Erasmus-
iCycle dose distribution. In case plan generation includes BAO,
the optimal angles are established with Erasmus-iCycle, and are
then used as fixed angles in the subsequent Monaco plan
generation. Many studies have demonstrated superiority of
these automatically generated plans compared to manually
generated plans (14, 23-26).

Multi-criterial plan generation with Erasmus-iCycle is based
on a tumor site-specific ‘wish-list’ containing hard constraints to
be strictly obeyed and plan objectives with ascribed priorities. For
BAO, a set of candidate beam orientations has to be defined as
well (21). In this study, we used a published wish-list for prostate
SBRT (14). This wish-list followed the above described planning
approach, i.e. generate plans that strictly obey the constraints in
Table 1, while obtaining adequate target coverage (highest
priority), and maximally sparing the OARs (rectum, rectal
mucosa, bladder, urethra, and femoral heads) and other
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healthy patient tissue, giving highest priority to high-dose
rectum sparing, as suggested by QUANTEC (27). While
adhering to constraints and imposed priorities, the ALARA
principle for healthy tissues is inherently followed in
automated plan generation with Erasmus-iCycle. For the
optimizations with integrated BAO (VMAT+5 and 30-NCP),
the non-coplanar beam selection search space consisted of 300
candidate beams, separated by about 10 degrees, and
homogeneously distributed across the part of the sphere where
collisions between the patient/couch and the gantry were
avoided, as verified at the treatment unit (Figure 1).

All plans in this study were generated for an Elekta Synergy
treatment machine equipped with a VersaHD collimator with a
leaf width of 5 mm. 10 MV FF photon beams were used. Dose
calculations in Monaco (version 5.10) were performed with a
dose grid resolution of 3 mm. The total number of control points
in all plans in this study was kept fixed at 300 for all investigated
techniques (i.e. VMAT, VMAT+CS, VMAT+, and 30-NCP) to
eliminate potential bias. IMRT was delivered with dynamic
multi-leaf collimation with a maximum of 10 control points
per involved beam, in line with our clinical practice. A fixed 5
degrees collimator angle was used for all arcs/beams, and the
maximum dose rate was 600 MU/min. For generation of the
VMAT+5 and VMAT+CS plans, VMAT and the non-coplanar
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FIGURE 1 | The full beam-angle search space for linac-based prostate SBRT planning as defined on our treatment unit using head and knees supporting devices.
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IMRT beams were optimized simultaneously, both in Erasmus-
iCycle and in Monaco. In this paper, ‘VMAT always refers to
dual-arc VMAT with two full, 360° arcs.

Workflow for Generation of the Non-
Coplanar Beam Angle Class Solution (CS)
The final CS to supplement dual-arc VMAT in VMAT+CS
treatments was developed in a stepwise approach, based on
automatically generated plans:

i) For each of the 20 study patients, the optimal VMAT+5 plan
with individually optimized beam angles was generated.

ii) Based on an analysis of the angular distribution of the selected
20x5 non-coplanar beams, candidate class solutions, CS;, were
defined as described in the Results section, all including a small
number of frequently selected beam directions, and accounting
for the left-right symmetry in the patients’ anatomies.

iii) For a subgroup of 6 randomly selected patients, VMAT+CS;
plans were generated for all CS;. These plans were then compared
with corresponding VMAT plans, and the CS; resulting in the
most favorable plan quality increases relative to VMAT (focusing
on rectum dose parameters) was selected as final CS.

Dosimetric Comparisons of VMAT+CS
Plan Parameters With VMAT, VMAT+5

and 30-NCP

Automatically generated VMAT+CS, VMAT, VMAT+5 and 30-
NCP plans were compared for the 20 study patients. Prior to the
analyses, all generated 80 plans were normalized to have identical
PTV dose coverage (V3sG,=95%, as requested in clinical
practice). Next, compliance with the clinically applied dose
constraints (Table 1) was verified for all plans. Finally, plan
parameter differences were analyzed. In line with the recently
published RATING guidelines for planning studies (28),
recommending the provision of a complete overview of dose

differences, apart from the clinically evaluated plan parameters,
we also evaluated and compared Dy, for both rectum and
bladder, Vyogyeq and Veogyrq (2 Gy/fx equivalent dose, i.e.,
Vazoay and Vygogy, respectively) for rectum, as suggested by
QUANTEC (27), as well as the dose bath, looking at patient
volumes receiving > 30, > 20, > 10, > 5 and > 2 Gy. Paired two-
sided Wilcoxon signed-rank tests were performed to assess
clinical significance of observed differences (p < 0.05).

Plan Deliverability, Treatment Time and
MU for VMAT and VMAT+CS

For a subgroup of 5 patients with the largest plan quality
gains achieved with VMAT+CS compared to VMAT, both
VMAT and VMAT+CS plans were delivered at an Elekta
Synergy linac (Elekta AB, Sweden) while irradiating a PTW
2D-Array seven29"™ and Octavius'™ phantom (PTW, Freiburg,
Germany) at the corresponding couch angles. The measurements
were compared to Monaco TPS predictions using a commercial
QA software package (PTW VeriSoft version 6.2) with 5% cutoff,
3% global maximum dose and 1 mm distance to agreement (3%/
1 mm) criteria, and 95% Gamma passing rate threshold. For
delivery time comparisons, we separately measured i) beam-on-
times, ii) gantry-travel-times (times to rotate the gantry from one
fixed angle to another while the beam is off), and iii) couch-
travel-times (times required to rotate the treatment couch in
between beams, including time needed for entering the room).
Additionally, the VMAT and VMAT+CS plans were compared
regarding the total number of monitor units (MU).

RESULTS

Establishment of the Final CS to

Define VMAT+CS

Based on the four clusters of frequently selected angles in the
generated VMAT+5 plans (Figure 2), four principal directions
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FIGURE 2 | Angular distribution of the 100 non-coplanar IMRT beams in the VMAT+5 plans of the 20 study patients. Based on these results four principle beam
directions A = (65°, -30°), B = (295°, 30°), C = (65°, 30°) and D = (295°, -30°) were derived to develop the final class solution for VMAT+CS.
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(gantry angle, couch angle) for class solution definition were
derived: A = (65°, -30°), B = (295°, 30°), C = (65°, 30°) and D =
(295°, -30°). These are visually displayed in Figure 3. Based on
these directions, three candidate CS; were defined: CS;,
containing all four directions, CS, consisting of directions A
and B, and CS; with directions C and D. These CS are mutually
compared for dosimetric performance in Figure 4. CS, had
clearly the highest median rectum parameter values and was
therefore not selected for VMAT+CS. CS; had lower median
values for the rectum dose parameters than CS;. Differences
between CS; and CS; in bladder D,,.,,, bladder D, urethra
Dse, urethra Dygo, and urethra Dsgo, were considered clinically
irrelevant. The median patient Vs, and Vo, were better for
CS;, while for Vo5, and V3, CS; was better. Based on these
observations and our clinical practice of giving high priority to
low rectum doses, we selected CS; to complement VMAT in
VMAT+CS, and tested it for the whole patient group. In the
remainder of this paper, VMAT+CS stands for VMAT+CS;.

Comparisons of VMAT+CS Plan
Parameters With VMAT, VMAT+5

and 30-NCP

All 20x4 plans included in the analyses fulfilled the clinically
applied dose constraints. In general, all plans with non-coplanar
beam arrangements (VMAT+CS, VMAT+5, and 30-NCP)
resulted in substantial reductions in doses in healthy tissues
and dose bath compared to VMAT (Figure 5 and Table 2).
Differences between VMAT+CS and VMAT+5 were generally
small and clinically negligible, while the former had less non-

C = (65°, 30°)

final CS consisted of directions C and D.

coplanar beams (yielding smaller overall treatment delivery
time), and did not require individualized beam-angle-
optimization (yielding reduced optimization time).
Remarkably, also the differences between VMAT+CS and 30-
NCP, the latter with much enhanced degrees of freedom in plan
optimization, were relatively small. Actually, in rectum and
bladder Dyyen there was even a small advantage for VMAT+
CS. For rectum Dy, Viogyeg VeoGyeq Dladder Dy and all
urethra parameters, differences between VMAT+CS and 30-NCP
were considered clinically irrelevant. There was a significant
improvement in dose bath with 30-NCP, but clear
disadvantages of this technique are the long optimization times
(~100 hours per patient) and the very long delivery times (see
below). Figure 6 shows dose distribution of VMAT and VMAT+
CS plans for an example patient, as well as the population
average DVHs of the entire patient cohort.

Plan Deliverability, Treatment Time

and MU for VMAT and VMAT+CS

All delivered VMAT and VMAT+CS plans passed the QA tests
(gamma passing rate >95%) with an average gamma passing rate
of 98.3% + 1.0% [97.5%, 100%] for VMAT plans and 98.3% +
0.7% [97.5%, 99.4%] for VMAT+CS plans. Compared to VMAT,
the average total delivery time of VMAT+CS plans increased
from 9.1 £ 0.7 min to 11.0 £ 0.3 min (see Figure 7 for details).
VMAT+CS plans required 3% less MU (4055 + 191 compared to
4186 * 398), which was not significant (p=0.375). In VMAT+CS,
on average, 15.7% * 7.4% [4.9%, 33.3%] of the total MU was
delivered by the two IMRT beams in the non-coplanar CS.

D = (295°, -30°)

FIGURE 3 | Four principle beam directions, characterized by (gantry angle, couch angle), from Figure 2, used to develop the final class solution for VMAT+CS. This
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or to 1.5 times the inter-quartile range from the top/bottom of the box. Values outside this range are plotted individually as outliers (**’). *: difference with VMAT is
statistically significant.

Optimization Time Reduction

Using a class solution instead of individually optimized beam
angle selection in VMAT+5 resulted in a substantial reduction in
optimization time by a factor of 25. Optimization times for
VMAT and VMAT+CS plans in Erasmus-iCycle took on average
50 and 60 min, respectively, while subsequent plan
reconstruction in our Monaco TPS for either of the plans took
on average 20 minutes.

DISCUSSION

In this study, we have developed and evaluated a novel treatment
approach for prostate SBRT at a C-arm linac, consisting of dual-
arc coplanar VMAT supplemented with a non-coplanar beam-
angle class solution (CS) consisting of two IMRT beams (VMAT
+CS). Initial aim of the study was to explore opportunities for
enhancement of the plan quality for prostate SBRT, as obtained
with VMAT, by adding non-coplanar beams. To keep the

treatment delivery time short, no more than 5 non-coplanar
beams were added. The study was inspired by the success for
liver SBRT, where substantial plan quality enhancement
compared to VMAT could be obtained by adding 1-5 non-
coplanar beams with patient-specific, computer-optimized
orientations (VMAT+) (19). For the prostate case studied in
this paper, the distribution of selected non-coplanar orientations
for VMAT+5 in the twenty study patients pointed at a possibility
for the use of a CS, which was then successfully further explored.
A fixed set of two non-coplanar orientations (CS) resulted for all
patients in substantial plan quality enhancements compared to
VMAT, while the increase in treatment time was very moderate
(from 9.1 min to 11.0 min).

Remarkably, the quality of VMAT+CS plans was highly
similar to that of VMAT+5 plans, the latter with more, and
also patient-specific beam orientations. Most likely, because the
pelvic anatomies of prostate cancer patients are highly similar,
high quality plans could be generated for all patients with a fixed
set of two non-coplanar beams supplementing VMAT.
Interestingly, also the quality of plans with 30 non-coplanar
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beams with individually optimized orientations (30-NCP) was
highly similar to that of VMAT+CS, while optimization and
treatment times were largely enhanced. Apparently, adding only
two well-selected orientations to the patient plans was enough
for a substantial gain in plan quality. Adding more non-coplanar
beams and patient-specific optimization of the orientations of
the non-coplanar beams did not result in significantly better
plans (except for some improvements in the low dose bath),
especially when also considering the involved increases in
optimization and delivery times.

In this paper, a CTV-PTV margin of 3 mm was used.
Feasibility of margins depends on local set-up accuracies, e.g.
determined by applied immobilization and image guidance
procedures, available time for patient set-up, and training and
ambition of RTTs. Last but not least, there is also the clinical
trade-off between target coverage and OAR sparing. Recently,
intra-fraction tracking with the Calypso system (Calypso

Medical, Varian Medical System) has been introduced (29, 30)
to maximally reduce the impact of intra-fraction prostate
motion. Other investigators (31) have used an MR-linac for
tracking of prostate tumors. Unfortunately, current MR-linac
devices do not allow the use of non-coplanar beams.

Recently, Rossi et al. (14) showed a clear advantage for non-
coplanar CyberKnife planning compared to coplanar VMAT for
prostate SBRT, using the same study patients as in this paper.
Also in that study, all plans were fully automatically generated,
using the same autoplanning system and configuration (wish-
list) as applied in this study. Interestingly, the quality of the
VMAT+CS plans generated here is rather similar or slightly
better than that of the previously generated CyberKnife plans
(See Table E1 for a comparison of dosimetric plan parameters).
On the other hand, delivery times with the CyberKnife were
much longer (45 min vs. 11 min in this study). There is a high
similarity here with the above comparison between VMAT+CS
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TABLE 2 | Comparison of dosimetric plan parameters of VMAT+CS with VMAT, VMAT+5, and 30-NCP plans for all study patients.

Structure Parameter VMAT+CS VMAT - (VMAT+CS) (VMAT+5) - (VMAT+CS) 30NCP - (VMAT+CS)
Mean = SD [range] Mean = SD [range] p- Mean = SD [range] p- Mean = SD [range] p-
value value value

PTV V1009 (%) 95.0 £ 0.0 [94.9, 95.1] 0.0 £ 0.1 [-0.1, 0.1] 1 0.0 + 0.0 [-0.1, 0.0] 1 0.0+ 0.0[-0.1,0.1] 1
Doge (Gy) 35.1 + 0.7 [33.8, 36.3] 11 +1.5[-1.0, 1.5 0.004 -0.1+1.6[-2.8,3.8] 0.3 06 +1.7[-1.5,4.3] 0.4
Cl 1.11 £ 0.04 [1.04, 1.20] -1.6 £ 1.9[-6.8, 2.5] 0.001 -0.5+23[5.1,3.4] 0.5 -1.6+£1.9[-4.7, 2.0] 0.01

Rectum Dinean (GY) 54+£1.0[3.7,7.5] 19.4 +10.6 [-9.3, 35.0] <0.001 4.6 +10.9[-16.5,23.0] 0.1 11.56+11.2[-17.4,32.9] 0.001
Dice (GY) 27.6 + 2.6 [23.7, 32.8] 42+£27[-1.0,98] <0.001 05=+28[35,6.5] 0.3 0.4 +21[-4.3,4.9] 0.6
Vaoayeq = 3.5+1.3[1.8,6.1] 34.9 +20.3[-8.1,78.0] <0.001 6.1 +185[-20.1,52.0] 0.2 76 +13.5[-21.2,32.8] 0.03
Vaoocy (%)
Veocyeq = 1.1+£0.7[0.2, 2.8] 39.7 +232[4.6,97.5] <0.001 1.1+19.9[-332,36.6] 0.8 -0.2+136[-25.8,27.8] 05
Vao.26y (%)

Rectum Drmax (Gy) 26.2 + 2.6 [20.9, 31.6] 6.3+39[-1.9,147] <0.001 -0.3+4.0[-9.3,8.0] 0.8 0.6 +3.6[-8.2,7.0] 0.6

Mucosa

Bladder Dimean (GY) 6.6 + 1.3[4.5, 8.8] 17.9+11.0[-1.8,45.6] <0.001 -1.5+7.7[-152,186] 0.8 9.8+ 15.7 [-28.0, 48.6] 0.01
Dicc (Gy) 36.7 £ 1.2 [34.1, 38.5] 03+1.1[-1527] 0.4 -1.0+£1.0[-8.0, 1.3] 0.04 -11+18[-6.4,1.1] 0.02

Urethra Dss, (Gy) 40.1 + 0.8 [38.6, 41.5] 11 +£14[-1.1,4.0] 0.003 -0.4 +1.6[-4.0,24] 0.3 -0.2 £ 1.3[-2.7,2.7] 0.4
Diog (Gy) 39.6 + 0.7 [38.4, 41.1] 11+10[-06, 3.8  <0.001 -0.2=x1.1[24,23] 06  -01+10[24,21] 0.6
Dsos (Gy) 38.0 £ 0.5 [37, 38.9] 04 +£09[-1.7,23] 0.04 -02+08[-1.5 19 0.9 -0.3+1.1[-25, 1.6] 0.3

Left femur Dimex (GY) 13.8 + 1.6 [10.7, 17.9] 10.9 + 8.4 [-8.8,23.3] <0.001 1.6+83[-155,19.3] 0.1 -342+156[-65.4, -6.8] <0.001

head

Right femur Dy (Gy) 14.0 £ 1.7 [10.7, 17.5] 7.4 +£53[-34,169] <0.001 -1.3+4.7[92 7.3] 07 -32.3%139[-50.0,-7.0] <0.001

head

Patient Voay (cC) 5325 + 1007 [4151, 7790] 9.3 £5.7[-1.6,20.5] <0.001 18.6 + 6.8 [6.3, 30.3] 0.01 329+6.9[14.7,422] <0.001
Vsay (cO) 3444 + 687 [2692, 5134] 4.1 +4.41[-31,12.4] 0.001 -0.6 +5.2[-9.6, 14.9] 0.6 -7.2+55[-17.9, 4.5] <0.001
Vioay (cO) 1332 + 339 [924, 2022] 19.0+7.3[4.2,304] <0.001 1.4+7.0[-10.3,133] 0.01 -122+7.6[-26.0,0.3] <0.001
Vaoay (00) 317 + 83 [213, 481] 6.7 +£3.3[0.1,12.3] <0.001 1.2+24[32 58] 0.003 -51+32[105,1.0] <0.001
Vaoay (cC) 156 + 44 [102, 246] 1.1+£1.6[-25,59] 0.001 0.5+1.3[-1.541] 0.1 -1.6+2.2[-55, 3.2 0.01

While the VMAT+CS column contains absolute values of the plan parameters, the VMAT, VMAT+5 and 30-NCP columns show percentage differences with respect to VMAT+CS. Positive

differences hint at an advantage of VMAT+CS. Bold values denote statistically significance difference compared to VMAT+CS (i.e., p<0.05).

and 30-NCP; apparently in prostate SBRT there is no need for
using a large amount of non-coplanar beams to get a very high
plan quality. Important to note is that CyberKnife allows tumor
tracking to minimize the impact of intra-fraction prostate
motion, allowing treatment with small (3 mm) margins (32).
Without extra measures, such as monitoring and gating of
treatment with a Calypso system (above), treatment at a
regular C-arm linac could possibly result in lower effective
tumor coverages for the same margins.

Currently, we have not yet an idea whether the CS developed
for the planning protocol used in our center would also work for
SBRT planning approaches in other centers. This is a topic of
further research.

Addition of a few, well-selected non-coplanar beams to
VMAT (the VMAT+ approach) has now turned out to be
successful for both liver SBRT and prostate SBRT. New studies
on other tumor sites are part of a future project. We are able to
do this type of work due to availability of our in-house developed
optimizer for fully automated and integrated multi-criterial
beam angle selection and IMRT beam profile optimization.
The success of our work on VMAT+ is an indication for the
need of advanced algorithms for integrated beam angle and beam
profile optimization in commercial treatment planning systems.
In this context, one should keep in mind that with the VMAT+
CS approach, BAO is not needed for new patients. However,
development of the CS was only possible with the use of
integrated optimization of beam angles and profiles.

To the best of our knowledge, this paper and our paper on
liver SBRT (19) are the only papers that use autoplanning to
systematically investigate the addition of non-coplanar IMRT
beams to fast coplanar VMAT for enhancement of the plan
quality achieved with VMAT, while keeping treatments fast.
Several recent publications (33-37) investigated the use of non-
coplanar arcs to enhance plan quality without prohibitively
prolonged treatment times. Selection of the non-coplanar arcs
was performed manually. Clark et al. (34) and Thomas et al. (35)
showed that three non-coplanar arcs combined with one
coplanar arc (at 0° couch angle) produced clinically equivalent
conformity and dose spillage compared with GammaKanife for
multiple cranial brain metastases while increasing the delivery
efficiency due to its reduced treatment time. This class solution
has been incorporated in the Eclipse treatment planning system
as HyperArc and has further proven to improve delivery
efficiency and reduce dose to normal brain tissue when
compared to coplanar VMAT (38). More specific studies are
needed to compare such approaches with the proposed VMAT+.

CONCLUSIONS

Using an algorithm for fully automated, integrated multi-criterial
beam profile and beam angle optimization, we have derived a
two-beam non-coplanar class solution (CS) to supplement
coplanar VMAT for prostate SBRT. Adding the CS beams
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FIGURE 6 | (A) Comparison of dose distributions for the VMAT+CS (left) and VMAT plans (right) for an exemplary patient on the axial, and coronal planes,
(B) Population average dose-volume histograms for the VMAT (solid lines) and the VMAT+CS (dashed lines) plans of the entire patient cohort.

resulted in substantial improvement in treatment plan quality
with a minimal increase in treatment delivery time. Due to the
use of a beam-angle CS, i.e. the same non-coplanar beam

directions for all patients, time-consuming individualized beam
angle optimization can be avoided in future use.
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