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Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory
effects against cancer cells. This includes stimulation of anti-tumor immunity in acute
myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of
AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens
(CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to
activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes
the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity.
Moreover, decitabine and guadecitabine induce the expression of immune checkpoint
molecules in AML cells. In this review, the accumulating knowledge on the
immunopotentiating properties of decitabine and guadecitabine in AML and MDS
patients are presented and discussed. In summary, combination of decitabine or
guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML
patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion
vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover,
decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen
receptor-engineered T cells antileukemic activities against AML. Furthermore,
combination of either HMAs with immune checkpoint blockade (ICB) therapy may
circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer
vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS
patients are currently underway, highlighting the promising efficacy of HMAs and
immunotherapy synergy against these malignancies.

Keywords: acute myeloid leukemia, myelodysplastic syndromes, hypomethylating agents, cancer vaccine, immune
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INTRODUCTION

Acute myeloid leukemia (AML) and myelodysplastic syndromes
(MDS) are clonal stem cell disorders characterized by
heterogeneous clinical outcomes due to underlying molecular
and cytogenetic architectures (1, 2). Chemotherapy regimen with
or without allogeneic hematopoietic stem cell transplantation
(allo-HSCT) is a main therapeutic option for AML patients. The
“7+3” regimen (7 days of cytarabine and 3 days of an
anthracycline antibiotic or an anthracenedione) is a first-line
induction chemotherapy for AML patients who could tolerate
intensive therapy. However, older AML patients aged ≥60 or
therapy-related AML receiving 7 + 3 regimen demonstrate poor
complete response (CR) rates of <50% (3–5). Moreover, relapsed
or refractory (R/R) AML patients unfit for induction
chemotherapy demonstrate poor median overall survival (OS)
of merely a few months (6, 7). In addition, allo-HSCT confers the
risk of graft-versus-host disease (GvHD) that remains lethal.
High-risk MDS has limited treatment options and patients are
often ineligible for intensive chemotherapy caused by
comorbidities or complex biological features that often result
in chemotherapy resistance (8).

Immunotherapy has revolutionized cancer treatment where it
harnesses and activates patient’s own immune system to destroy
cancer cells. Immunotherapy is termed as the “fifth pillar” of
cancer therapy that complements or supersedes conventional
first-line cancer therapy. However, progress in the application of
immunotherapy in AML and MDS such as antibody-based
therapy, cellular immunotherapy, immune checkpoint blockade
(ICB) agents and cancer vaccines has been slower compared with
solid tumors (9, 10). Currently, only gemtuzumab ozogamicin,
an anti-CD33 antibody-drug conjugate, has been approved as an
antibody-targeted therapy for CD33-positive AML patients (10,
11). Phase I and II clinical trials have assessed ICB therapy based
on programmed death-1 (PD-1) and cytotoxic T-lymphocyte-
Frontiers in Oncology | www.frontiersin.org 2
associated protein 4 (CTLA-4) inhibition but they have yielded
modest clinical efficacy (12). These underscore the unmet need to
enhance the efficacy of immunotherapy with other agents for
AML and MDS treatments.

Epigenetics regulation is inherited DNA modifications and
external alterations of the physical DNA structure that affect
gene expression profiles without modifying nucleotide sequence.
The epigenetics modifications include DNA methylation,
hydroxymethylation, post-translational histone modifications
and nucleosome remodeling (13–15). DNA methylation occurs
predominantly at cytosine residues specifically at the carbon-5
position of cytidine found in promoter CpG islands, resulting in
5-methylcytosine (5mC) typically associated with transcriptional
repression (16, 17), affecting a variety of cellular processes. DNA
methylation is mediated by canonical DNA methyltransferases
(DNMTs) consisting of DNMT1, DNMT3A and DNMT3B that
facilitate the methylation of genomic DNA (18). Canonical
DNMTs have been frequently implicated as oncoproteins in
multiple tumor types where they promote tumorigenesis,
cancer cell cycle progression, proliferation and immune escape
in both solid (19–23) and blood cancers (24–26) including AML
(27–30).

The hypomethylating agents (HMAs) 5-azacytidine
(azacitidine) and 5-aza-2’-deoxycytidine (decitabine) are
cytidine nucleoside analogs approved for the treatment of
AML and MDS patients. These HMAs mimic cytosine to
incorporate into DNA during cellular replication, forming a
scaffold that traps DNMTs for proteasomal degradation. This
leads to DNA hypomethylation that restores gene transcription
particularly tumor suppressor genes in AML (31, 32).
Guadecitabine (SGI-110) is a second-generation HMA and it is
a dinucleotide of decitabine and deoxyguanosine (Figure 1).
Guadecitabine has been developed to address the shortcomings
of first-generation HMAs that are susceptible to deamination by
cytidine-deaminase (CDA) found in multiple organs in the body,
FIGURE 1 | Chemical structure of decitabine and guadecitabine. Guadecitabine is a dinucleotide of decitabine (in blue) and deoxyguanosine (in green) joined by a
phosphodiester bond.
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leading to their short plasma half-life. Guadecitabine is more
resistant to CDA with improved stability that confers enhanced
DNA incorporation into dividing cells (33–35).

A growing body of evidence has demonstrated the potential
of HMAs to promote the efficacy of immunotherapy in AML and
MDS patients. In this review, the immunopotentiating effects of
decitabine and its dinucleotide guadecitabine to sensitize AML and
MDS patients for immunotherapy are presented and discussed.
The immunomodulatory properties of azacitidine in AML or MDS
patients have been documented in experimental or clinical settings
(36–38), and its combination with various immunotherapeutic
modalities have shown promises in the induction of antileukemic
T or NK cells immunity in early phase clinical trials of AML
(39) or MDS (40) patients. Nonetheless, its lack of efficacy in
eradicating leukemic stem cell (LSC) or progenitor cell populations
in AML and MDS patients have been noted (41, 42). For extended
information of azacitidine combination with immunotherapy
for the treatment of AML and MDS patients, readers are directed
to a recent review by Daver et al. (43).
ACTIVATION OF ANTILEUKEMIC T CELLS

Upregulation of Cancer/Testis Antigens
(CTAs)
CTAs are a group of tumor-associated antigens (TAAs) whose
expression profile is absent in normal adult tissues but highly
expressed in normal testicular germ cells and placenta
trophoblasts, as well as various types of cancers (44–46). CTAs
participate in diverse neoplastic processes such as transcriptional
regulation, mitotic fidelity and protein degradation that
collectively antagonize tumor-suppressive mechanisms (47).
CTAs were originally identified in the early 1990s by T cell
epitope cloning as targets of cytotoxic T cells (CTLs) such as
MAGE-A, BAGE, and GAGE-A. The SEREX (serologic
identification of antigens by recombinant expression cloning)
methodology, which is capable of isolating TAAs that elicit high
titers of human immunoglobulin G (IgG), has since expanded
the list of CTAs including NY-ESO-1, CAGE, and SSX-2. In
particular, NY-ESO-1 is one of the most well-studied CTAs
whereby its expression in cancers elicits strong and specific anti-
tumor responses. CTAs expression outside of their naturally-
occurring immune-privileged sites could trigger immune
responses (47). Epigenetics modifications including DNA
demethylation and histone modifications have been implicated
in the overexpression of CTAs leading to tumor immunogenicity
(48, 49). Treatment with HMAs has been shown to induce CTAs
expression that triggers CTL antileukemic responses in AML and
MDS as described in the next paragraphs.

Expression of CTAs is often very low or absent in myeloid
leukemias due to hypermethylation of the gene promoters. In
mouse leukemia cells (L1210), the expression of P1A, a mouse
CTA, was upregulated by decitabine treatment. P1A-specific
CTLs generated from decitabine-treated DBA/2 mice showed
markedly increased cytotoxicity against leukemia cells (L1210)
treated with decitabine, indicating that the compound could
Frontiers in Oncology | www.frontiersin.org 3
induce the production of autologous CTA-specific CTLs in vivo
against leukemia cells (50). Treatment of multiple human acute
leukemia cell lines (Kasumi-1, U937, NB4, THP-1, Jurkat, and
Molt-4) with decitabine activated the expression of the CTA
nuclear RNA export factor 2 (NXF2). Bone marrow samples
derived from primary acute leukemia patients (n=8) also showed
upregulation of NXF2 mRNA expression following decitabine
treatment, and NFX2 was also upregulated in all AML or MDS
patients (n=9) treated with decitabine (51). Consistent with the
hypomethylating properties of decitabine, the increased
expression of NXF2 mRNA expression was associated with
demethylation of its promoter region CpG islands in leukemia
cells (K562 and U937). However, CTL responses against NXF2-
positive AML cells following decitabine treatment was not
demonstrated in the study due to lack of known epitope
sequence of NXF2 when the study was conducted.

Another CTA termed as preferentially expressed antigen in
melanoma (PRAME) whose expression is primarily upregulated
by DNA demethylation and its expression has been associated
with favorable outcomes in leukemias including AML (52). This
suggests that PRAME is an ideal immunotherapy target when its
expression is restored therapeutically. PRAME expression can be
enhanced by decitabine treatment in combination with an
histone deacetylase inhibitor (HDACi) chidamide in AML
cells. Pre-treatment of HLA-A*0201+ AML cells (THP-1) with
chidamide and/or decitabine induced sensitivity to CTLs that
recognized PRAME peptides presented by HLA-A*0201 on
AML cells, and susceptible to cytotoxicity by PRAME-specific
CTLs (53). However, pre-treatment with chidamide alone (but
not decitabine) inhibited proliferation of activated CD4+ and
CD8+ T cells. Moreover, as noted by the authors, it was unclear if
chidamide treatment may stimulate PRAME expression in other
normal tissues apart from AML cells. These suggest that
alternative HDACi in combination with decitabine might be
more efficient in conferring higher and more specific anti-tumor
CTL responses against AML cells.

Decitabine treatment also augmented the CTAs MAGE-A1,
MAGE-A3 and SP17 expression in MDS (SKM-1) and chronic
myeloid leukemia (CML) (K562) cell lines. In MDS patient
samples, the compound increased CTA-specific CTL
recognition of upregulated CTAs in bone marrow cells of MDS
patients, along with enhanced CTL function and increased
expression of major histocompatibility complex (MHC) class I
and II proteins as well as ICAM-1 (a cell adhesion molecule that
enhances binding with T cells for tumor lysis) (54). Nonetheless,
low levels of cytotoxicity against partially HLA-matched
leukemia cell lines (SKM-1 and K562) by tumor-specific CTLs
(derived from MDS patients treated with decitabine) were
observed in the same study. The low-level cytotoxicity may be
due to partial matching of HLA haplotypes, and it was unclear if
prior exposure to chemotherapy also played a contributive role.
Chemotherapy-induced augmentation of inhibitory surface
receptors such as PD-1 on T cells leading to exhaustion has
been reported in chronic lymphocytic leukemia (55). However in
AML patients, increased expression of inhibitory receptors such
as PD-1 and TIM3 have only been observed in relapsed or
February 2021 | Volume 11 | Article 624742
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patients unresponsive to chemotherapy (56), and increased
frequencies of PD-1+TIGIT+CD226−CD8+ T cells were
associated with failure to achieve remission after induction
chemotherapy (57).

Guadecitabine treatment conferred overexpression of CTAs
NY-ESO-1 and MAGE-A through promoter hypomethylation in
leukemia cells in vitro (HL60, U937 and KG1a), and in AML
xenografts in vivo (U937 in SCID mice). The CTAs upregulation
induced cytotoxicity by HLA-compatible CTLs specific for NY-
ESO-1 with increased expression of pro-inflammatory cytokines
(e.g. IFN-g and TNF-a) by the CTLs. This might be achieved
through upregulation of MHC class I and expression of co-
stimulatory molecules required for CTAs presentation.
Essentially, guadecitabine at near-equivalent molar doses as
decitabine was as efficient as decitabine in promoting CTA and
co-stimulatory molecules expression (58).

In human AML cells (Kasumi-1), treatment of decitabine
induced the transcript expression of numerous CTA genes
preferentially located on the X-chromosome including NY-
ESO-1, MAGEA3, MAGEB2, GAGE 1-4, SSX 1-4, and XAGE1
where each of these genes showed at least 5-fold induction after 3
days of treatment (59). NY-ESO-1 demonstrated the biggest fold
induction of over 200-fold 3 days post-treatment, and over 250-
fold 6 days post-treatment. Moreover, decitabine-induced NY-
ESO-1 protein expression in AML cells (U937) elicited a specific
and time-dependent CTL responses in vitro, and that de novo
expressed NY-ESO-1 protein was effectively processed and
presented by day 6 post-treatment with decitabine. The authors
also further showed that CTL responses were cytotoxic against
decitabine-treated AML cells (U937), NY-ESO-1 positive AML
cells (U937 pulsed with NY-ESO-1 p94-102 peptide), and HLA-
B51/NY-ESO-1 positive melanoma cells (LB39) but without
cytotoxicity against NY-ESO-1 negative cells (MZ-Mel-7) in
vitro. These cell line studies suggest that NY-ESO-1-specific
CTLs may be induced by decitabine treatment in AML patients.

Indeed, peripheral blood blasts of AML patients receiving
standard decitabine monotherapy (20 mg/m2 daily for 10 days)
showed increased NY-ESO-1 and MAGEA3/A6 expression
regardless of clinical response, along with promoter-specific
and global (LINE-1) hypomethylation. Critically, AML blasts
isolated from HLA-A*0201+ AML patients treated with
decitabine sufficiently stimulated HLA-A*0201-restricted NY-
ESO-1-specific CTL responses as shown by increased levels of
intracellular cytokines in HLA-A*0201/NY-ESO-1157-165
tetramer+ CD8+ T cells (60). Hence, decitabine treatment
resulted in AML cells expressing NY-ESO-1 at levels sufficient
to elicit recognition by NY-ESO-1-specific T cells. This suggests
that vaccination against NY-ESO-1 combined with decitabine
monotherapy might be effective to treat AML patients.

In a clinical study, a conditioning strategy with decitabine
regimen was designed for low toxicity with hopes to achieve
sufficient myelosuppressive activity and immune-enhancing
effects in high-risk MDS, AML and chronic myelomonocytic
leukemia (CMML) patients (n=30 in total). The standard
decitabine regimen (20 mg/m2/day for 10 days) was combined
with fludarabine and low-dose total body irradiation (TBI; 2
Frontiers in Oncology | www.frontiersin.org 4
Gray) regimen (Dec/Flu/TBI). The Dec/Flu/TBI regimen
demonstrated tolerable response with promising OS (53%)
post-HSCT. Immunomonitoring showed that CTA-reactive
(MAGE-A1/A2/A3 and PRAME) CTL responses post-HCT
occurred more frequently in patients who received Dec/Flu/
TBI (n=8/11; 72.7%) than those with only Flu/TBI
conditioning (n=2/9; 22.2%), indicating that decitabine
increased CTA-specific T cell responses for improved
responses in clinical settings (61). Essentially, combination of
the conditioning regimen with decitabine did not result in
increased incidence or severity of GvHD that may result from
augmented expression of CTAs in healthy tissues, suggesting a
leukemia-specific increase in CTA expression by decitabine.
Hence, decitabine could serve as an adjunct to vaccination
against CTAs in post-HSCT AML patients.

Cancer Vaccine
Targeting of surface receptors of dendritic cells (DCs) with
antibodies can lead to increased immunogenicity. DCs are
frequently adopted in cellular vaccine clinical trials due to their
essential roles in presenting antigens to activate immune
responses, and capable of conferring promising clinical
responses in advanced cancers including AML shown in early
phase clinical trials (62). A common DC receptor targeted through
this approach is deca-lectin DEC-205 (CD205) that mediates
antigen uptake and presentation (63). The fully human anti-
DEC-205 monoclonal antibody (mAb) is fused to the full-length
NY-ESO-1 antigen (the anti-DEC-205-NY-ESO-1 fusion protein
is also known as CDX-1401) and it is a DC-targeted antibody
vaccine for presentation of NY-ESO-1 antigen to activate T cells.
Combination of anti-DEC-205-NY-ESO-1 fusion protein with
poly-ICLC (polyinosinic-polycytidylic acid and poly-L-lysine, a
synthetic dsRNA complex that acts as a viral mimic recognized by
the endosomal receptor TLR3) enhances NY-ESO-1 antigen
presentation for T cell immune responses (64). As NY-ESO-1
expression in leukemia cells has been consistently shown to be
increased by decitabine treatment in pre-clinical settings, this
property forms another strategy to further enhance NY-ESO-1
presentation by DC vaccines to treat leukemia patients.

In a phase I study (NCT01834248), MDS patients receiving
HLA-unrestricted NY-ESO-1 vaccine (anti-DEC-205-NY-ESO-1
fusion protein combined with poly-ICLC) every 4 weeks with
decitabine at standard dose (20 mg/m2/day) showed increased
NY-ESO-1 expression in all seven patients investigated. NY-ESO-
1-specific CD4+ and CD8+ T cell responses were achieved in
85.7% (n=6/7) and 57.1% (n=4/7) of the vaccinated patients,
respectively. Moreover, NY-ESO-1+ myeloid cells from one of the
patients on decitabine therapy activated cytotoxic responses from
autologous NY-ESO-1-specific T cells (65). CD141hi conventional
DCs (cDCs) express higher levels of DEC-205 and TLR3 than
CD1c+ cDCs. In normal immune processes, CD1c+ cDCs
promote Th2 and Th17 immune responses against extracellular
pathogens and CD4+ T cell priming, while CD141+ cDCs induce
Th1 immune responses with a role in CD8+ T cell priming against
tumor cells (66). Increased frequency of CD141hi cDCs at
diagnosis was associated with NY-ESO-1-specific immune
February 2021 | Volume 11 | Article 624742
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responses, and that two MDS patients with higher CD141hi cDCs
post-treatment showed a prolonged clinical response to
decitabine (65). It was unclear in the study if CD1c+ cDCs also
contributed to NY-ESO-1 antigen presentation in the patients
receiving the NY-ESO-1 vaccine. Nevertheless, the study showed
for the first time that vaccination against NY-ESO-1 was safe and
that the vaccine was capable of capitalizing on decitabine-
mediated induction of NY-ESO-1 expression in malignant
myeloid cells to enhance NY-ESO-1-specific, MDS-directed
CTL immune responses. The clinical trials involving decitabine
combination with cancer vaccine or other immunotherapy
regimen in AML and MDS patients are summarized in Table 1.

Treatment of AML cells (THP-1) with guadecitabine resulted
in increased expression of HLA-A2.1 with increased antigen
presentation. In vivomodel (mouse AML cells TIB-49 in C57BL/
6J mice) treated with guadecitabine displayed T cells with
reduced PD-1 levels but increased IFN-g expression, as well as
decrease in myeloid-derived suppressor cell (MDSC)
populations (67). Personalized cancer vaccine was previously
developed by the same research group whereby patient-derived
AML cells fused with autologous DCs produced hybridoma (i.e.
DC/AML fusion vaccine) successfully stimulated anti-tumor
responses via the expansion and infiltration of leukemia-
specific T cells, leading to prolonged remissions in AML
patients post-chemotherapy (68). In their subsequent studies, T
cells from AML patients stimulated with the DC/AML vaccine
showed increased capacity to lyse AML cells when pre-treated
with guadecitabine. Moreover, the DC/AML vaccine combined
with guadecitabine treatment induced leukemia-specific
immunity in an immunocompetent murine leukemia model
(TIB-49 in C57BL/6J mice) (67). Interestingly, T cells from
Frontiers in Oncology | www.frontiersin.org 5
these mice demonstrated reduced expression of PD-1 upon
guadecitabine treatment and addition of the vaccine did not
further change PD-1 levels, in contrast with upregulated
expression of PD-1 by decitabine treatment as described
earlier. Possible explanations might be due to only one cycle of
guadecitabine therapy as conducted in this study was not
sufficient to induce PDCD1 gene (that encodes PD-1 protein)
promoter demethylation.

Immune Checkpoint Blockade Therapy
The co-inhibitory receptor PD-1 and programmed death ligand-
1 (PD-L1) are key immune suppressive factors whereby
activation of PD-1 by its ligand PD-L1 induces immune
tolerance (69–71). CTLA-4 is another co-inhibitory receptor
commonly expressed on T cells where binding to its ligands
CD80 and CD86 results in T cell inhibition (72, 73). In
malignancies, the PD-1/PD-L1 axis or CTLA-4 signaling is
exploited by cancer cells for immune escape (74–77). Targeting
PD-1/PD-L1 axis and CTLA-4 with ICB against PD-1 (e.g.
nivolumab, pembrolizumab), PD-L1 (e.g. atezolizumab,
durvalumab) and CTLA-4 (e.g. ipilimumab) has revolutionized
the therapeutic landscape of solid cancers. However, early phase I
and II clinical trials of ICB therapy in AML patients have shown
limited success and ICB has not been approved for treatment of
AML patients. This is due to low immunogenicity of AML
compared with solid tumors such as melanoma and NSCLC
that are more immunogenic due to higher mutation rates (78).
Cancer cells with higher mutation rates demonstrate increased
odds of presenting antigens recognized by T cells as non-self
(79), resulting in better response to immunotherapy (80–82).
Furthermore, the bone marrow niche where AML and MDS
TABLE 1 | Clinical trials of decitabine combined with cancer vaccine or other immunotherapy regimen in AML and MDS patients.

Treatment Phase & ID Patients Primary & secondary outcome measures Primary
completion

Decitabine
+ NY-ESO-1 vaccine (anti-DEC-205-
NY-ESO-1 fusion protein and poly-
ICLC)

Phase I;
NCT01834248

MDS (n=7 patients
reached the end-of-
study)

Primary: Safety;
Secondary: Change in immune and molecular epigenetic
response

Completed in March
2016

Decitabine
+ NY-ESO-1 vaccine (anti-DEC-205-
NY-ESO-1 fusion protein and poly-
ICLC)
+ Nivolumab
(anti-PD-1 mAb)

Phase I;
NCT03358719

AML and MDS (n=8) Primary: Safety; Secondary: Immune cell profile, and peripheral
blood and BM cells responses (NY-ESO-1 expression and
methylation)

December 2020

Decitabine
+ DLI
+ Autologous DC vaccine (pulsed
with MAGE-A1, MAGEA3, NY-ESO-1)

Phase I;
NCT01483274

Relapsed AML post-
HSCT (n=N/A)

Primary: Safety; Secondary: Disease responses, and T cell
responses to the CTAs

Withdrawn (adult
patient population
barriers)

Decitabine
+ Donor NK cells
+ Aldesleukin (recombinant IL-2)

Phase I;
NCT02316964

R/R AML (n=8) Primary: Safety; Secondary: Responses, detection of infused NK
cells

Completed in
December 2019

Decitabine
+ Cytarabine
+ All-transretinoic acid + G-CSF
(DLAAG)

Phase II;
NCT03356080

R/R AML and MDS
with blast excess
(n=50)

Primary: Safety; Secondary: Survival, adverse reactions, duration
of hospitalization, rate of relapse

July 2020
February 2021 | Volum
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tumor cells reside has a protective immunosuppressive
microenvironment (83, 84).

In mice model infected with lymphocytic choriomeningitis
virus (LCMV), decitabine treatment followed by blockade of PD-
1 reinvigorated the function of exhausted gp33-specific (a
dominant LCMV epitope) CTLs. In particular, sequential
decitabine treatment and PD-1 blockade induced the
proliferation of virus-specific CTLs, suggesting that exhaustion-
associated de novo methylation programs were reversed by
decitabine-mediated DNA hypomethylation, leading to
enhanced CTLs expansion during ICB therapy (85). In human
AML cell lines (KG-1 and THP1), expression of PD-L1, PD-L2,
PD-1 and CTLA-4 transcripts was upregulated by decitabine
treatment in a dose-dependent manner. PD-L1 and PD-1 protein
expression was increased by decitabine treatment at
concentration as low as 0.1 µM and also in a dose-dependent
manner. In line with this, demethylation of PD-1 CpG island loci
was induced by decitabine treatment in AML cells (KG-1) (86).
An independent study also showed that both decitabine and
guadecitabine increased PD-1, PD-L1, and CTLA-4 expression
in a panel of eight hematological cancer cell lines including AML
(87). These findings suggest that resistance to HMAs in AML
and MDS patients may be due to upregulated expression of
immune checkpoint molecules, leading to exhaustion of CTLs
and incomplete clearance of leukemia cells. Hence, ICB therapy
may circumvent resistance to HMAs.

However, the effect of decitabine on immune checkpoint
receptors expression in actual clinical settings is unclear.
Donor lymphocyte infusion (DLI) for relapsed AML patients
following HSCT is not particularly effective where the overall
remission rates are between 15%–42% and with low OS of
approximately 15%–20% (88–90). Moreover, a second HSCT
in these patients demonstrate low long-term survival of only
10%–35% and with high treatment-related mortality of 50% (90).
Priming of patients with azacitidine before DLI confers
improved remission rates in relapsed AML and MDS patients
(91–93). In retrospective studies, combination of decitabine with
DLI in these patients has also been investigated where decitabine
confers clinical efficacy in relapsed AML or MDS patients post-
HSCT including patients with previous azacitidine failure (94,
95) and not restricted to patients demonstrating low leukemic
burden (96). However, in bone marrowmyeloblasts derived from
relapsed AML or MDS patients post-HSCT (n=4), PD-L1
protein expression did not change considerably after treatment
with decitabine and DLI (96). The number of patients
investigated in the retrospective study was small and the
relapsed patients were heavily pre-treated at HSCT and before
decitabine treatment. A recent phase I trial (NCT02996474) that
attempted to exploit on the graft-versus-leukemia (GvL) effect,
combination of decitabine with pembrolizumab was
administered in R/R AML patients (n=10) that showed
tolerable safety with a toxicity profile largely comparable with
that of decitabine monotherapy. Four of the patients (40%)
demonstrated stable disease and one patient (10%) achieved an
minimal residual disease (MRD)-negative CR at the end of the
eight cycles (24 weeks) of therapy (97). The trial showed the
Frontiers in Oncology | www.frontiersin.org 6
feasibility of decitabine and pembrolizumab combination
therapy in R/R adult AML patients, nevertheless it remains to
be determined if decitabine could upregulate the expression of
immune checkpoint receptors for effective ICB therapy and GvL
in R/R AML patients post-HSCT. The clinical trials involving
decitabine combination with ICB therapy in AML and MDS
patients are summarized in Table 2.

T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is
a novel coinhibitory receptor expressed by T and NK cells that
binds to CD155, leading to impaired T or NK cell anti-
tumorigenic functions (98). TIGIT is an emerging target in
cancer immunotherapy where its activation in T cells by its
ligand CD155 or CD112 expressed by cancer cells inhibits T cell
responses (99). Interestingly, AMLmice model harboring CD155-
specific deletion (murine AML cells TIB-49) showed prolonged
survival upon administration of decitabine and DC/AML fusion
vaccine compared with either agent alone (100). A recent study
that profiled the expression of specific immune cells and immune
checkpoint markers in peripheral blood of 14 elderly AML
patients treated with decitabine (pre- versus post-treatment, and
in responders vs non-responders) suggested that combination of
decitabine with novel ICB therapy such as anti-TIGIT antibodies
might be a better therapeutic strategy than with conventional ICB
regimens (anti-PD-1/L1 or -CTLA-4 antibodies) (101). In AML
patients before and after initiation treatment with decitabine, no
significant changes were observed for all immune cell populations
post-decitabine treatment including CD4+ or CD8+ T cells, Tregs,
NK cells, NKT cells, B cells, DCs, and MDSCs. PD-1 expression
was not altered upon decitabine treatment, and no significant
difference in its expression was observed between responders and
non-responders to decitabine. Nonetheless, stimulated CTLs from
responders produced significantly higher IFN-g than non-
responders, while non-responders showed higher expression of
multiple immune checkpoints including TIGIT in CTLs and NK
cells, and CD38 in CTLs and CD4+ cells (101). These suggest that
combination of decitabine with ICB therapy targeting TIGIT or
CD38, instead of PD-1/L1 and CTLA-4, might yield better
clinical outcomes.
ACTIVATION OF ANTILEUKEMIC NK
CELLS

NK cells play vital roles in cancer immunosurveillance that can
directly target and destroy cancer cells. Upon recognition, NK cells
form immunological synapse with cancer cells, causing specific
lysis of target cells through the release of tumor necrosis factors
(TNFs), death-inducing ligands such as FAS ligand, and TNF-
related apoptosis-inducing ligand (TRAIL) present on the surface
of NK cells. Binding of these ligands by cancer cells (e.g. through
the FAS receptor) leads to apoptosis (102, 103). Various
stimulatory and inhibitory receptors are expressed by NK cells
that orchestrate NK cell activities. Natural killer group 2D
(NKG2D, also known as CD314 and encoded by the gene
KLRK1) is the best characterized NK cell activating receptor that
recognizes tumor cells that express NKG2D ligands. A group of
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eight NKG2D ligands (NKG2DLs) have been identified
comprising of MHC class I polypeptide-related sequence A
(MICA), MICB, and the UL16-binding proteins (ULBP) 1–6
(103). One of the immune escape mechanisms in AML is the
suppression of NK cell antileukemic activities.

In terms of normal NK cells derived from healthy human
donors, their proliferation (induced by K562-based artificial
antigen presenting cells Clone9.mbIL21) and viability were
Frontiers in Oncology | www.frontiersin.org 7
reduced by decitabine treatment in a dose-dependent manner
(0.02–20 µM) (104). This was in line with dose-dependent
increased and reduced expression of KIR and NKG2D,
respectively. Moreover, DNA hypomethylation increased
following decitabine treatment at concentrations up to 0.3 µM,
but methylation returned to baseline levels beyond that
concentration, suggesting that low-dose decitabine is required
to activate NK cells while high-dose conferred the opposite effect.
TABLE 2 | Clinical trials of decitabine or guadecitabine combined with ICB immunotherapy in AML and MDS patients.

Treatment Phase & ID Patients Primary & secondary outcome measures Primary
completion

Arm 1: Decitabine
+ PDR001
(anti-PD-1 mAb)
Arm 2: Decitabine
+ MBG453
(anti-TIM-3 mAb)
Arm 3: Decitabine
+ PDR001
+ MBG453

Phase: Ib;
NCT03066648

R/R or de novo AML and high-risk MDS (n=235) Primary: Safety, tolerability of MBG453;
Secondary: AUC, Cmax, Tmax, half-life,
response rates, survival, time to progression

April
2021

Decitabine
+ Pembrolizumab
(anti-PD-1 mAb)

Phase: Ib;
NCT03969446

R/R or new AML and MDS (n=54) Primary: Safety, CR and CRi; Secondary:
Response duration, survival and
immunomonitoring (PD-1, PD-L1, and PD-L2
levels, T cell subsets)

June
2021

Decitabine
+ Venetoclax
(BCL2 inhibitor)
+ Nivolumab
(anti-PD-1 mAb)

Phase I;
NCT04277442

AML (n=13) Primary: Safety and responses; Secondary:
Survival, MRD, T cell response, DNA
methylation (global and specific immune
checkpoint genes)

February
2022

Decitabine
+ Pembrolizumab
(anti-PD-1 mAb)

Phase I;
NCT02996474

R/R AML (n=10) Primary: Safety; Secondary: Efficacy Completed
in April
2019

Guadecitabine
+ Atezolizumab
(anti-PD-L1 mAb)

Phase Ib;
NCT02892318

Cohort A1: Safety cohort (R/R AML; n=9); Cohort A2: Expansion
cohort (R/R AML; n=11); Cohort A3: Safety cohort (untreated
AML; n=6); Cohort A4: Expansion cohort (untreated AML; n=14)

Primary: Safety, CR, CRp, CRi, duration of
response; Secondary: Survival, MRD, drugs
concentration

December
2019*

Decitabine
+ Ipilimumab
(anti-CTLA mAb)

Phase I;
NCT02890329

R/R AML and MDS (post allo-HSCT patients or transplant-naive
patients; n=48)

Primary: MTD; Secondary: CR, best overall
response rate, PFS, OS, acute, and chronic
GvHD

July 2021

Experimental:
Decitabine
+ Talacotuzumab
(anti-CD123 mAb)
Active comparator:
Decitabine

Phase II/III;
NCT02472145

AML suitable for experimental therapy or not eligible for intense
induction chemotherapy (n=326)

Primary: CR, OS; Secondary: EFS; proportion
of patients with CR with MRD and negative
CRi; time to best response; duration of
response

January
2018

Experimental:
Vadastuximab
talirine (anti-CD33
mAb)
+ Azacitidine or
Decitabine
Active comparator:
Placebo +
Azacitidine or
Decitabine

Phase III;
NCT02785900

Adult patients with newly-diagnosed AML (n=240) Primary: OS, composite complete remission
(CRc) rate; Secondary: MRD, duration of
remission, survival, AEs, abnormalities, mortality
rates

October
2017
February 2021 | Volume 11 | A
AE, Adverse event; AUC, Area under the curve; Cmax, Peak concentration that a drug achieves in a specified compartment after the drug has been administrated and before a second dose
administration; CR, Complete remission; CRi, CR with incomplete blood cells count recovery; CRp, Complete remission with incomplete platelet recovery; EFS, Event-free survival; GvHD,
Graft-versus-host disease; MRD, Minimal residual disease; MTD, Maximum tolerated dose; OS, Overall survival; PFS, Progression-free survival; Tmax, Amount of time that a drug is present
at the maximum concentration in serum. *Results have not been reported.
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NK cells produced from CD34+ hematopoietic stem and
progenitor cells (HSPC-NK cells), and subsequently treated
with low-dose decitabine preserved their proliferation and
IFN-g production capacity but azacitidine attenuated such
effects. In NOD/SCID/IL2Rgnull mice, decitabine but not
azacitidine was capable of potentiating infused HSPC-NK cells’
antileukemia activity through upregulation of ligands in AML
cells (THP-1) for NKG2D and DNAX accessory molecule-1
(DNAM-1) immunoactivating receptors on HSPC-NK cells.
Moreover, decitabine increased the proliferation of HSPC-NK
cells in their bone marrow, and combination therapy of adoptive
HSPC-NK cells with decitabine was proposed for treatment of
AML patients (105). The study was in line with another study on
decitabine treatment in a mouse ovarian cancer model
(BR5FVB1-Akt cells in FVB mice) where low-dose decitabine
increased chemokines expression that recruited NK cells and
CTLs, and promoted their production of IFN-g and TNF-a
(106). The authors proposed that a 10-day decitabine
treatment might be more efficacious than the 5-day treatment
performed in their mice study.

In AML blasts, CD33 is frequently expressed and it
represents a therapeutic target for the disease. BI 836858 is an
Fc-engineered anti-CD33 therapeutic antibody that activates
autologous and allogeneic NK cell-mediated antibody-
dependent cellular cytotoxicity (ADCC) in AML cells with
opsonized BI 836858. In serial marrow aspirates of elderly
AML patients receiving decitabine, BI 836858-mediated
ADCC was enhanced when compared with pre-decitabine
treatment. This was mediated by increased mRNA expression
of ligands to the activating receptor NKG2D, and blocking of
NKG2DL receptor decreased BI 836858-mediated ADCC (107).
Limitations of the study, as noted by the authors, include lack of
serum NKG2DL measurement post-decitabine treatment as
AML blasts could shed NKG2DL to escape immune
surveillance, as well as lack of autologous NK cells and AML
blasts for measurement of surface NKG2DL protein levels in
patients treated with decitabine.

Adoptive NK cells transfer is a promising therapeutic strategy
for hematologic malignancies. In a recent phase I study
(NCT02316964) reported this year, decitabine treatment
followed by haploidentical NK cells infusion and IL-2
(aldes leukin) administrat ion in R/R AML patients
demonstrated that no donor-derived NK cells were detected
post-NK cell infusion (time points tested: 2, 8, 14, 21, and 28
days post-NK cell infusion) (108). The protocol was thus
amended to include the chemotherapy drug fludarabine, and
short-term (up to 2 days) engraftment of donor-derived NK
cells were detected without infusional toxicities in the NK cells. It
was concluded that decitabine and NK cells infusion regimen
was safe, but decitabine combination with fludarabine and IL-2
was insufficient to maintain persistence of the infused donor NK
cells in vivo. The authors subsequently generated membrane-
bound IL-21 (mbIL-21) NK cells from normal donors expanded
with mbIL-21+ K562 AML cells. The ex vivo expanded mbIL-21
NK cells showed effective lysis of primary AML blasts (derived
from the AML patients enrolled in the clinical trial) in vitro and
Frontiers in Oncology | www.frontiersin.org 8
in vivo (patient-derived xenograft mice) which was further
enhanced by Fc-engineered anti-CD33 mAb combination (108).

In other types of blood cancer, decitabine also induced NK
cell-mediated anti-tumor immunity through increased IFN-g
production against CML (K562) and Burkitt’s lymphoma
(Raji) cells (109). Azacitidine was reported to induce NK cells
apoptosis and impaired mRNA synthesis but, in contrast,
decitabine enhanced the activation of NK cells by inducing
transcription of NK reactivity genes (109). Overall, translation
of decitabine-mediated NK cell activation therapeutic approach
into actual patients remains to be determined including the
appropriate dosage (e.g. low-dose decitabine) and cycles of
decitabine required to achieve similar antileukemic effects by
human NK cells. It is also unclear if low-dose decitabine also
similarly activates T cell anti-tumor responses.
SUPPRESSION OF PRO-LEUKEMIC
MYELOID-DERIVED SUPPRESSOR CELLS

MDSCs are a group of heterogenous immature myeloid cells
mostly consisting of CD33+/CD11b+/HLA-DR- cells that form
an immunosuppressive niche in cancers. MDSCs suppress
anti-tumor responses through multiple mechanisms
including depletion of amino acids required for T cell
proliferation (110), generation of reactive oxygen species
(ROS) that alters T cell receptor and CD8 molecules leading
to T cell tolerance (111), antigen presentation to induce Treg
cells activities, and the production of anti-inflammatory
cytokines such as TGF-b and IL-10 (112). In AML patients,
the frequency of MDSCs is increased in the peripheral blood
and bone marrow associated with minimal residual disease
(113, 114). Chemo-immunotherapy combination regimen
improved the survival of AML mice model (C1498 murine
AML cells in C57Bl/6J mice) along with stable reduction in
MDSC populations (76). In addition, administration of anti-
CD33/CD3 antibody (AMG 330) triggered T cell-mediated
lysis of AML blasts that was further enhanced by T cell
elimination of IDO+CD33+ MDSCs (IDO, an enzyme
released by cancer cells to deplete tryptophan leading to
suppressed T cell activities) (115).

Decitabine treatment depleted MDSC populations (Gr1+/
CD11b+) in normal (BALB/c), mouse AML (WEHI-3 cells in
BALB/c) and lymphoma (EL4 cells in C57/BL6) mice models
with minimal changes to other immune effector cells (CD4+ T
cells, CD8+ T cells, NK cells, B cells, Tregs, and DCs). The
compound induced apoptosis of MDSCs from normal BALB/c
mice, and activated CD4+ and CD8+ T cell responses in the mice
bone marrow through depletion of MDSC populations. More
importantly, in the same study, an adoptive transfusion mouse
model demonstrated that decitabine treatment was capable of
inducing autologous T cell responses against leukemia cells in
vivo (decitabine-treated WEHI-3 cells in BALB/c nude mice) by
depleting MDSCs (116). One of the limitations of the study was
that the mechanism involved in the apoptosis induction of
MDSCs by decitabine remained unknown, and it was thought
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to be due to cell cycle arrest and inhibition of the STAT3/STAT5
signaling pathway crucial for MDSCs differentiation.
Furthermore, MDSCs have been shown to restrain NK cell-
mediated killing of myeloid cancers, and depletion of MDSCs
restores NK cell cytolytic function in MDS (117–119). It is of
future interest to investigate if decitabine-mediated depletion of
MDSCs also leads to activation of antileukemic NK cells.

Apart from AML, the efficacy of decitabine in the inhibition of
MDSCs has also been reported in multiple myeloma (MM) which
remains an incurable malignancy that requires novel therapies.
Transwell co-culture of mouse IL-6-secretingMM cell lineMPC11
with MDSCs showed reduction in IL-6 production by mouse MM
cell line (MPC11) and increased apoptosis occurred when the
MDSCs were derived from decitabine-treated bone marrow cells
compared with the control-treated (PBS) counterpart (120). These
decitabine-mediated inhibitory effects were rescued when
supplemented with monocytic MDSCs (M-MDSCs). It was also
reported that in MPC11-bearing mice (BALB/c), combination of
decitabine with anti-Gr1 antibody (mouse MDSCs express high
levels of the granulocytic marker Gr1) demonstrated synergistic
effects against tumor growth. This was accompanied by depleted
M-MDSCs and increased proliferation of T cells in the tumor
microenvironment, and these effects were rescued by M-MDSC
reinfusion (120). Hence, decitabine enhanced autologous T cell
responses by depleting M-MDSCs in the microenvironment
of MM.

MDSCs are classified into two major groups: M-MDSCs and
granulocytic MDSCs (G-MDSCs) where each group
morphologically and phenotypically resembles monocytes and
neutrophils, respectively, and M-MDSCs confer stronger
immunosupressive activities than G-MDSCs (121, 122). It may
be of therapeutic interest to examine the potential differential
effects of decitabine and guadecitabine against each MDSCs
subpopulation as both M-MDSCs and G-MDSCs demonstrate
relatively different profiles in AML and MDS. For instance,
depletion of M-MDSCs was relatively higher than G-MDSCs
depletion in AML mouse model (C1498 in C57Bl/6J mice)
treated with cytosine arabinoside (AraC) monotherapy or
combination of AraC with Plerixafor (an immunostimulant
to direct HSCs into peripheral circulation) and anti-PD-L1 mAb
(76), while higherM-MDSCs frequency was observed in both low-
and high-risk MDS compared with normal individuals (123).
SYNERGISM WITH ANTI-CD123
THERAPEUTIC ANTIBODIES

Interleukin-3 receptor (IL-3R) is a heterodimeric receptor
comprising of the IL-3-specific alpha subunit (also known as
CD123 or IL-3RA) and the beta subunit (CD131 or IL-3RB) that
is shared by receptors for IL-5 and granulocyte-macrophage
colony-stimulating factor (124). IL-3 initially binds to CD123
that subsequently recruits CD131 to form the high-affinity IL-3R
receptor, resulting in activation of the JAK/STAT pathway to
produce anti-apoptotic proteins crucial for hematopoietic cell
viability (125, 126). CD123 expression is typically very low or
Frontiers in Oncology | www.frontiersin.org 9
absent in normal hematopoietic cells but it is broadly expressed
in numerous hematological malignancies including MDS and
AML where it is expressed in over 90% of AML cases at various
intensities (127). CD123 overexpression in AML blasts and LSCs
is associated with higher blast counts at diagnosis, poorer CR,
and survival (127, 128), thereby establishing CD123 as a
promising therapeutic target in AML.

Tagraxofusp (SL-401 or DT388IL-3) is an engineered fusion
protein comprising of IL-3 to target CD123 fused with a
truncated diphtheria toxin (DT) payload. Tagraxofusp triggers
cellular cytotoxicity by delivering DT to CD123+ cells where DT
escapes endosomes post-internalization and catalyzes ADP
ribosylation of eukaryotic elongation factor 2 (eEF2; required
for the translocation step in protein synthesis), leading to
inhibition of protein synthesis that kills the cell (129). In 2018,
tagraxofusp was the first approved therapy specifically for blastic
plasmacytoid dendritic cell neoplasm (BPDCN), a rare and
aggressive hematological malignancy that highly expresses
CD123 (130). Tagraxofusp monotherapy in AML patients had
been tested in phase I trial where it was safe and dose levels of
≥3.0 mg/kg was recommended to maximize ADCC against
residual AML cells (131). Another phase I/II trial is ongoing to
assess tagraxofusp monotherapy in AML patients in first CR or
with MRD-positive disease where interim results demonstrated
that no dose-limiting toxicities or maximum tolerated dose
(MTD) was observed in the highest tested dose of 12 µg/kg
(NCT02270463) (132).

Resistance to tagraxofusp has been observed in some BPDCN
patients while others relapse after exhibiting a clinical response.
In experimental studies, it was recently shown that BPDCN and
AML cells resistant to tagraxofusp treatment were not associated
with CD123 loss but rather due to deficiencies in the
diphthamide synthesis pathway (133). Specifically, this was due
to loss of DPH1 expression, an enzyme involved in diphthamide
synthesis, in BPDCN and AML primary patients resistant to
tagraxofusp treatment. Tagraxofusp-resistant AML cells (THP1)
displayed CpG motifs hypermethylation in the promoter region
of DPH1, and azacitidine treatment suppressed the CpG DNA
hypermethylation that restored DPH1 expression. In the same
study, combination of tagraxofusp and azacitidine was effective
against primary human leukemias in vivo (recipient mice
injected with BPDCN patient-derived xenograft cells) where
their combination prolonged survival of the mice compared
with either agent alone (133). Phase I study of tagraxofusp in
combination with azacitidine in R/R AML and high-risk MDS
patients is currently underway to determine the MTD and
response rates (NCT03113643). These results are eagerly
awaited as HMAs may enhance the efficacy of anti-CD123
immunotherapy in R/R AML and MDS.

Talacotuzumab (JNJ-56022473, formerly CSL362) is another
therapeutic mAb against CD123 where it is a humanized, affinity-
matured and Fc-engineered mAb for increased affinity to CD16
expressed by innate effector cells. Talacotuzumab potently induces
AML patient’s own NK cells to destroy AML blasts and LSC-
enriched populations via ADCC (134, 135). Phase I trial
demonstrated that talacotuzumab was well-tolerated in AML
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patients (n=24) with high risk of relapse and potent ADCC against
residual AML was observed (131). However, recent (2020) trials
have independently reported significant toxicities of talacotuzumab
treatment in AML patients. In a pivotal phase II/III study
(NCT02472145; the SAMBA trial) of talacotuzumab in
combination with decitabine as first line treatment in elderly (65
years or older) patients with de novo or secondary AML not eligible
for intensive chemotherapy, the combination lacked in efficacy and
with high toxicity rates leading to premature termination of the trial
and discontinuation of talacotuzumab treatment (136). An
independent phase II trial of high-risk MDS (n=5) and AML
(n=19) patients resistant to previous HMAs (azacitidine or
decitabine) treatment showed that single agent talacotuzumab
conferred limited efficacy but significant toxicities such as
infections, cytopenias, cardiac, gastrointestinal and nervous system
disorders, resulting in high number of patients with treatment
discontinuation (128). The authors suggested that utilization of
other immune modalities such as CD123-specific chimeric antigen
receptor-engineered T cell (CAR-T) therapy may improve the
unfavorable risk/benefit profile of talacotuzumab therapy.

In terms of bispecific antibodies (bsAbs), the following bsAbs
targeting both CD123 and CD3 (CD123 x CD3 bsAb) with
promising efficacy are currently being assessed in early phase
clinical trials of R/R AML patients, and their combination with
HMAs has yet to be investigated: i) Flotetuzumab (MGD006 or
S80880) is a bispecific dual-affinity re-targeting antibody (DART)
that recognizes CD123 and CD3ϵ where it redirects T cells to
destroy CD123-expressing cells. It was granted orphan drug
designation by FDA for the treatment of AML in January 2017
(137). In R/R AML patients with TP53 mutations, 47% (n=7/15)
demonstrated CR to flotetuzumab and displayed increased tumor
inflammation signature as well as CD8, inflammatory chemokine,
and PD-1 expression compared with non-responders. These
patients who achieved CR experienced prolonged survival (138).
Phase I/II trial is being evaluated in R/R AML and high-risk MDS
patients (NCT02152956) to further assess the efficacy of
flotetuzumab therapy; (ii) XmAb14045 (SQZ622) is another
CD123 x CD3 bsAb. In contrast to smaller antibody constructs
such as DARTs, XmAb14045 is a full-length immunoglobulin
molecule with a unique Fc domain in which binding with Fcg
receptor (FcgR; broadly expressed by both lymphoid and myeloid
cells) is abolished to prevent non-selective T cell activation but with
preserved neonatal Fc receptor (FcRn) binding to maintain long
serum half-life. XmAb14045 has shown efficacy against CD123+

AML cells (139). Current phase I study is evaluating its safety, MTD
and recommended dose in various hematological malignancies
including R/R AML (NCT02730312).
SYNERGISM WITH CHIMERIC ANTIGEN
RECEPTOR-ENGINEERED-T (CAR-T) AND
T CELL RECEPTOR-T (TCR-T) CELLS

CAR-T cells have shown promises in the treatment of hematological
cancers but their exhaustion after infusion in patients limits clinical
efficacy. In experimental settings, de novo DNA methylation
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mediated by DNMT3A is one of the key mechanisms that
restrains long-term T cell memory and induces cytotoxic T cells
exhaustion (85, 140). Essentially, recent experimental study
demonstrated that decitabine significantly enhanced anti-AML
effects of CD123 CAR-T cells in vitro (THP1 cells) and in vivo
(NSG mice bearing THP1 tumor xenografts). This was achieved by
decitabine through inhibition of DNMT3A and DNMT1
expression, increased DNA hypomethylation and upregulated
expression of genes that favored naïve and memory T cells
differentiation, resulting in enhanced CD123 CAR-T cells anti-
tumor responses (141). This is consistent with past observations that
naïve and memory T cell populations are superior to effector T cells
in triggering anti-cancer effects for adoptive cell therapy (142). As
pre-clinical study has showcased the potential of HMAs combined
with CD123 CAR-T-based immunotherapy in AML patients,
translation to actual clinical trials is thus desirable.

Recent progress has been made to generate NKG2D CAR-T
cells by fusing the full-length human NKG2D to the human
CD3z cytoplasmic signaling domain for autologous adoptive cell
therapy in AML patients. These efforts have recently been tested
in phase I trials in which functional activity of NKG2D CAR-T
cells against NKG2DL-positive cells were achieved in AML
patients without significant toxicities, although no objective
tumor responses were observed (143, 144). Further clinical trial
modifications are required still to determine the optimal dose of
NKG2D CAR-T cells in AML patients, and whether combination
with HMAs could augment NKG2D CAR-T cells expansion or
upregulation of NKG2DLs expression in AML cells for NKG2D
CAR-T cells recognition is an open question.

Apart from CAR-T therapies, the specificity of T cells can be
redirected toward selected tumor antigens by transduction with an
exogenous T cell receptor (TCR) targeting the specific antigen, and
this forms the basis of TCR-engineered T cell (TCR-T) therapy
(145, 146). TCR-T cells specifically targeting Wilms’ tumor 1
(WT1; overexpressed in AML andMDS cells) demonstrated HLA-
A*24:02-restricted cytotoxicity against WT1-expressing myeloid
leukemias (147). In phase I trial of refractory AML and high-risk
MDS patients (n=8), adoptive transfer of WT1-specific TCR-T
cells did not confer adverse events and the TCR-T cells persisted
throughout the study period with retained WT1-specific immune
reactivity in majority of the patients (148). In a therapy-related
MDS patient who had relapsed after allo-HSCT, treatment with
azacitidine combined with DLI yielded a strong GvL effect along
with WT1-specific CD8+ T cell responses that resulted in
remission for 15 months before the patient finally relapsed
(149). The GvL effect and prolonged memory phenotype of the
WT1-specific CTL was induced at least partially by azacitidine
treatment, and this supports the potential synergism of decitabine
or guadecitabine with TCR-T therapy.
CONCLUSIONS AND FUTURE
DIRECTIONS

In conclusion, decitabine and guadecitabine have shown
promising immunopotentiating properties to improve the
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efficacy of immunotherapies (Figure 2). In particular, early
clinical trial of decitabine combination with NY-ESO-1 vaccine
(anti-DEC-205-NY-ESO-1 fusion protein and poly-ICLC) has
yielded favorable results of consistent NY-ESO-1 expression
upregulation to stimulate leukemia-directed T cell immune
responses. Another early phase clinical trial (NCT03358719)
is currently underway to investigate combination of decitabine
with the NY-ESO-1 vaccine and nivolumab (anti-PD-1 mAb)
in AML and MDS patients. Decitabine capabilities to augment
both NY-ESO-1 and PD-1 expression in leukemia cells may
prove as a strong adjunct to prime the patients to NY-ESO-1
vaccine as well as anti-PD-1 mAb regimen. In addition,
guadecitabine combination with atezolizumab in R/R AML
patients where the primary outcomes measured include
clinical responses such as CR has recently been completed
Frontiers in Oncology | www.frontiersin.org 11
and reporting of results are eagerly awaited (NCT02892318;
Table 2).

Regarding future directions, combination of decitabine or
guadecitabine with antibodies targeting novel T cell inhibitory
receptors such as anti-TIGIT mAbmay constitute the optimal ICB
therapy combination with the HMAs, and whether such
combination also enhances the clinical responses of DC/AML
fusion vaccine should be examined. In terms of adoptive cell
therapy, the translational implications of decitabine or
guadecitabine synergism with infusion of donor-derived NK
cells, CD123/NKG2D CAR-T or WT1 TCR-T cells targeting
AML and MDS cells represent fertile areas for future
investigations. Finally, combination of these HMAs with anti-
tumor immunomodulatory inhibitors (150–153) including small
molecule immunomodulatory drugs (i.e. thalidomide,
FIGURE 2 | Synergism of decitabine or guadecitabine with antileikemic immune cells and engineered T cells, and depletion of immunosuppressive cells in AML or
MDS microenviroment. (A) DC/AML vacinne combined with decitabine or guadecitabine treatment induces leukemia-specific immunity; (B) Decitabine potentiates
infused NK cells’ antileukemia activity by upregulating ligands for NKG2D and DNAM-1 immunoactivating receptors on NK cells. Decitabine combined with anti-
CD33 mAb also augments the expression of NKG2D ligands in AML cells; (C) Upregulation of CTA expression such as NY-ESO-1 by decitabine or guadecitabine
treatment synergizes with NY-ESO-1 cancer vaccine treatment; (D) Combination of decitabine or guadecitabine with novel immune checkpoint blockade therapy
such as anti-TIGIT therapeutic antibody to circumvent resitance of AML or MDS cells to either hypomethylating agent; (E) Potential synergsim of decitabine or
guadecitabine with anti-CD123 therapeutic antibody (e.g. tagraxofusp) to induce antileukemic immunity; (F) Decitabine treatment synergizes with CD123 CAR-T
cells against AML cells; (G) Potential synergism of decitabine or guadecitabine with WT-1 specific TCR-T cells. ADCC: Antibody-dependent cellular cytotoxicity;
AML: Acute myeloid leukemia; CAR-T: Chimeric antigen receptor-engineered T cell; CTA: Cancer/testis antigen; DC: Dendritic cell; DNAM-1: DNAX accessory
molecule-1; ICR: Immune checkpoint receptor; ICRL: Immune checkpoint receptor ligand; mAb: Monoclonal antibody; MDS: Myelodysplastic syndromes; MDSC:
Myeloid-derived suppressor cell; MHC: Major histocompatibility complex; NK: Natural killer; NKG2D: Natural killer group 2D; TCR: T cell receptor; TCR-T: T cell
receptor-engineered T cell; TIGIT: T-cell immunoreceptor with Ig and ITIM domains; WT1: Wilms’ tumor 1. Upward arrow denotes upregulated expression,
increased CTA presentation, or induced apoptosis of MDSCs.
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lenalidomide and pomalidomide) shown to confer antileukemic T
cell immunity in AML and MDS (154–156) represent exemplary
avenues for further explorations to achieve and maintain a robust
antileukemic milieu in this complex group of blood malignancies.
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