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Background: Renal cell carcinoma (RCC) is divided into three major histopathologic

groups—clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We

performed a comprehensive re-analysis of publicly available RCC datasets from the

TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three

subgroups, for an exploratory transcriptome profiling of RCC subgroups.

Materials and Methods: We used FPKM (fragments per kilobase per million)

files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database,

representing transcriptomic data of 891 patients. Using principal component analysis,

we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized

by machine learning, resulting gene signatures were validated by correlation analyses

in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney,

and GSE157256).

Results: Many RCC samples co-clustered according to histopathology. However,

a substantial number of samples clustered independently from histopathologic

origin (mixed subgroup)—demonstrating divergence between histopathology and

transcriptomic data. Further analyses ofmixed subgroup via machine learning revealed a

predominant mitochondrial gene signature—a trait previously known for chRCC—across

all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup

presented an inverse correlation of mitochondrial and angiogenesis-related genes

in the TCGA and in three external validation cohorts. Moreover, mixed subgroup

affiliation was associated with a highly significant shorter overall survival for patients

with ccRCC—and a highly significant longer overall survival for chRCC patients.
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Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a

distinct histology-independent subgroup characterized by strengthened mitochondrial

and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed

subgroup went along with a significantly shorter overall survival for ccRCC and a

longer overall survival for chRCC patients. Further research could offer a therapy

stratification by specifically addressing the mitochondrial metabolism of such tumors and

its microenvironment.
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INTRODUCTION

Basic and clinical research in renal cell carcinoma (RCC) mainly
focuses on established histopathologic subgroups, specifically
clear cell (ccRCC), papillary (pRCC) and chromophobe RCC
(chRCC). Accordingly, histopathology is of crucial relevance for
determining treatment strategies including drug sequencing in
RCC patients, especially in a metastasized situation. As reflected
in the WHO classification for renal neoplasms (1), dividing RCC
in three distinct (sub-)entities does not completely mirror tumor
biology and its complexity. Instead, sub-categories such as clear
cell papillary RCC (2) were introduced, indicating substantial
greyscales between classical histopathologic subgroups.

By performing transcriptomic analyses, researchers have
identified characteristic signatures of ccRCC, pRCC, and
chRCC—thereby supporting established histopathologic
classification (3–5). Although comprehensive pan-RCC
analyses have been performed previously, the boundaries
of histopathologic origin usually were not scrutinized (6, 7).

Using principal component analysis (PCA) with subsequent
machine learning (ML) algorithms, we mapped 891 RCC
specimen irrespective of histopathologic boundaries. Following
this comprehensive pan-RCC approach allowed us to identify
novel RCC subgroups with a prognostic impact for cancer
patients and provide first functional insight.

MATERIALS AND METHODS

Data Acquisition
This work mainly based on data provided by The Cancer
Genome Atlas (TCGA) consortium. Utilized entities were
ccRCC (KIRC cohort, n = 538 tumor samples), chRCC (KICH
cohort, n = 65 samples) and pRCC (KIRP cohort, n = 288
samples) downloaded from the GDC portal (https://portal.gdc.
cancer.gov). For evaluation, we used data provided by the
ICGC (international network of cancer genome projects) (8),
specifically the RECA-EU data set, comprising of n = 91 ccRCC
samples (https://dcc.icgc.org/projects/RECA-EU) with available
RNA-sequencing data. Additionally, we used ccRCC samples
from the CPTAC-3-Kidney cohort (n = 101) as further external
validation (https://portal.gdc.cancer.gov/projects/CPTAC-3) (9).
Regarding RCC caused by hereditary leiomyomatosis (hlRCC)—
also known as fumarate hydratase (FH)-deficient RCC—we
further examined the smaller GSE157256 cohort (10) as another
source for evaluation (n = 26) (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE157256). For all mentioned datasets,
we used unprocessed FPKM or RSEM (GSE157256) values
as provided.

Bioinformatical Analyses
The presented work was implemented in a Jupyter Notebook
environment (version 7.5.0)—which is available upon request—
using the Python version 3.6.9, SciPy version 1.3.0 (11) and
scikit-learn version 0.22.1 (12).

t-SNE Plotting
Our project was based on the 2D representation of high-
dimensional data with subsequent cluster analysis using
ML. For plotting unprocessed FPKM data in 2D, we
performed a PCA with 50 components—using PCA of the
sklearn.decomposition module—and used the results as
input for t-SNE plotting (sklearn.manifold module) (13). For
calculating and plotting in 2D, we used a random initiation
with a learning rate of 300 and a perplexity of 27 with
10.000 iterations. For reproducibility, we used the random
state 0 (n_components=2, init=’random’, perplexity=27,
n_iter=10,000, learning_rate=300, random_state=0).
Additionally, cluster annotation and t-SNE coordinates for
each TCGA sample from all RCC subgroups are shown in
Supplementary Table 1.

Random Forest Learning
After manual annotation, we used these clusters for subsequent
learning steps. For this, we applied a model utilizing
Random Forest (RF) Classifier (RandomForestClassifier of
the sklearn.ensemble module). For training our model, we used
a 70/30 split, letting the model learn on 70% of the data and
evaluating it on the remaining 30%, with 1,000 trees in the
forest (n_estimators=1,000), leaving out the pRCC samples not
clustering in one of the three annotated clusters or the mixed
subgroup. For further investigation, we trained 20 models and
used the one with the highest test accuracy for subsequent
feature analysis. For this purpose, we assigned the according
“feature values,” implying the importance of each feature, to each
feature, representing the Ensembl gene IDs. We identified the
top 200 genes with the strongest influence on our model, which
distinguished our manually annotated clusters with the highest
accuracy. These top 200 genes of our best performing model
overlapped in 92 genes with the mean of the other 19 trained
models, outperforming them in test accuracy—with 92.06%
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compared to the mean of 83.42% (min. 79.37%, max. 86.11%).
A 10-fold-crossvalidation of the data yielded a mean accuracy of
84.52% (+/- 9.16%).

Plots and Statistical Analysis
Correlation and scatter plots were generated using matplotlib.
Indicated Pearson Rs were calculated using the accordingmodule
from scipy.stats. For subsequent survival analysis of patient
survival, Kaplan Meier (KM) plots were generated using the
lifelines module (version 0.23.1) with the KaplanMeierFitter (14).

If not stated otherwise, statistical tests were performed
using Kruskal-Wallis-Test—using scipy.stats module including
indicated significances, for which we used the statannot module
for python (version 0.2.3; https://github.com/webermarcolivier/
statannot). For the analysis of further interactions and relations
between the identified 200 genes with the highest influence on
the learned model, we used a Network generated by StringDB
(15). The coloring of the nodes was done directly by StringDB
for selected gene-sets stated as significant.

For validation purposes of relevant pathways and genes
previously identified by mRNA expression patterns, we used
the level four protein expression levels provided by The Cancer
ProteomeAtlas (16) (TCPA—https://tcpaportal.org/tcpa/) for the
three investigated cohorts.

RESULTS

Clustering 891 RCC Samples
Independently From Histopathologic Origin
For PCA, we used the RNAseq data of all registered RCC
specimen (n = 891) within the TCGA database, irrespective
of their histopathologic origin. We combined all tumor
specimen in a t-SNE-plot in order to illustrate familiarities
and discordances between samples based upon unprocessed
FPKM values. Figure 1A represents the t-SNE plot, with
ccRCC, pRCC and chRCC samples marked in red, green and
blue, respectively. Of note, most tumor samples clustered to
RCC subgroups, thereby confirming the familiarity and the
validity of histopathologic classification. Figure 1B represents
the schematic distribution of clusters identified within the t-
SNE-plot. Interestingly, pRCC samples did not cluster in a
single subgroup, but instead in three distinct subgroups (cluster
I-III), whereas ccRCC specimen built another cluster (IV).
However, apart from most samples clustering according to
histopathology, we identified a distinct cluster containing a
mixture of ccRCC, pRCC and chRCC samples (Figure 1B;
cluster V). We named this accumulation mixed subgroup.
As depicted in Figure 1C, we manually split and defined
the novel clusters for further ML-based analyses. Aside
from three distinct pRCC clusters, which surely merit future
investigation, we weremainly interested in thismixed subgroup—
containing 19% of ccRCC, 36.8% of pRCC and 81.5% of
chRCC samples (Figure 1D). Of note, our clustering approach
revealed no clear separation between type 1 and type 2 pRCC
(Supplementary Figure 1).

Clinical Characterization of Patient
Samples From Mixed Subgroup
We next examined the clinical characteristics of RCC patient
samples depending on their affiliation to the mixed subgroup
(Table 1). Comparing ccRCC samples inside and outside
the mixed subgroup, we found no significant differences in
age, gender, tumor stage, tumor extension (T classification),
lymphonodal invasion (N classification) or metastasis (M
classification). In contrast, tumor grading was significantly
different (p = 0.014). For pRCC, mixed subgroup patients
were significantly older (65.1 ± 10.9 vs. 59.6 ± 12.1 years;
p = 0.0002) than patients with pRCC not belonging to
this cluster. Moreover, the proportion of male patients was
significantly higher in the mixed subgroup (p = 0.001). In
contrast to the age distribution in patients with pRCC, chRCC
samples from the mixed subgroup were significantly younger
(49.6 ± 13.2 vs. 61.9 ± 12.9 years; p = 0.012). In addition,
the lymphonodal status differed significantly between the two
subgroups (p= 0.005).

ML-Based Functional Characterization of
Patient Samples Affiliated to Mixed

Subgroup
To learn more about functional traits and characteristic
differences of the clusters, we applied further ML based on
the visual separation (Figure 1C). Therefore, we determined
the top 200 genes best classifying the novel clusters. As
shown in Figure 2, we depicted these genes in a StringDB
gene network to uncover relevant signaling pathways. We
found a substantial accumulation of mitochondrial genes—
with String DB identifying “oxidative phosphorylation”
(GO:0006119) and “respiratory electron transport chain”
(GO:0022904) as highly overrepresented pathways in our
analysis. Additionally, “blood vessel development” (GO:0001568)
and “blood vessel morphogenesis” (GO:0048514) were also
highly overrepresented.

Moreover, mtDNA genes represented all of the top 10
classifier genes in our RF calculation—as shown in Table 2.
In conclusion, we found mitochondrial and angiogenesis-
related gene signatures to be most predictive within our
clustering approach.

Mitochondrial and Angiogenesis-Related
Genes Inside and Outside Mixed Subgroup
Alterations and overexpression of mtDNA have been described
as characteristic traits of chRCC (5, 17, 18)—and more
than 80% of the chRCC samples in our analysis were
located in the mixed subgroup (see Figure 1D). Due to
this relative overrepresentation of chRCC in this cluster,
we first checked whether our RF analysis was biased by
a high proportion of chRCC samples. For this reason, we
compared unprocessed FPKM values of mitochondrial genes
for ccRCC, pRCC, and chRCC samples depending on the
affiliation to the mixed subgroup. We found a highly significant
overexpression of mitochondrial genes for chRCC samples
inside compared to samples outside the mixed subgroup.
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FIGURE 1 | (A) t-SNE-plot for RNA-sequencing data from ccRCC (red), pRCC (green) and chRCC (blue) specimen within the TCGA database. (B) Visually identified

clusters—I to III: distinct pRCC subgroups; IV: ccRCC samples; V: mixed subgroup containing ccRCC, pRCC and chRCC tumors. (C) Manually defined clusters

based on visual separation. (D) Pie charts illustrating absolute numbers and proportions of RCC samples inside/outside the mixed subgroup for each RCC subgroup.
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TABLE 1 | Clinical characteristics of RCC patients inside and outside the mixed subgroup.

ccRCC non-mixed ccRCC mixed p pRCC non-mixed pRCC mixed p chRCC non-mixed chRCC mixed p

n = 428 n = 102 n = 182 n = 105 n = 12 n = 53

Age mean 60.2 ± 2.2 62.0 ± 11.8 0.196 59.6 ± 12.1 65.1 ± 10.9 0.00021 61.9 ± 12.9 49.6 ± 13.2 0.012

Gender m 273 (63.79%) 71 (69.61%) 0.269 123 (67.58%) 89 (84.76%) 0.001 10 (83.33%) 29 (54.72%) 0.07

f 155 (36.21%) 31 (30.39%) 59 (32.42%) 16 (15.24%) 2 (16.67%) 24 (45.28%)

Tumor stage I 223 (52.47%) 42 (64.29%) 0.166 108 (64,70%) 64 (38,32%) 0.419 2 (16.67%) 18 (33.96%) 0.1

II 43 (10.12%) 14 (8.33%) 16 (9,60%) 4 (2,40%) 5 (41.67%) 20 (37.74%)

III 90 (21.18%) 33 (19.64%) 34 (20,30%) 16 (9,58%) 1 (8.33%) 13 (24.53%)

IV 69 (16.23%) 13 (7.74%) 9 (5,40%) 6 (3,60%) 4 (33.33%) 2 (3.77%)

T T1 228 (53.27%) 43 (42.57%) 0.092 119 (64.67%) 74 (70.48%) 0.463 2 (16.67%) 18 (33.962%) 0.14

T2 53 (12.38%) 16 (15.84%) 22 (11.96%) 10 (9.52%) 5 (41.67%) 20 (37.74%)

T3 137 (32.00%) 41 (40.59%) 39 (21.20%) 20 (19.05%) 3 (25%) 15 (28.30%)

T4 10 (2.33%) 1 (0.99%) 4 (2.17%) 1 (0.95%) 2 (16.66%) 0 (0%)

N N0 192 (93.66%) 47 (94%) 0.929 29 (59.18%) 20 (71.43%) 0.21 4 (57.14%) 35 (94.60%) 0.005

N1 13 (6.34%) 3 (6%) 16 (32.66%) 8 (28.57%) 2 (28.57%) 1 (2.7%)

N2 0 (0%) 0 (0%) 4 (8.16%) 0 (0%) 1 (14.29%) 1 (2.7%)

M M0 19 (90.48%) 3 (75%) 0.392 60 (63.16%) 35 (89.74%) 0.654 4 (80%) 3 (75%) 0.866

M1 2 (9.52%) 1 (25%) 35 (36.84%) 4 (10.26%) 1 (20%) 1 (25%)

Grading G1 13 (3.06%) 13 (11.93%) 0.014

G2 195 (45.88%) 32 (29.36%)

G3 158 (37.18%) 48 (44.04%)

G4 59 (13.88%) 16 (14.67%)

Except for age (mean ± standard deviation), all characteristics were presented as absolute values. p-values highlighted as bold were significant for p < 0.05.

However, alterations in mtDNA expression were not limited
to chRCC. Instead, mixed subgroup samples from pRCC
as well as ccRCC exhibited a highly significant mtDNA
overexpression. Figures 3A,B illustrate unprocessed FPKM
values for candidate genes MT-CO2 (Figure 3A) and MT-CO3
(Figure 3B).

For angiogenesis-related genes such as FLT1 (Figure 3C)
and KDR (Figure 3D), we discovered significantly lower
expression levels within ccRCC samples from mixed
subgroup. Additionally, we discovered significant expression
differences for genes displayed in Table 2, regardless of the
underlying histopathologic entity, when compared to normal
tissue samples (Supplementary Figures 2–7). Regarding
expression of mitochondrial and angiogenesis-related genes
in ccRCC, we found negative Pearson R correlations in
the TCGA dataset (Figure 4A) as well as all three RCC
validation cohorts (Figures 4B–D). In line with a weaker
angiogenesis signature, ccRCC and pRCC samples from
mixed subgroup displayed significantly lower levels of c-MET
(Supplementary Figure 8).

Summing up the results, mtDNA and angiogenesis

signatures proved to be predictive not only for our pan-
RCC clustering approach—but also specifically for ccRCC

samples. Moreover, expression levels of mitochondrial and
angiogenesis-associated genes were negatively correlated in four

independent RCC cohorts.

Impact of Mixed Subgroup Affiliation on
Patient Survival
After characterizing mixed subgroup samples from a clinical
and a functional perspective, we next investigated whether
an affiliation to this cluster impacted patient prognosis.
Strikingly, survival analysis revealed a significantly worse
prognosis (p = 0.005) for ccRCC patients from the TCGA
database belonging to the mixed subgroup (Figure 5A). For
chRCC patients (Figure 5B), cluster affiliation had the opposite
effect—with significantly higher survival rates (p = 0.003)
for patients inside the mixed subgroup. In contrast, there
was no significant survival difference for patients with pRCC
(Figure 5C).

Given that clinical characteristics such as tumor stage and
TNM classification did not differ significantly for patients with
ccRCC (Table 1), we reasoned that the survival impact could
partially be due to an inadequate therapy stratification. Using The
Cancer Proteome Atlas (TCPA) (16, 19), we therefore analyzed
the protein expression of bona fide gene candidates related
to mTOR and PI3K/Akt signaling, angiogenesis and immune
signaling (Figure 5D). Regarding ccRCC as well as pRCC
samples, we found a significant downregulation of VEGFR2
and HIF1A protein expression in mixed subgroup samples. For
both subgroups, this downregulation of angiogenesis-related
genes was accompanied by a significant upregulation of PD-L1
expression. Moreover, protein expression of TSC1 and PTEN
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FIGURE 2 | StringDB network of the top 200 genes identified as relevant classifiers for RCC sample clusters from Figure 1C. Genes affiliated with oxidative

phosphorylation and respiratory electron transport chain are marked in red and blue, genes related to blood vessel morphogenesis and blood vessel development are

marked in green and yellow.

was downregulated in mixed subgroup samples. While pRCC
samples from our novel cluster exhibited a significant mTOR
downregulation, the slight increase in mTOR protein expression

of ccRCC samples from mixed subgroup was not significant.
Potentially due to lower sample numbers, TCPA analysis revealed
no significant expression differences for chRCC specimen.
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TABLE 2 | Gene families significantly overrepresented in the top 200 cluster classifying genes from Random Forest (RF) analysis.

Mitochondrial Genes Angiogenesis-related Genes

HGNC Symbol Ensembl gene ID RF-Feature Position HGNC Symbol Ensembl gene ID RF-Feature Position

MT-CYB ENSG00000198727 1 ETS1 ENSG00000134954 13

MT-ND4 ENSG00000198886 2 ANGPT2 ENSG00000091879 33

MT-CO1 ENSG00000198804 3 APLN ENSG00000171388 37

MT-CO3 ENSG00000198938 4 FLT1 ENSG00000102755 38

MT-CO2 ENSG00000198712 5 CRKL ENSG00000099942 46

MT-ND4L ENSG00000212907 6 ITGA5 ENSG00000161638 54

MT-ATP6 ENSG00000198899 7 NRP1 ENSG00000099250 56

MT-RNR1 ENSG00000211459 8 PRDM1 ENSG00000057657 93

MTATP6P1 ENSG00000248527 9 PTEN ENSG00000171862 109

MT-ND1 ENSG00000198888 10 VEGFA ENSG00000112715 112

MT-ND2 ENSG00000198763 20 ACKR3 ENSG00000144476 114

MT-ND3 ENSG00000198840 24 CDH13 ENSG00000140945 146

MT-RNR2 ENSG00000210082 25 BMPR2 ENSG00000204217 148

CALCRL ENSG00000064989 177

ESM1 ENSG00000164283 191

For each gene, HGNC symbol, Ensembl gene IDs, and the position in our calculation is shown.

In summary, we found a highly significant and clinically
relevant influence of mixed subgroup affiliation in RCC patients
from the TCGA database—with a better prognosis for chRCC
and a worse overall survival for ccRCC patients.

DISCUSSION

Classifying cancer tissue into three histopathologic subgroups—
clear cell, papillary and chromophobe—critically determines
treatment strategies and prognosis of RCC patients. However,
growing evidence highlights that this classification is not absolute
nor distinct. Instead, the WHO system of renal cell tumors
from 2016 contained several additional subgroups, such as
succinate dehydrogenase-deficient renal carcinoma and clear cell
papillary RCC (1). Previous functional analyses on RCC mainly
focused on isolated gene signatures, which were characteristic
and prognostic for single histopathologic subgroups (4, 5, 20,
21)—e.g., ClearCode34 (22) for determining the individual
risk of recurrence in localized ccRCC. Moreover, researchers
aimed to identify biomarkers and gene networks predictive of
future therapy response—especially for angiogenesis inhibition,
tyrosine kinase inhibition (TKI) and immune checkpoint
blockade (23–27). Interestingly, a recent study was able to
discriminate ccRCC and pRCC samples originating from
proximal tubules of the nephron from chRCC specimen
originating from distal tubules based on the metabolic and
lipidomic profile of the samples (28).

Pan-RCC Clustering Identifies Subgroup
Beyond Established Histopathologic
Classification
While most studies focused on gene signatures within
given histopathologic boundaries, we aimed to challenge

the absoluteness and robustness of RCC subgroup classification.
In our pan-RCC approach, we performed a clustering for
all RCC specimen from the TCGA database. Of note, a
substantial number of RCC samples clustered independently
from histopathologic origin. We called this cluster mixed
subgroup. Conferring samples inside and outside the mixed
subgroup, ccRCC patients exhibited no significant differences
regarding age, gender, tumor stage and TNM classification.
In contrast, grading of tumor samples appeared significantly
different, partially due to a higher proportion of G1 tumors
in the mixed subgroup. pRCC patients from this cluster
were significantly older than the remainder of the group.
Moreover, the proportion of male patients was higher inside
the mixed subgroup. All other clinical characteristics did not
differ significantly. Patients with chRCC within the cluster were
significantly younger and had a higher proportion of N0 patients.

ML Reveals Mitochondrial Genes as Most
Influential for Pan-RCC Clustering
For further functional characterization, we applied RF learning
in order to identify gene signatures most predictive for the novel
clusters. This ML approach revealed mitochondrial genes to be
most influential for the basic clustering, followed by genes related
to angiogenesis. As mtDNA overexpression is a reported feature
of chRCC (5, 17, 18), we had to rule out a systematic bias caused
by the high proportion of chRCC samples within the mixed
subgroup. Therefore, we analyzed mtDNA expression in all RCC
subgroups depending on subgroup affiliation. Of note, ccRCC,
pRCC, and chRCC specimen belonging to the mixed subgroup
all displayed significantly higher levels of mtDNA expression
compared to the counterparts outside this cluster. In ccRCC,
this mtDNA upregulation went along with a downregulation
of angiogenesis-related genes. Taking these results together led
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FIGURE 3 | Unprocessed FPKM values of exemplary candidate genes–(A,B) MT-CO2 and MT-CO3, (C,D) FLT1 and KDR. ns, not significant, ****p < 0.0001.

to significantly negative correlations between mitochondrial
and angiogenesis signatures—not only in ccRCC samples from
TCGA but also in the RECA-EU and CPTAC-3-Kidney cohorts
taken as external validation. Moreover, comparable results from
the GSE157256 cohort representing fumarate hydratase-deficient
RCC could imply a general underlying mechanism beyond
RCC subgroups.

A pan-RCC subgroup characterized by a prominent mtDNA
signature appeared surprising at first sight. Although aberration
in mitochondrial signaling is known across RCC subgroups,
these deviations are not considered being unidirectional toward
an upregulation of mitochondrial transcripts and mitochondrial
mass (29). While mtDNA aberrations and overexpression are
mainly regarded as a characteristic trait of chRCC tissue (5, 17,
18), downregulation of mitochondrial enzymes with increasing

tumor stages and decreased oxidative capacity were previously
reported for ccRCC (30–32). However, growing evidence
indicates that mtDNA can also have oncogenic functions, thereby
appearing as a potential (co-)target in future cancer therapies
(33). Specifically, researchers showed that tumor cells lacking
mtDNA could not metastasize in vivo—after restoration of
mtDNA levels, cancer cells regained this ability (34). In line
with these findings, Schöpf et al. demonstrated the importance
of oxidative phosphorylation in high-grade prostate cancer by
describing a high-risk subgroup characterized by a distinct
mitochondrial signature (35). Given the established role of
angiogenesis and angiogenesis-related genes such as VEGFR2
in high-risk prostate cancer (36, 37), further examining the
interaction of mitochondrial and angiogenesis pathways in
prostate cancer could prove beneficial.
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FIGURE 4 | Color-coded presentation of the Pearson R correlation matrix of mitochondrial genes and angiogenesis-associated genes for ccRCC samples from the

(A) TCGA, (B) the ICGC RECA-EU, and (C) the CPTAC-3-Kidney cohort as well as (D) Fumarate hydratase-deficient RCC samples contained within the

GSE157256 cohort.

Assessing Prognosis and Therapeutic
Windows for Mixed Subgroup Patients
Importantly, ccRCC patients inside the mixed subgroup suffered
from significantly worse overall survival. This result was even
more surprising given the non-significant differences in TNM
stage between both subgroups. For pRCC patients, we did not
find significant survival differences regarding mixed subgroup
affiliation. However, we identified three distinct pRCC clusters.
This result surelymerits further investigation regarding functions

and prognosis of each pRCC cluster. In contrast, patients with
chRCC belonging to themixed subgroup exhibited a significantly

longer overall survival. In summary, survival data from ccRCC

and chRCC patients underline the role of themixed subgroup as a

novel prognostic RCC cluster identified by our comprehensive

clustering approach. Regarding the striking survival impact in
ccRCC combined with non-differing clinical characteristics, it

was tempting to assume that diverging outcomes were at least
partially treatment-related.
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FIGURE 5 | (A,B) KM plots illustrating overall survival of patients with ccRCC (A), chRCC (B) and pRCC (C) from TCGA database depending on mixed subgroup

affiliation. (D) Protein expression levels of bona fide candidate genes from mTOR-associated, angiogenesis-related and immune-related signaling for ccRCC, pRCC

and chRCC samples inside (blue) and outside (red) the mixed subgroup (TCPA database). ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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First, addressing mtDNA overexpression appears as an
attractive therapeutic approach, as compounds such as the
anthelmintic drug atovaquone (38) and the antibiotic tigecycline
(39) were shown to chemo-sensitize RCC. Moreover, our results
could explain the beneficial effect of additional Metformin intake
during treatment of metastatic RCC, as this biguanide works as a
mitochondrial inhibitor (40–42). Above all, mTOR inhibitors—
which already have the approval for treating RCC—appear as
promising candidates for mixed subgroup RCC patients. mTOR
signaling is tightly linked to mitochondrial function (43, 44).
Recently, a mitochondrial complex I inhibitor (IACS-010759)
targeting oxidative phosphorylation in cancer cells showed
efficacy in brain cancer and leukemia models (45).

Given the downregulation of angiogenesis-related gene
signatures in ccRCC patients from themixed subgroup, inhibition
of angiogenesis and TKI do not appear as attractive first-line
approaches for these patients. Indeed, the predominant use of
TKI within the historical RCC cohort from the TCGA database
may partially explain the striking survival differences observed
in this analysis. Supporting our findings from RNA-sequencing,
protein levels of VEGFR2 and HIF2A were lowered in the mixed
subgroup for ccRCC as well as pRCC patients. Regarding the
downregulation of c-MET in ccRCC and pRCC samples from
the mixed subgroup, treatment with MET (co-)inhibitors such as
Cabozantinib (46) does not appear promising, either.

Further research could clarify whether immune checkpoint
inhibition constitutes a viable treatment strategy in our new
cluster. At first sight, highly significant protein overexpression of
PD-L1 in ccRCC and pRCC patients from the mixed subgroup
makes it an attractive therapeutic target. However, unlike in
entities as melanoma and non-small cell lung cancer (47), it
is still unclear whether PD-L1 overexpression in RCC results
in better response to immunotherapy (48). Completely in line
with our findings, several clinical trials already stated that PD-L1
overexpression marked a RCC high-risk cohort (48, 49).

Our study has some limitations regarding its methodology
and its retrospective nature. We are aware that manual
cluster annotation approaches naturally contain immanent
biases. Moreover, our findings derive from the re-analysis of
historic cohorts and require further—ideally prospective—
validation in future studies. Essentially, we identified a
high-risk ccRCC subgroup best described by a mitochondrial
signature and a downregulation of angiogenesis-related
genes, which was not exclusive to one RCC subgroup.
Although preliminary, these results could contribute to an
individual risk classifier based on transcriptomic data from
patients’ samples and help establishing personalized medicine
in RCC.
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Supplementary Figure 3 | Expression comparison between clear cell renal cell

carcinomas outside (ccRCC) and inside (mixed) the mixed subgroup and

respective normal tissue samples for angiogenesis genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 4 | Expression comparison between the identified
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mixed subgroup and respective normal tissue samples for mitochondrial genes

identified by machine learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 5 | Expression comparison between the identified

papillary renal cell carcinoma cluster outside (pRCC 1 to 3) and inside (mixed) the

mixed subgroup and respective normal tissue samples for angiogenesis genes

identified by machine learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 6 | Expression comparison between chromophobe renal
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respective normal tissue samples for mitochondrial genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 7 | Expression comparison between chromophobe renal

cell carcinomas outside (chRCC) and inside (mixed) of mixed subgroup and

respective normal tissue samples for angiogenesis genes identified by machine

learning. ns, not significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Supplementary Figure 8 | Unprocessed FPKM values for c-MET within manually

annotated clusters across RCC subgroups. ns, not significant. ∗∗p < 0.01, ∗∗∗∗p <

0.0001.

Supplementary Table 1 | Coordinates within the t-SNE-plot and subsequent

attributed cluster affiliation for all RCC samples from the TCGA database included

in our analysis. RCC, renal cell carcinoma.
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