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A wide range of malignancies presents MYCN amplification (MNA) or dysregulation.
MYCN is associated with poor prognosis and its over-expression leads to several
dysregulations including metabolic reprogramming, mitochondria alteration, and cancer
stem cell phenotype. Some hints suggest that MYCN overexpression leads to cancer
immune-escape. However, this relationship presents various open questions. Our work
investigated in details the relationship of MYCN with the immune system, finding a
correlated immune-suppressive phenotype in neuroblastoma (NB) and different cancers
where MYCN is up-regulated. We found a downregulated Th1-lymphocytes/M1-
Macrophages axis and upregulated Th2-lymphocytes/M2-macrophages in MNA NB
patients. Moreover, we unveiled a complex immune network orchestrated by N-Myc
and we identified 16 genes modules associated to MNA NB. We also identified a MYCN-
associated immune signature that has a prognostic value in NB and recapitulates clinical
features. Our signature also discriminates patients with poor survival in non-MNA NB
patients where MYCN expression is not discriminative. Finally, we showed that targeted
inhibition ofMYCN by BGA002 (anti-MYCN antigene PNA) is able to restore NK sensibility
inMYCN-expressing NB cells. Overall, our study unveils aMYCN-driven immune network
in NB and shows a therapeutic option to restore sensibility to immune cells.

Keywords:MYCN, immune system, neuroblastoma, immune signature, immune network, anti-MYCN antigene PNA,
MYCN blocking
INTRODUCTION

MYCN is a transcription factor member of the MYC proto-oncogene family involved in nervous
system development during embryogenesis (1). MYCN regulates different fundamental cellular
processes including cell cycle, apoptosis, mitochondria dysfunction, and metabolism (2, 3). Indeed,
MYCN expression deregulation is linked to a wide range of human tumors (4). MYCN
February 2021 | Volume 11 | Article 6252071

https://www.frontiersin.org/articles/10.3389/fonc.2021.625207/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.625207/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.625207/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.625207/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:roberto.tonelli@unibo.it
https://doi.org/10.3389/fonc.2021.625207
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.625207
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.625207&domain=pdf&date_stamp=2021-02-25


Raieli et al. MYCN Impacts Neuroblastoma Immune Landscape
overexpression is generally associated to poor prognosis, driving
the cancer cells to a stem cell like phenotype, promoting growth,
angiogenesis, and metastasis (5, 6).

Considering the MYCN restricted expression in embryogenesis
and it is impact in cancer (7), N-Myc is a promising target.
However, small molecule approaches to specifically target the N-
Myc protein resulted inconsistent. Thus, different other approaches
have been developed to downregulate N-Myc or its associated
pathways (8). Among these strategies, anti-MYCN antigene
oligonucleotide PNA showed the ability to specifically block
MYCN expression in a sustained way (3, 9, 10), resulting in an
anti-cancer effect.

MYCN amplification (MNA) is established as a major driver of
Neuroblastoma (NB) (characterizing 50% of the high-risk group)
(11–13). NB is currently the most common and deadly pediatric
solid cancer (representing 6–8% of solid tumors in childhood) (14).
Current therapy includes chemotherapy, radiotherapy, surgery,
and stem cell transplantation, besides the severe side effects still
many patients undergo relapse and progression (15–17).

Immune evasion plays a fundamental role in the development
and progression of cancers and is driven by the tumor
microenvironment remodeling by cancer cells (18). Different
studies showed that NB presents the capacity to evade and to
harness the immune system to favor metastasis and progression.
In this view, tumor infiltrating lymphocytes (CD4+ and CD8+ T-
cells) and natural killers (NKs) are favorable associated with the
outcome while T regulatory cells and macrophages are associated
with poor prognosis (19–21). NB cells can express checkpoint
inhibitors or other molecules capable to interact with the
immune system such as PD-L1, MIF, chemokines, release of
microRNAs to microenvironment cells, suggesting the potential
impact of checkpoint inhibitors and immune-therapy also in this
tumor (22–25).

However, while anti-GD2 therapy and chimeric antigen
receptor (CAR) T cells showed some promising results in non-
MNA NB patients, the checkpoint inhibitors have not shown the
same success in improving the survival in NB, as in other solid
tumors. These poor results can be linked to different factors as
low MHC-I expression, low presence of neoantigens,
immunosuppressive environment (15, 26–28). Moreover,
N-Myc could play a role in the development of this
immunosuppressive microenvironment, as MNA is associated
to down-regulation of MHC-I expression in NB and to inhibition
of the interferon pathway and to PD-L1 expression (29–32).
Indeed, MNA-NB still shows a poor outcome and need a missing
specific therapy.

In this context, the tremendous amount of interactions
between NB cells and the tumor microenvironment leads to a
high complexity, leaving different open questions on how NB
harness the immune system to sustain its growth and which
factors have a dominant role or have context dependent
functions. No studies systematically analyzed immune cell
infiltration and their molecular interactions or broadly
investigate MYCN impact on the immune system. Indeed, the
NB immunity and the role of MYCN in the immunosuppression
are still a field of investigation (33).
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MATERIALS AND METHODS

Patient Gene Expression Profiles
The NB dataset (accession: E-MTAB-1781) and the small cell lung
cancer (SCLC) (accession: E-MTAB-1999) datasets were
downloaded from ArrayExpress, (http://www.ebi.ac.uk/
arrayexpress) and processed using the quantile algorithm in
limma. Another NB dataset and Wilms’ dataset were downloaded
from TARGET data portal (https://ocg.cancer.gov/programs/target;
data freely accessible). From NCBI GEO DataSets (https://www.
ncbi.nlm.nih.gov/gds) were downloaded the following datasets:
retinoblastoma (accession: GSE59983), rhabdomyosarcoma
(accession: GSE114621), T acute lymphoblastic leukemia (T-ALL),
and acute myeloid leukemia (AML) dataset (accession: GSE13159,
as defined in the dataset meta-data) and for the T-helper
lymphocyte (Th) profiles (accession: GSE107011). Another SCLC
dataset was retrieved from the supplementary of the article (PMID:
26168399) (34). In the article the different cohorts are referred as
following: NB1: E-MTAB-1781, NB2: TARGET NB, Wilms:
TARGET Wilms, SCLC1: E-MTAB-1999, SCLC2: PMID
26168399, RB: GSE59983, rhabdomyosarcoma (RMS):
GSE114621, T-ALL: GSE13159, AML: GSE13159. The replicate
probes within the array were replaced by their average before being
scaled. Pearson correlation between MYCN, MYC, and other genes
was calculated with R software. The differential expressed genes
betweenMYCN-amplified (MNA) patients and non-MNA patients
in the NB datasets (E-MTAB-1781, TARGET dataset) were
obtained using the limma package algorithm (clinical information
was retrieved from the dataset meta-data, patient with an unknown
MNA status were removed).

Pathway Analysis
Correlated genes with MYCN or MYC in each dataset were used
as ranked gene list to identify enriched pathway through Gene
Set Enrichment Analysis (GSEA) (35). We used Gene Ontology
(biological process, cellular component, molecular function, C5
from Molecular Signatures Database v7.0), and GSEA software
(V. 4.02). We used the differential expressed genes to conduct the
pathway enrichment as described above. Graphic representation
was performed with R software. Additional data can be found in
Supplementary Tables 1–3.

Immune Cell Fraction Estimation Analysis
We used CIBERSOFT tool (Cell type Identification By
Estimating Relative Subsets Of known RNA Transcripts) as
described in the developer instruction (36). NB expression
datasets (E-MTAB-1781, TARGET dataset) were used as
mixture file input and were performed 1,000 permutations. We
used the LM22 gene signature matrix, an available validated
signature for 22 human hematopoietic cell phenotypes.
Additionally, we derived from GSE107011 the signature for the
Th profile and to generate a Th gene signature matrix (we
considered Th1, Th2, Th17, T-regulatory, T follicular helper
subsets). The Th signature was input in CIBERSOFT and
performed 1,000 permutations. Graphic representation and
statistical analysis were performed with R software.
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Immune Interaction Network
Protein interactions were retrieved from String database, we
selected interactions with a score higher than 400. Protein
localization was downloaded from Human Protein Atlas (37).
We considered as cell surface proteins only proteins which the
approved and supported locations included one of the following
terms: cell junctions, focal adhesion sites, plasma membrane.
Immune population protein expression were obtained from data
supplementary (38). We considered as expressed for each
immune subpopulation only proteins with a normalized score
higher than 1.5 and only if present in the cell surface. The
immune network in MNA and non-MNA patients were
established filtering the immune surface proteins present in the
differential expressed genes (in order to capture weak
interactions, we considered log fold change of 0.5 to assign to
MNA or non-MNA). The protein-protein interactions were used
to build the circular plots. MYCN knock out genes were
downloaded by KnockTF (39), we considered log fold change
of 1 to assign a gene to the MYCN positive or negative regulated
list. The previous lists were filtered for the subcellular position.
The obtained genes were paired with their possible interactors on
the immune population to build the circular plots.

WGCNA Module Analysis and
Transcriptional Regulator
Immune population protein expression was retrieved as
described above. Patient gene expression profiles (GEP) from
E-MTAB-1781 were filtered for this list. WGCNA (40) was
performed using the WGCNA package (41) and changing the
standard parameters: power of 8, signed network, and a
minimum module size of 20. The algorithm assigned the 6,641
filtered genes to 16 modules (2,472 were not assigned to any
module, the full list is present in Supplementary Table 4).
Module similarity was conducted calculating Pearson
correlation between module eigengenes. Cell populations were
grouped in (CD4+ T-cells, CD8+ T-cells, antigen processing
cells, B-cells, NK cells) and calculated the number of proteins
present in each module. Graph network was building using the
iGraph package. For the heatmap, we calculated the number of
proteins present in each module for each immune population
and then normalized (z-score). We also calculated the average of
the module eigengenes for MNA and non-MNA patient groups
and then we normalized (z-score). Pathway enrichment was
conducted for each module using anRichment package, the
results are present in Supplementary Table 5. Gene modules
were used to infer transcriptional regulators, we then clustered
the obtained regulators in three clusters. Patient expression
profiles were also clustered according to the cluster regulators.
This procedure is also described in details in Supplementary
Methods and Supplementary Tables 6-8.

MYCN Immune Score
Immune genes retrieved from Gene Ontology (GO) and
literature. Patient gene expression profiles (GEP) from E-
MTAB-1781 and TARGET were filtered for this list (gene list
is present in Supplementary Table 9). We build a logistic
regression model to identify which immune genes where
Frontiers in Oncology | www.frontiersin.org 3
associated to MNA versus not MNA patients. The model was
cross-validated 50-fold using E-MTAB-1781 as training set (80%
of observation at each run) and using TARGET dataset as test
set. We used L1 penalization (C = 0.1) and SAGE solver. We
selected the weights for each gene and averaged (we filtered all
zero weights). We selected two different vector weights
associated with MYCN, positive weight vector (associated with
MNA) and negative weight vector (associated with non-MNA).
The two vectors were normalized subtracting the minimum and
dividing by the range:

Ŵ PM
i =

WPM
i −min WPM

� �

max WPMð Þ −min WPMð Þ

Ŵ NM
i =

WNM
i −min WNM

� �

max WNMð Þ −min WNMð Þ
Through univariate cox regression we selected genes

significantly associated to the prognosis (we used the same
gene list used for the logistic regression model). The obtained
p-value was correct with the Bonferroni correction (list of
significant genes obtained through univariate cox regression is
present in Supplementary Table 10). We then used multivariate
Cox regression analysis on the obtained genes, we used a Lasso
penalization to select genes associated to the prognosis [we used
Penalized R package (42) and selecting lambda1 parameter equal
to 0.25]. We selected two different vector weights associated with
the survival, positive weight vector (associated with hazard) and
negative weight vector (associated with reduction in hazard). The
two vectors were normalized subtracting the minimum and
dividing by the range:

Ŵ PC
i =

WPC
i −min WPC

� �

max WPCð Þ −min WPCð Þ

Ŵ NC
i =

WNC
i −min WNC

� �

max WNCð Þ −min WNCð Þ
We selected the genes in common between the two vectors

and normalized weight were calculated as the sum of the
normalized vector for MYCN and Cox model. We then build a
positive and a negative immune score for each dataset (-MTAB-
1781 and TARGET) multiplying each gene x (log2 expression)
for each normalized weight (weights are listed in Supplementary
Table 11).

immP =  
1
no

n

i=1
xi(Ŵ

PM
i + Ŵ PM

i )

immN =  
1
no

n

i=1
xi Ŵ

NM
i + Ŵ NC

i

� �

We defined the MYCN immune score as the ratio between
immp and immn for each patient GEP. We download
Neuroblastoma (last 10 years) and MYCN abstracts querying
PubMed (details are present in the Supplementary Methods) to
identify genes of the signature present in literature. Patient were
February 2021 | Volume 11 | Article 625207
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stratified according their positive or negative normalized MYCN
immune score (low enriched was defined as z score lower than
−0.5, medium enriched comprised between −0.5 and 1, high
enriched z score higher than 1). Clinical information was
retrieved within the dataset (Supplementary Tables 12 and
13). Uniform Manifold Approximation and Projection
(UMAP) was computed with a minimum distance of 0.5,
considering 30 local neighbors and selecting the Euclidean
distance as metric (43).

Statistical Analysis and Software
Analysis were conducted in R (RStudio) and Python (Anaconda
release). The following libraries from Python (version 3.7) were
used: Scikit-learn, Matplotlib, matplotlib.pyplot, Pandas, UMAP,
numpy. The following libraries from R (version 3.5) were used
for analysis and graphs: ggplot2, dplyr, data.table, tydr, survival,
survminer , wordc loud , WGCNA, c i rc l i ze , iGraph,
anRichment, stringr.

Cell Lines and Treatment
The cell lines used in this study were obtained in 2020 and kept
in culture for 30 days and seven passages at maximum.
Mycoplasma detection was conducted with LookOut
Mycoplasma PCR Detection Kit (Sigma-Aldrich). Additional
details about the cell line used in this study can be found in
Supplementary Table 14. Cell lines treatment with BGA002 and
quantitative real-time PCR were conducted as described in (3).
List of the primers used in this study can be found in
Supplementary Table 15. Results have been analyzed in Prism
software version 6 (GraphPad).

Neuroblastoma Cell Lines and Natural
Killers Co-Culture
Kelly-luc cell-line (Kelly NB cell line transfected with luciferase
gene) was generated as described in (3). Kelly-luc has been
treated with 2.5 μM of BGA002 for 12 h in Opti-MEM. PBMC
from healthy donors has been isolated through Ficoll protocol
and resuspended in Opti-MEM. NK cells have been isolated
using Human NK Cell Enrichment Set–DM (cat no. 557987, BD
Bioscience). NB-NK co-culture has been performed in Opti-
MEM for 4 h After adding D-luciferine and lysis buffer we
measured luminescence Infinite F200 Tecan. Results have been
analyzed in Prism software version 6 (GraphPad).
RESULTS

MYCN Is Associated With Immune
Repression and a Th2-Lymphocytes/M2-
Macrophages Axis Upregulation
In order to investigate which immune system pathways are
associated with MYCN in NB, we performed GSEA analysis in
NB patient datasets. Interestingly, MYCN negative correlated
genes are significantly enriched of different immune system
pathways in both NB cohort 1 (E-MTAB-1781) and NB cohort
2 (TARGET) (Figure 1A). Moreover, we performed differential
Frontiers in Oncology | www.frontiersin.org 4
expressed gene analysis, and found that non-MNA patients are
enriched of immune pathways (Figure S1A). Furthermore,
immune pathways represent a consistent part of the enriched
pathways in the MNA patients and in theMYCN anti-correlated
genes (Figures S1B, C). Collectively, these data suggest that
MYCN is negatively associated with the immune system
(especially associated to interferon gamma and phagocytosis)
in MNA NB. Since, MYCN overexpression is present in a large
group of tumors (4, 9, 44–48), we investigated ifMYCN was also
associated to immune suppression in differentMYCN-expressing
cancers (SCLC, RMS, RB, Wilms, AML, T-ALL). We observed
that different pathways associated to Th1 are negatively
correlated to MYCN in different cancer types (Figures 1B,
S2A, B). Remarkably, despite MYC and MYCN are orthologs
we did not find the same anti-correlation for MYC in these
malignancies (Figure 1B). In this view, we investigated which T-
helper subsets were enriched in NB. The results confirmed a
significantly high abundance of Th1 in non-MNA patients, while
Th2 and Th17 were enriched in MNA patients (Figure 1C).
Furthermore, patients enriched for Th1 are not enriched for
Th2/Th17 (Figure S3). As described before, Th1 cells are
polarizing macrophages toward M1 phenotype, while Th2
direct macrophages polarization toward M2 (49). Thus, we
investigated macrophage phenotype enrichment in NB, and
found that M1 are significantly enriched in non-MNA patients
while M2 are more abundant in MNA patients (Figure 1D).

MYCN Exerts a Key Role in the Wide
Neuroblastoma Immune Network
As MYCN overexpression deeply reprograms NB cells, we
investigated the difference in immune network between MNA
and non-MNA patients. We firstly identified differential
expressed immune genes on the MNA and non-MNA which
are present in the cell surface, and we mapped the protein-
protein interaction between immune population. We found that
non-MNA patients present a much more complex network than
MNA patients and a more diverse population scenario (Figures
2A, B). Moreover, we identified differential expressed genes after
MYCN silencing which sub-cellular locations is on the surface.
Furthermore, we mapped their potential interactors on the
immune population, showing that MYCN regulates a wide
network of interactions in immune cells in the NB context
(Figures S4A, B). We used an unbiased clustering approach to
group genes in NB belonging to immune system with correlating
expression patterns, and we annotated their functional properties
through GO enrichment analysis. This analysis revealed 16
different modules that are differentially enriched in MNA and
non-MNA patients (Figures 2C–D, and S5A, B). Interestingly,
modules 1 and 2 that are enriched in MNA patients are
functional annotated with chromosome organization, cell cycle,
RNA processing. Modules containing immune activation genes
are instead enriched in non-MNA (Figure 2D). Moreover, non-
MNA are enriched in modules associated to extracellular
vesicles, cytokine production and cell communication (Figure
2D). We also inferred the putative regulons in order to identify
transcription factor dysregulated between MNA and non-MNA.
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A

B

C D

FIGURE 1 | MYCN but not MYC anticorrelates with immune pathways in cancers. (A) Bar plot represents Gene Ontology enriched terms in the MYCN negative
correlated genes in two neuroblastoma (NB) datasets (left panel: E-MTAB-1781, right panel: TARGET). Bar length represents NES absolute value while color intensity
represents -log10 FDR. (B) Pathway enrichment for five select immune pathways (GO terms) in different cancer datasets. Symbol size and color intensity indicate—
log10 FDR and NES. GO terms enriched in MYCN (left panel) and MYC (right panel) correlated genes. (C) Color intensity indicated the mean of T-helper subset
relative abundance in MYCN amplified (MNA) and non-MNA patient expression profiles plotted as heatmap. (D) Macrophage relative abundance (left panel: M1
population, right panel: M2 population) in MNA and non-MNA patient gene expression profiles. Each symbol represents an individual patient (MNA = 122, non-MNA =
580), the middle line represents the median, the first and third quartiles are indicated as box limits, whiskers represents 1.5 box lengths, extreme values are indicated as
single dots. Wilcoxon matched pair test; **P < 0.01; ****P < 0.0001.
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A B

C D

E

FIGURE 2 | MYCN up-regulation impacts a wide immune interaction network. (A, B) Circular plots. Immune subpopulations are specified outside the circle, outer
circle represents cell types, inner circle represents activation status. Connecting lines indicate connection between two subpopulations and are proportional to the
number of connections. (A) Immune network in non-(MYCN amplification) MNA patients. (B) Immune network in MNA patients. (C) Immune system gene module
network in neuroblastoma (NB). Edges size is proportional to Pearson correlation coefficients, correlation is indicated in gray and negative correlation in red. Modules
with no connections are not shown, module size is proportional to the number of genes within. Pie chart colors correspond to immune cell types, the size of the
slices corresponds to the number of the genes. (D) Heatmap of MNA and non-MNA patient gene expression profiles (MNA = 122, non-MNA = 580) in NB1 cohort
(E-MTAB-1781). Color intensity is proportional to z-score of the average eigengenes for each gene module. Main pathway enrichment for each module is listed on
the left, full list is present in the Supplementary Tables. (E) heatmap representing the normalize relative abundance of regulons in NB1 cohort (E-MTAB-1781).
Hierarchical clustering is conducted on the row and the columns using the Euclidean distance. Clinical data are on top.
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We identified 22 regulons that are common between the two NB
cohorts (Figures 2E and S6A–D), showing a similar enrichment
pattern in MNA and non-MNA patients (Figures 2E and S7A)
and interestingly these transcription factors are also connected
through direct protein-protein interactions (Figure S7B).
Therefore, we apply hierarchical clustering defining three
regulon groups with transcriptional factors with similar activity
(Figures 2E and S7C). These three-regulon clusters are
differentially enriched of immune modules: regulon cluster one
is enriched with genes related to cell-cycle while the other
clusters group genes related to immunity (Figures S7D, E).
Lastly, ChIP-seq public data analysis reveals that the regulon
transcription factors are directly regulated by N-Myc (Figures
S8A, B).

MYCN Effect on Immune System Is an
Independent Prognostic Indicator
in Neuroblastoma
The identified regulon clusters showed a prognostic impact in both
NB cohorts (Figures S9A–D). Therefore, we investigated the
prognostic impact of MYCN regulation of the immune system
using a logistic regression and penalized Cox regression, to identify
which genes involved in the immune system are associated with the
MYCN status and the prognosis (AUC = 0.97, Figures S10A–C).
We built aMYCN immune score using the model weight to stratify
the NB patients (Figure 3A). We identified 430 genes positively
associated with MNA and 218 negatively associated. Moreover, we
mined PubMed to check which genes in the signature were already
identified in literature: 127 were already associated to NB and 60 to
MYCN (Figure S10D). Interestingly, cluster 2-3 transcription factor
(TF) regulons were found to negatively regulates MYCN positive
associated immune signature and positively regulates the negatively
associated genes (Figure S10E). The MYCN immune score was
significantly enriched in MNA patients (Figure 3B) and according
to the score we stratified the patients in three clusters (low, medium,
and high MYCN immune dysregulation). Remarkably, the high
MYCN immune dysregulation group was associated with poor
prognosis while the low group with a favorable prognosis in NB
(Figure 3C). Furthermore, theMYCN immune score was associated
with stage 4 (Figure 3D) and high proliferation (Figure 3E). We
confirmed in an additional NB cohort that the MYCN immune
score was associated with MYCN-status, poor survival, stage, high
proliferation and unfavorable histology (Figures S11A–F). We also
confirmed with a different algorithm (50) that MYCN immune
score is associated with low immune infiltration and high tumor
purity (Figures S12A, B). Moreover, the MYCN immune score
correlated with negative immune checkpoints and anti-correlated
with positive immune checkpoints in both cohorts (Figure S12C).
Interestingly, MYCN immune score correlated with Th2 cytokines
while negatively associated with Th1 cytokines (Figure S12D). As
aforementioned, MHC genes are poorly expressed in NB, we
investigated whether MYCN immune score was associated to
MHC genes. Indeed, we noticed that MYCN immune score anti-
correlated with MHC genes (Figure S12E). We also found that
MYCN immune score is also negatively associated to Toll Like
Receptors, as a confirmation that immune receptors are negatively
Frontiers in Oncology | www.frontiersin.org 7
associated to MYCN (Figure S12F). Moreover, MYCN immune
score was predictive of the survival inMYCN in non-MNA patients
in both NB cohorts, while the MYCN expression did not (Figures
S13A–D). Lastly, Cox multivariate analysis showed that MYCN
immune score is an independent prognostic factor and significantly
associated at overall and event free survival in both NB cohorts and
also in non-MNA patients (Figures S14A–H).

Anti-MYCN BGA002 Inhibits CD276
Expression and Restores Natural Killer
Susceptibility in Neuroblastoma
We found that NK related pathways are downregulated in MNA-
NB patients in the two cohorts used in this study (Figure 4A).
Indeed, we also found that MHC associated pathway are
enriched in genes that are anti-correlating with MYCN (Figure
S15A). MNA patient GEP showing a reduced expression of NK
receptors (NKG2D and Nkp46) and a reduced expression of the
cognate ligands (ULBP1, ULBP2, ULPB3, MICA, MICB) known
as Self-induced antigen (Figure S15A). As reported in literature
NK are dysregulated in NB and CD276 has been identified as one
of the most relevant factors leading NK inhibition in NB (51–55).
Moreover, we found CD276 expression higher in MNA versus
non-MNA NB patients (Figures S15B, C). Thus, we investigated
if MYCN blocking through the anti-MYCN antigene PNA
oligonucleotide BGA002 could downregulates its expression in
different NB cell lines (comprising MNA, p53 mutated, and non-
MNA). Anti-MYCN BGA002 potently reduced MYCN
expression and led to a significant CD276 down-regulation
after the treatment in MYCN-expressing MNA and non-MNA
NB cell lines (Figure 4B).

PD-L1 (also named CD274) expression has been reported in
NB, but PD-L1 blockade immunotherapy has not reported to be
effective in NB (56). We did not find association between neither
the survival nor the MYCN immune score and PD-L1, while we
found that its expression is higher in non-MNA NB patients in
both NB cohorts (Figure S15A). Moreover, basal expression of
CD274 was low (Figure S15B). In line with these finding,MYCN
blocking by BGA002 did not lead to CD274 down-regulation
(Figure 4B).

HMGA1 has been described as N-Myc transcriptional target
(57) and linked to resistance to apoptosis, proliferation
induction, and angiogenesis, while it is implicated in the
mechanism of resistance to retinoic acid in NB (58–60). We
found in the previous section that HMGA1 is a regulon in the
cluster 1 associated with poor prognosis in both the NB cohorts,
regulated different genes in the MYCN immune signature and
highly expressed in MNA NB patients (Figure S15A). Therefore,
we tested if MYCN inhibition by anti-MYCN BGA002 led to its
down-regulation, and indeed we observed a dramatic HMGA1
reduction of expression (Figure 4B).

The analysis in the previous section showed that PVR is
present in the MYCN immune score and negatively associated
with the survival (Supplementary Tables 10 and 11) and its
expression is higher in MNA patients (Figure S15A). However,
the role of PVR in NB is debated, it has been reported to
positively activate NK cells while it has been noticed the
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contrary in other malignancies where is also associated with poor
outcome (61, 62). However, MYCN blocking by BGA002 led to
PVR down-regulation in a small extent (Figure 4B).

Considering we found downregulated the NK pathways in
MNA-NB patients in the two cohorts used in this study (Figure
4A) and because we also found CD276 down-regulation after
MYCN inhibition by BGA002 (Figure 4B), we evaluated the
potential effect of MYCN inhibition by BGA002 of the
reactivation capacity on NK lysis of MNA NB cells (we used
Kelly-luc, MNA cell-line transfected with luciferase). We did not
notice viability decrease adding the NK-cells alone in co-culture
Frontiers in Oncology | www.frontiersin.org 8
with MNA-NB cells (Figure 4C). Indeed, we found that
treatment with BGA002 in co-culture with NK in the MNA
NB cells significantly impacted on cell viability (Figure 4C).
DISCUSSION

MYCN is known to influence diverse aspects of the cancer cells,
dysregulating a large network of intracellular pathways (2).
Despite previous indication that immune system in NB is
altered, the role of MYCN in the immune response is not fully
A B

C D

E

FIGURE 3 | MYCN effect on immune system has a prognostic impact. (A–E) Analyses conducted on E-MTAB-1781 dataset. (A) Uniform Manifold Approximation
and Projection (UMAP) projection of MYCN amplification (MNA) and non-MNA patient gene expression profiles (PGEP). (B) Violin plots represent normalized MYCN
immune score in MNA and non-MNA PGEP. (C) Kaplan–Meier plots for the probability of overall survival over time for patients associated with MYCN immune score
(high enriched, n = 114; medium enriched, n = 311; low enriched, n = 277). Associated P value is shown in the middle of the plot (log-rank test). (D) Normalized
MYCN immune score in different International Neuroblastoma Staging System Committee (INSS) classification stages. (E) Ki-67 log2 expression in patients
associated with MYCN immune. Wilcoxon matched pair test; ****P < 0.0001.
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understood (19, 33). Since the high complexity showed by the
immune system and the intricate relationship between itself and
the cancer cells, proper system biology studies are required to
map this complex network (63). Our results show that MYCN
has a great role in dysregulating the immune network in NB, as
we showed that different immune pathways are enriched in
MYCN correlated genes and in MNA versus non-MNA
differential expressed genes. Moreover, we confirmed in
independent cancer mRNA expression patient cohorts that
MYCN immune anti-correlation is not restricted to NB, but it
is a feature also of other malignancies (small cell lung cancer,
rhabdomyosarcoma, Wilms’ tumor, retinoblastoma, acute
myeloid leukemia, and T-acute lymphoid leukemia) (4).
Frontiers in Oncology | www.frontiersin.org 9
Interestingly, we did not find the same anti-correlation
pathway with MYC, suggesting a different behavior between
the two oncogenes of the same family. We found that MYCN
anti-correlated with Th1 immunity while correlated with Th2,
and these subsets are mutually exclusive enriched in NB. As
expected by that, MYCN correlated with M2 macrophages and
inversely correlated with M1 subset. In line with previous
literature, Th1 and M1 subsets are associated to anti-tumor
immunity while Th2/Th17 and M2 are hijacked by the cancer
cells to sustain their growth (64). Indeed, our results evidence a
complex regulation in MNA versus non-MNA NB, whereMYCN
is a key player in remodeling the immunological micro-
environment toward a suppressive phenotype.
A C

B

FIGURE 4 | BGA002 blocks CD276 and restores neuroblastoma (NB) susceptibility to natural killer (NK) cells. (A) Pathway enrichment for four select immune
pathways [Gene Ontology (GO) terms] associated to NK cells. (NB1: E-MTAB-1781, NB2: TARGET NB). Symbol size and color intensity indicate—log10 FDR and
NES. GO terms enriched in MYCN (left) anti-correlated genes and GO terms enriched in non-MYCN amplification (MNA) (right) patients. (B) mRNA expression
inhibition of different genes (MYCN, CD276, CD274, HMGA1, PVR) in NB cell lines measured through real-time PCR after 12 h of treatment with BGA002 2.5 µM
(black is the control, red the treatment, n = 4 biological replicates for each cell line). Wilcoxon matched pair test; *P < 0.05, **P < 0.01, where not shown is not
significant (P > 0.05). (C) Kelly-luc cell line (MNA NB cell line transfected with luciferase) viability after treatment with BGA002 2.5 µM and NK co-culture (five
independent experiments). Wilcoxon matched pair test; **P < 0.01.
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We showed that mapping the possible protein-protein
interactions between immune cell types in non-MNA NB patients
revealed a complex immune network that is lost in MNA patients.
Moreover, we found that MYCN expression regulated different
genes involved indirect interactionswith immune cell types playing
as a driver of this poor immune environment. We identified 16
immune gene modules that are differently enriched in MNA and
non-MNA NB patients, where modules related to immune
receptors, signaling, and cytokines are enriched in the latter
group. Therefore, all these results confirm a deeply dysregulated
immune tumor micro-environment in NB. We also inferred the
putative TFs that regulate the immune genes and differed between
MNA and non-MNA NB, founding three regulon clusters (22
regulons in total) who are in common between NB1 and NB2
cohorts. Our results show that these regulon clusters are
differentially enriched in MNA and non-MNA patients and they
regulate the immune landscape in NB. We found that there are
direct interactions between these TFs, aswell asN-Myc also directly
regulates the expression of these regulons as mechanistic
explanation of the immune response dysregulation in NB.

Furthermore, we found a link between MYCN immune
dysregulation and prognostic impact in NB. Generating a MYCN
immune signature we stratified the NB cohorts in three groups (low,
medium and high MYCN immune dysregulation) which showed a
marked difference in the prognosis. Moreover, the MYCN immune
score was also associated with other different NB characteristics as
stage, proliferation, and histology and we confirmed these
associations in an independent NB cohort. As a confirmation, the
MYCN immune score correlated with immune checkpoints, Th
cytokines, MHC genes, and TLRs capturing the immune landscape
of the NB. Moreover, apart from MNA, there are other cancer
events that can lead to dysregulated N-Myc higher activity (mRNA
and protein stabilization, mi-RNA alteration, and so on) making
difficult to infer theMYCN relevance in these cases (65, 66). Indeed,
our score is able to capture this activity in non-MNA patients where
MYCN mRNA expression level is not able to stratify the patients.

MNA and refractory NB patients are lacking viable therapeutic
options (67, 68). Since the broad role ofMYCN in the pathology, its
restricted profile of expression during the embryonal stage, it is a
promising target of intervention (69). Despite different attempts, it
has been proven to be challenging to specifically target N-Myc with
small molecules. We previously reported the specific MYCN
inhibition through an anti-MYCN antigene oligonucleotide PNA
(BGA002), showing MYCN inhibition and a therapeutic effect in
vitro and in vivo (3, 10). Thus, we investigated if this specific
inhibition exerted an effect on the immune suppression guided by
MYCN. Our results showed that MYCN inhibition by BGA002
resulted in a cascade to downregulation of negative immune
checkpoints (CD276) and regulons implied (HMGA1) in the
immune-suppression phenotype. Indeed, we noticed that anti-
MYCN treatment also led to NK lysis of MNA NB cells.

Collectively, the data here presented provide demonstrations of
the broad role of MYCN in suppressing the immune landscape,
which play a role in the poor prognosis associated to this oncogene.
These data also suggest that MYCN blocking can ameliorate the
immune suppression characterizing MNA NB patients. Indeed,
Frontiers in Oncology | www.frontiersin.org 10
while specific MYCN inhibition by anti-MYCN BGA002 can be
proposed as a single treatment for MNA NB patients, our results
also show that its activity can restore the responsiveness of the
immune system against NB, opening the way to use anti-MYCN
inhibition in combination with immune-therapy.
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