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An association between acute-phase proteins (APPs) and cancer has long been
established and there are numerous reports correlating altered levels and/or molecular
forms of APPs with different types of cancers. Many authors have shown a positive
correlation between high levels of APPs, like alphat-antitrypsin (AAT), and unfavorable
clinical outcome in cancers. Conversely, others proposed that high levels of APPs are
probably just a part of nonspecific inflammatory response to cancer development.
However, this might not be always true, because many cancerous cells produce or
take up exogenous APPs. What is the biological significance of this and what benefit do
cancer cells have from these proteins remains largely unknown. Recent data revealed that
some APPs, including AAT, are able to enhance cancer cell resistance against anticancer
drug-induced apoptosis and autophagy. In this review, we specifically discuss our own
findings and controversies in the literature regarding the role of AAT in cancer.
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INTRODUCTION

The relationship between inflammation, immunity and cancer is widely accepted. The cancer-
related inflammatory responses can occur due to the chemotherapy as well as due to the tumor cell
migration, invasion, activation of anti-apoptotic signaling pathways, and metastasis (1). Cancer-
caused inflammation may result in the activation of transcription factors like nuclear factor-xB,
signal transducer and activator of transcription 3, and hypoxia-inducible factor 1o, which further
enhances inflammatory response. Accordingly, markers of systemic inflammation, including C-
reactive protein (CRP), albumin, neutrophils, lymphocytes, neutrophil-to-lymphocyte ratio,
platelet-to-lymphocyte ratio, and cytokines have been shown to be altered in patients with
various cancers (2). These changes in local and systemic inflammatory mediators can induce
epigenetic changes that favor tumor initiation, and create a milieu to either enhance or suppress
cancer development (3).
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The hallmarks of cancer-related environment include
immune cells, stromal cells (including myofibroblasts), and
inflammatory mediators, tissue remodeling and angiogenesis
factors, similar like those seen in chronic inflammatory
conditions or in tissue repair. Under the influence of cytokines
and chemokines, liver but also other cells, like endothelial
and epithelial cells, produce acute phase proteins (APPs).
Experimental observations suggest that various cytokine
combinations may have additive, synergistic, or inhibitory
effects on the production of individual APPs (4). On the other
hand, APPs per se modulate inflammatory reaction, as can be
illustrated by the CRP example. First, pro-inflammatory
cytokines/chemokines, like IL-6, TNFo, and IL-8 induce the
production and release of CRP (5), but thereafter CRP itself
increases the release of these pro-inflammatory mediators. In
line, the infusion of recombinant human CRP into healthy
volunteers was found to result in a significant induction
of serum levels of the IL-6 and IL-8 as well as amyloid A,
phospholipase A, and coagulation markers (6). These
observations support a notion that CRP, but also other APPs,
are not only markers of inflammation. The functions of APPs are
important in trapping of microorganisms and their products, in
activating the complement system, in neutralizing enzymes,
scavenging free hemoglobin and radicals, and in modulating
the host’s immune response. Thus, APPs actively participate in
the development and resolution of inflammation, and the overall
profiles of APPs seem to depend on the nature of the initial
inflammatory event, and how this event induces a systemic
protein/cytokine response.

Elevated levels of APPs in patients with a variety of cancers
were suggested to serve as prognostic or diagnostic markers in
the context of clinical examinations. Interestingly, many types of
cancer can express but also take up exogenous APPs, which may
influence drug resistance, cancer progression and metastasis (7).
For example, recent data have shown that the property of cancer
cells to produce serum amyloid A enhances their resistance to T-
cell immunity due to the activation of immunosuppressive
granulocytes (8, 9).

The relationship between tumorigenesis and altered levels of
circulating or tumor-associated APPs, such as haptoglobin,
ceruloplasmin, CRP, alpha-2 macroglobulin, alpha-1-acid
glycoprotein, plasminogen activator inhibitor-1 and alpha-1-
antitrypsin has been reported (Table 1).

Single APPs are used as biomarkers, especially for cancer
prognosis and diagnosis of complications to anticancer
treatments. However, clinical studies show that the inflammatory
phenotype (i.e., the APPs/cytokine profile) differs between
patients not only with different malignancies but also with the
same malignant disease (53). Therefore, we and other scientists
think that APPs may become more valuable biomarkers if used
in combinations or used with other acute phase markers, as a
part of an acute phase profile. So far, the most commonly
investigated prognostic markers were CRP, albumin, and the
CRP: albumin ratio.

Regarding single APPs, an extensive literature supports the
pro-tumorigenic activity of plasminogen activator inhibitor 1

(PAI-1, Serpin E1) (54). Clinical studies have shown that higher
expression of PAI-1 positively correlates with a poor clinical
outcome in patients with breast, ovarian, bladder, colon and
non-small cell lung cancers (NSCLC) (26). A number of
experimental studies described PAI-1 as an anti-apoptotic
protein and a stimulator of angiogenesis (27, 28). On the other
hand, employment of small molecule or antibody inhibitors of
PAI-1 so far provided no evidence that inhibition of PAI-1 could
have any therapeutic effect in cancer patients (29, 30). Likewise,
another protease inhibitor, alphal-antitrypsin (AAT, Serpin Al)
has been identified as a prognostic marker of tumor recurrence
and prognosis. Our recent results obtained from more than
300 patients with NSCLC revealed that higher serum levels of
AAT are prognostic for the patient’s worse outcome (36).
Nevertheless, studies regarding the role of AAT in lung cancer
are contradictory. Some demonstrate a direct relationship
between high levels of AAT and the risk of lung cancer (36,
37) while opposite, others associate genetic AAT deficiency with
an increased risk of lung cancer development (55). In this review,
we specifically discuss our own findings and controversies in the
literature regarding the role of AAT in lung cancer. Insights
gained into the action of AAT towards lung cancer cells could be
exploited for the future understanding of APPs’ role
in tumorigenesis.

OVEREXPRESSION OR DEFICIENCY OF
HUMAN AAT, WHICH ONE IS RELATED
TO TUMORIGENESIS

AAT Functions Beyond Serine Protease
Inhibition

Human alphal-antitrypsin (AAT), a member of the serpin
(serine protease inhibitor) superfamily, is an acute phase
glycoprotein and the best recognized inhibitor of neutrophil
elastase. Various studies show that AAT also inhibits the
activity of metalloproteases and caspases that play an essential
role in cell apoptosis. AAT is a product of SERPINAI gene
mainly expressed by hepatocytes and monocytes/macrophages.
Its expression is regulated by interleukin 6-type cytokines. Both
genetic and environmental factors influence an individual’s basal
level of AAT, and thus circulating AAT in apparently healthy
people can vary from 1 to 2 g/L (56).

Experimental and clinical studies provide evidence that AAT
expresses broad anti-inflammatory and immunomodulatory
properties, some of which unrelated to protease inhibition. For
example, AAT interacts and builds complexes with various
inflammation-related ligands including chemokines IL-8 and
LTB4, complement factors, and heat-shock proteins (57-60).
Moreover, AAT regulates cellular adhesion, chemotaxis, and
wound healing and modulates signaling pathways to promote
cell proliferation and angiogenesis (61).

AAT Favors Cancer Development
During chronic inflammation, which is a driving force in cancer
development, increased levels and functional activity of AAT can
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TABLE 1 | Acute phase proteins in cancer.

Acute phase protein Function Cancer type Reference
Haptoglobin (Hp) — Iron-containing oxygen-transport metalloprotein Increased in ovarian, colorectal, pancreatic, breast ~ (10-14)
\ — Scavenger for free hemoglobin and lung cancer
— Inhibitor of prostaglandin production
— Regulator of leukocyte recruitment and cytokine release
— Prognostic biomarker for NSCLC
— Apolipoprotein associated with high-density lipoprotein Increased in gastric cancer, colorectal cancer, (15-20)
— Regulator of cell-cell communication, inflammatory, immunologic, NSCLC, melanoma, renal cancer, neuroblastoma
neoplastic and protective pathways
— Prognostic biomarker for solid tumors
— Major copper transport protein, oxidase Increased in hepatocellular carcinoma, breast (21-24)
— Protector against oxidative stress cancer, cervical cancer, bile duct cancer
— Potential cancer biomarker
Alpha-1-acid glycoprotein —Carrier of basic and neutrally charged lipophilic compounds Increased in plasma and ascites of cancer patients (7, 25)
(AGP, orosomucoid) — Potential biomarker in breast cancer with peritoneal carcinomatosis, breast cancer
Plasminogen activator — Serine protease inhibitor Increased in breast, ovarian, bladder, colon cancer  (26-30)
inhibitor 1 (PAI-1) — Inhibitor of tissue plasminogen activator and urokinase, and NSCLC
— Pro-tumorigenic and anti-apoptotic
— Stimulator of angiogenesis
— Modulator of inflammatory processes and host responses to Increased in stomach, pancreas, colorectal, (5, 31, 32)
infection including complement pathway, apoptosis, phagocytosis,  esophageal, ovarian, renal, breast cancer and
nitric oxide release, and production of cytokines NSCLC, melanoma, neuroblastoma
— Prognostic marker for solid tumors including NSCLC
— Broad spectrum protease inhibitor Decreased levels in more progressed prostate (33-35)
— Carrier of growth factors and cytokines cancer;
— Antioxidant, anti-fibrotic and anti-inflammatory Increased levels in acute lymphoblastic leukemia
— Protects against radiation induced cell damage
— Suggested biomarker for the diagnosis of B-cell acute lymphoblastic
leukemia
(Continued)
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TABLE 1 | Continued

Acute phase protein Function

Cancer type Reference

Alphai-Antitrypsin (AAT)

— Broad spectrum protease inhibitor
— Anti-inflammatory and immunomodulatory

angiogenesis
— Anti-apoptotic
— Prognostic marker

— Regulator of cell adhesion, migration, invasion, proliferation and

Increased serum levels in NSCLC, pancreas,
prostate, cervix, ovary, breast, larynx and other
carcinomas

(36-52)

NSCLC, non-small cell lung cancer.

rescue not only normal but also cancer cells. Indeed, AAT seems to
be involved in the metastatic outgrowth of various cancer types
including ovarian, cervical, colorectal, breast, and lung
adenocarcinomas (38-42). Elevated plasma levels of AAT have
been reported in patients with Hodgkin’s lymphoma, pancreas,
prostate, cervix, ovary, breast, larynx, colorectal, and other
carcinomas, and proposed to be useful as prognostic factors (43—
52). In breast cancer a high level of AAT has been associated with
poor clinical prognosis (62). Furthermore, AAT seems to be directly
involved in metastasis of ovarian, cervical, colorectal, breast, and
lung adenocarcinomas (39, 40). Given an increasing body of
research in this area, with pro-tumorigenic claims about AAT, we
and others raised the hypothesis that individuals with inherited
AAT deficiency might have a lower risk of developing cancer.

AAT Deficiency—Protects or Predisposes
to Cancer Development

The deficiency, defined as an AAT blood level less than 35% of the
mean expected value, is usually associated with Z allele (point
mutation Lys342Glu), and less frequently with combinations of S
(Lys264Val) or null alleles (63). Severe AAT deficiency predisposes
to early onset of chronic obstructive pulmonary disease with
emphysema, to liver cirrhosis at any age, neutrophilic
panniculitis, systemic vasculitis, and possibly other inflammatory
disease risks (64, 65). Severe AAT deficiency is a risk factor of
developing hepatocellular carcinomas because of the damage of
hepatocytes caused by retained intracellular polymers of mutant
AAT protein, and an inappropriate hepatocellular regeneration.
Data from the Swedish National AAT Deficiency Register revealed
hepatocellular cancer diagnosis in 32 (2%) out of 1,595 individuals
with ZZ AAT deficiency (66). Nevertheless, a risk of hepatocellular
carcinoma in AAT deficiency is difficult to quantify because of a
global variation in AAT genetics and the incidences of liver
cancer (67).

In contrast, there are other reports showing that AAT
deficiency people have lower or no increase in risk of developing
lung and probably other types of cancers. For example, results from
a cross-sectional survey study conducted among 720 AAT deficient
people of the Alpha-1 Foundation Research Registry at the Medical
University of South Carolina have shown that only 8 (1.1%) of
participants have a diagnosis of lung cancer. In line, the comparison
of 1585 ZZ AAT deficient subjects from Swedish AAT Deficiency
Register and 5,999 population-based controls showed that death
due to cancer in general was lower among ZZ individuals compared

to the controls, i.e. 11% versus 33%. Pulmonary carcinoma
accounted for 1% of the causes of death in ZZ individuals and 4%
in the controls (68). There are ongoing clinical studies designed to
downregulate endogenous AAT expression within hepatocytes by
using small-interfering RNA (siRNA) based drugs (69-71). These
studies aim to cure/prevent liver disease in individuals with
inherited AAT deficiency caused by intrahepatic accumulation of
mutant AAT (63). Hypothetically, this approach of a temporal
elimination of AAT protein synthesis might be helpful in the field of
cancer and warrants further investigations.

Therapy With Human Plasma AAT Shows
No Risk for Cancer Development

It is important to point out that the therapy with human plasma
AAT used for over three decades to treat patients with inherited
AAT deficiency-related emphysema does not rise tumor
development rates. In fact, if untreated, individuals with inherited
AAT deficiency seem to have higher risk of developing lung (72),
gastrointestinal (73), and liver cancers (74). Likewise, few studies in
patients with colorectal and gastric cancer found less AAT in both
tissues and serum than in normal counterparts (75, 76). Therefore,
one needs carefully consider differences between non-tumor and
tumor-related environmental settings. The involvement of AAT in
tumorigenesis may strongly depend on cancer cell properties as well
as on the concentration and molecular forms of AAT, which are
influenced by genetic and microenvironmental factors. For example
in the B16-F10 lung metastasis mice model, Guttman and co-
authors provided experimental evidence that NK cell-sensitive
tumors are unaffected whereas CD8" T cell-sensitive tumors can
be significantly inhibited by the treatment with human AAT (77). It
is also important to notify, that during inflammatory conditions
AAT can undergo post-translational modifications like S-
nitrosylation on its single surface cysteine residue, forming S-NO-
AAT, a reducer of tumor cell viability (78).

Role of AAT in Non-Small Cell

Lung Cancer

Non-small cell lung cancer (NSCLC) is one of the most common
lung cancers worldwide, and about 70% of patients with this
cancer present with advanced or metastatic disease at the
time of diagnosis (79). Hitherto, there are only limited studies
addressing the role of AAT in lung cancer (36, 37, 55). Therefore,
to gain further insights into this matter, Schwarz et al.
investigated the effects of extracellular AAT on NSCLC cell
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behavior, in vitro (80). By comparing cancer cells grown in a
regular medium versus medium supplemented with AAT,
authors found that in the presence of physiological
concentrations (0.5-1 mg/ml) of AAT cells acquire better pro-
tumorigenic properties, and second that AAT strongly enhances
cancer cell resistance against staurosporine-induced toxicity (80).

Staurosporine is a nonspecific protein kinase inhibitor
derived from Streptomyces staurosporeus that can trigger
cancer cell death through activation of both, apoptosis and
autophagy pathways. Several lines of evidence indicate a cross-
talk or mutual function between autophagy and apoptosis (81).
As an inducer of apoptosis, staurosporine specifically acts
through the activation of the mitochondrial apoptotic pathway,
which is mainly controlled by Bak and Bax proteins (82, 83).
When activated, these proteins can form pores on the
mitochondrial outer membrane causing cytochrome c release
that binds to apoptotic protease activating factor 1 (Apaf-1) and
induces its oligomerization, known as the apoptosome
formation. The apoptosome promotes cleavage of procaspase-9
into active caspase-9 which in turn activates caspases-3 and -7 to
execute the final steps of apoptosis (84) (Figure 1).

AAT INHIBITS STAUROSPORINE-
INDUCED NSCLC CELL APOPTOSIS

According to the results from Schwarz et al., staurosporine-induced
NSCLC cell apoptosis was completely hampered in the presence of
AAT. More detailed investigations revealed that AAT prevented the
cleavage of procaspase-3, a precursor of caspase-3 which is one of
the most deleterious executioner caspases in apoptosis pathway
(80). As yet, the anti-apoptotic effects of AAT have been mostly
attributed to the direct inhibition of caspase-3 activity. Investigators
reported that exogenous AAT reduces the activity of caspase-3 in f3-
cells, lung endothelial and epithelial cells, cardiomyocytes and
neutrophils (85-88), and that AAT inhibits active caspase-3 by
forming an AAT-caspase-3-complex (89). In cell-free assays, AAT
was also demonstrated to inhibit other executioner caspases,
especially caspases-6 and -7, but not the initiator caspases, like
caspase-9 (90). However, the results presented by Schwarz et al.,
indicate that protective effects of AAT against staurosporine-
induced NSCLC cells apoptosis might be earlier in the apoptosis
pathway than the inhibition of executioner caspases. In
concordance, a recent study has shown that AAT significantly
suppresses cytokine-induced cleavage of procaspase-9 in human
islets (91).

CROSSTALK BETWEEN APOPTOSIS
AND AUTOPHAGY

Several autophagy proteins are substrates for caspase-induced
apoptosis. For example, caspase-3 and -9-mediated cleavage of
Atg5 (E2-like enzyme is required for the formation of
autophagosomes) and beclin-1 (implicated in the autophagic
programmed cell death) switches autophagy to apoptosis (92).

Atg5 has also been found to be cleaved by calpain and translocate
to the mitochondria to contribute to the release of cytochrome c.
Previous finding that AAT inhibits calpain activity in human
neutrophils (93) allows speculating that AAT may protect cancer
cells via inhibition of other proteases than caspases.

AAT INHIBITS STAUROSPORINE-
INDUCED AUTOPHAGY IN NSCLC CELLS

The mechanism(s) by which AAT helps lung cancer cells to
acquire resistance towards staurosporine-induced apoptosis can
also involve a shift of the balance towards anti-apoptotic
proteins. As a matter of fact, the overexpression of AAT
protein in lung cancer cell lines resulted in increased Bcl-2 and
decreased beclin-1 levels (94). Thus, AAT may promote cancer
cell survival by increasing Bcl-2, an anti-apoptotic, membrane
associated protein (95) and by inhibiting beclin-1-dependent
autophagy and apoptosis (96-99).

As already mentioned above, similarly to other anticancer
agents, staurosporine can induce cancer cell death by
simultaneous activation of apoptosis and autophagy (100).
Autophagy may serve as a backup process for apoptosis—to
enhance and/or contribute to the apoptosis (101-103).
Autophagy involves the formation of double-membraned
structures known as autophagosomes responsible for the
engulfment of cargoes that are subsequently degraded after fusion
with lysosomes (104). Autophagosome formation involves a set of
proteins named Atg (autophagy-related) that orchestrate
autophagosome initiation and biogenesis. Currently, the light
chain 3 (LC3) is considered as one of the best autophagosome
markers because the amount of LC3-II reflects the number of
autophagosomes (105). Again, the LC3-II amount as well as LC3-
II/LC3-1 ratio not necessarily mirrors the autophagic activity, since
the amount of LC3-II might increase not only due to autophagy
activation but also due to the inhibition of autophagosome
degradation. Therefore, for monitoring autophagic activity is used
p62 (known as sequestosome-1), autophagic substrate receptor that
is constantly being degraded by autophagy (106, 107). The reduced
phosphorylation of mTOR is one more factor well reflecting the
activation of autophagic flux (108). Results by Schwarz et al.
confirmed that staurosporine added to NSCLC cells activates
autophagy as measured by increase in LC3-II/LC3-I ratio,
reduced mTOR activity as shown by dephosphorylated/less
phosphorylated ribosomal protein S6 (RP-S6), degradation of p62
and downregulation of Flightless I, controlling the binding activity
of p62 to LC3 (80). Clearly, in the presence of AAT all above
mentioned markers of autophagy activation were unaffected
by staurosporine.

POTENTIAL PRO-TUMORIGENIC
FUNCTIONS OF AAT

Because autophagy can promote caspase-independent or
caspase-dependent cell death (109-112), a major remaining
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FIGURE 1 | Hypothetical model showing how alphai-antitrypsin (AAT) may affect staurosporine (STS)-induced apoptosis and autophagy in NSCLC cells.
Intracellular entry of AAT occurs constitutively based on lipid raft independent pathways, namely clathrin-mediated, or lipid rafts-dependent, which include caveolae-
and flotilin-dependent endocytosis. The AAT could be sequestered into clathrin-coated pits by binding to LRP1 (low-density lipoprotein receptor related protein 1)
and SR-BI (scavenger receptor class b type I). Alternatively, AAT can associate with caveolin or flotilin 1/2-postive lipid rafts. All entry pathways might generate AAT-
containing vesicles fusing with early endosomes and lysosomes from which—by unknown mechanisms - AAT escapes into the cytoplasm (green structure). There,
AAT could affect cancer cell responses to cytotoxic drugs, like STS (staurosporine). STS activates autophagy by inhibiting mTOR (mammalian target of rapamycin),
which allows Beclin-1/PI 3-kinase complex formation, increases LC3-II/LC3-| ratio, p62 degradation in autolysosomes and downregulation of Fli | (Flightless ), a
controller of p62-LC3 interaction. Indeed, AAT seems to block different steps required for STS to induce autophagy. Potentially, AAT may also interfere with Atgs-
Atg12 complex required for the formation of autophagosomes or recruitment of LC-3 to autophagosomes (green structures). As an inducer of apoptosis, STS acts
through the activation of the mitochondrial apoptotic pathway. STS causes the aggregation of Bax/Bak and the release of cytochrome ¢ that binds to Apaf-1
(apoptotic protease-activating factor 1) allowing apoptosome assembly and the recruitment of procaspase-9 to the apoptosome. In this scenario AAT might inhibit
activation of procaspases-8, -9, -3 preventing Beclin-1/Atg5 degradation and activation of CAD (caspase-activated DNase). A crosstalk between STS-induced
autophagy and apoptosis is in part mediated by p62 and beclin-1. Finding that AAT by itself strongly reduces p62 levels but prevents p62 reduction in STS-treated
cells suggests that cancer cells utilize AAT to regulate apoptosis and autophagy dependent on the situation. Under basal conditions, AAT as a reducer of p62
protein levels (also important for the activation of procaspase-8), might activate autophagy as a cytoprotective pathway. In the setting when cancer cells face pro-

question is whether effect of AAT on autophagy is independent
or dependent of apoptosis. We would like to pay particular
attention to the finding that, although AAT significantly
prevented the reduction in p62 levels in staurosporine-treated
NSCLC cancer cells, AAT by itself strongly reduced p62 protein
levels as compared to non-treated controls. p62 is a regulator of
selective autophagy (113) and recruiter of caspase-8 on
autophagic membranes, which establishes a crosstalk between
autophagy and apoptosis (114). Thus, the way by which cancer
cells utilize AAT to regulate apoptosis and autophagy, probably
is a context dependent. Under basal conditions, autophagy as a
cyto-protective pathway can be activated by exogenous AAT
whereas in the setting when cancer cells face pro-apoptotic

apoptotic activation, autophagy inhibition may become a strategy to escape apoptosis.

activation, autophagy inhibition by AAT may become a
strategy to enhance survival. In fact, earlier Shapira et al.
reported that intracellularly synthesized AAT prevents
autophagic cell death and that exogenous AAT added to the
cells prior to the induction of autophagy by tamoxifen reduces
autophagy and cell death (115).

One cannot exclude that AAT may also facilitate cell survival
through other mechanisms than modulation of autophagy. For
example, study by Seung-Hee Chang et al., found that in AAT-
overexpressing L132 cancer cells, the expression of manganese
superoxide dismutase (SOD2), a tumor suppressive protein
acting via inhibition of cell proliferation and induction of
apoptosis (116), was markedly reduced.
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DISCUSSION

Taken together, current findings promote a notion that
higher levels of AAT either due to the increased intracellular
expression or external entry can prevent cancer cell death. In
fact, intracellular entry of AAT occurs constitutively in all
mammalian cells, including cancer cells. The intracellular
endocytosis of AAT may depend on the pathways non-
involving lipid rafts, namely clathrin-mediated endocytosis, or
pathways that take place in lipid rafts, which include caveolae-
mediated endocytosis and flotillin-dependent endocytosis (91,
117, 118) (Figure 1). We and other investigators have previously
found that cellular uptake of AAT takes place in lipid rafts (108,
118). We hypothesize that the uptake and subcellular trafficking
of AAT might strongly depend on its concentration and the
activation status of the cells. The uptake of high concentrations
of AAT may involve clathrin-mediated endocytosis whereas
lower concentrations of AAT may enter via caveolae pathway.
Caveolae, in contrast to clathrin-coated pits, are very
heterogeneous and the alterations in caveolae are not only
important in tumor heterogeneity but also have a prognostic
value (119). Hence, to better understand the role of AAT in
tumorigenesis, intracellular entry and processing of AAT, but
also other APPs, by cancer cells cannot be denied and warrants
more detailed investigations.

Finally, it is important to keep in mind that AAT can modulate
activities of different cells acting within tumor microenvironment.
For example, fibroblasts are one of the important components of
the tumor microenvironment, which participate in remodeling
and a crosstalk between cancer cells and infiltrating leukocytes
(120). Previously, it has been reported that AAT stimulates
fibroblast proliferation and extracellular matrix production (120,
121). Remarkably, decreased p62 expression seems to be crucial
for myofibroblast differentiation to support fibrosis and tumor
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