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Purpose: Deep learning-based auto-segmented contour (DC) models require high quality
data for their development, and previous studies have typically used prospectively
produced contours, which can be resource intensive and time consuming to obtain.
The aim of this study was to investigate the feasibility of using retrospective peer-reviewed
radiotherapy planning contours in the training and evaluation of DC models for lung
stereotactic ablative radiotherapy (SABR).

Methods: Using commercial deep learning-based auto-segmentation software, DC
models for lung SABR organs at risk (OAR) and gross tumor volume (GTV) were trained
using a deep convolutional neural network and a median of 105 contours per structure
model obtained from 160 publicly available CT scans and 50 peer-reviewed SABR
planning 4D-CT scans from center A. DCs were generated for 50 additional planning
CT scans from center A and 50 from center B, and compared with the clinical contours
(CC) using the Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD).

Results:Comparing DCs to CCs, the mean DSC and 95%HDwere 0.93 and 2.85mm for
aorta, 0.81 and 3.32mm for esophagus, 0.95 and 5.09mm for heart, 0.98 and 2.99mm for
bilateral lung, 0.52 and 7.08mm for bilateral brachial plexus, 0.82 and 4.23mm
for proximal bronchial tree, 0.90 and 1.62mm for spinal cord, 0.91 and 2.27mm for
trachea, and 0.71 and 5.23mm for GTV. DC to CC comparisons of center A and center B
were similar for all OAR structures.

Conclusions: The DCs developed with retrospective peer-reviewed treatment contours
approximated CCs for the majority of OARs, including on an external dataset. DCs for
structures with more variability tended to be less accurate and likely require using a larger
number of training cases or novel training approaches to improve performance.
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Developing DCmodels from existing radiotherapy planning contours appears feasible and
warrants further clinical workflow testing.
Keywords: machine learning, radiotherapy, radiotherapy plan, computer-assist, stereotactic ablative
body radiation
INTRODUCTION

Stereotactic ablative radiotherapy (SABR) is an effective
treatment for both primary lung cancers and oligometastatic
lesions in the lung (1, 2). This technique uses high doses
per fraction and small margins, so accurate contouring of
organs at risk (OARs) and gross tumor volumes (GTVs) is
particularly important.

The use of auto-segmentation can ease workflow pressure and
improve treatment consistency by streamlining manual
contouring tasks (3, 4) and potentially reducing inter-observer
variability (IOV). While deep learning-based auto-segmented
contours (DCs) have been shown to closely approximate
manual contours (5) and have improved results over atlas-
based contours (6), they are not yet widely used in clinical
practice (7). The quality of different DC models can vary
significantly (8, 9), so studies verifying the reliability of a
specific model are needed (10).

Well-performing DC models require high quality contours
for their development. A large dataset of training and validation
cases is desirable to adequately expose and evaluate the model in
the variety of scenarios that may be encountered during clinical
use (10, 11). Manual segmentation by experts can be considered
the gold standard for accurate contours, but collecting
prospective expert contours for DC model development
requires significant amounts of time and resources (5).

Existing radiotherapy plans of previously treated patients can
be a potential alternative or supplement to prospective study
contours; these are more easily obtainable but are currently
uncommonly utilized for the development of DC models (6, 8,
9, 12). Manual contours from existing radiotherapy plans are
approved for treatment planning, and in many cases are peer-
reviewed, so they can likely be considered of sufficiently high
quality for the development of auto-segmentation models, even if
they may not always be as carefully generated as prospective
expert study contours.

Being able to leverage existing treatment-approved
radiotherapy plans could allow for expedited auto-
segmentation model development, greatly expand the pool of
high quality data available for model development, and facilitate
the implementation of novel auto-segmentation models into the
clinical workflow. However, training and validating with
treatment-approved planning contours from only a single
center will bring concerns of whether the resulting DC models
would be applicable to other institutions or patient populations;
therefore, independent evaluation is critical (10).

The purpose of this study is to investigate whether using
retrospective radiotherapy planning contours in the
development of auto-segmentation models is feasible, and to
assess the performance of these models, including on cases from
2

a different center. We train DCs for lung SABR OARs and GTV
with the goal of showing that these auto-segmentation models
are of adequate accuracy to warrant further clinical
workflow testing.
METHODS

Deep Learning-Based Auto-Segmentation
Models
The commercial deep learning-based auto-segmentation
software, Limbus Contour version 1.0.22, uses deep
convolutional neural networks (one model per structure) based
on a U-net architecture (13–15). This software was provided
without cost through a research agreement. Auto-segmentation
models are developed from the training dataset and implemented
using TensorFlow (16). Data augmentation (flipping, brightness
adjustments, elastic deformations) and regularization techniques
(dropout, batch normalization) are used during training to
improve model performance and prevent overfitting. Post
processing of the DCs before finalized structure set creation
includes 3D volumetric outlier removal, confidence score/area
anomaly-based slice interpolation, statistical (outlier)-based z-
plane cutoffs, and contour smoothing. Further details of model
generation and optimization methods used by this commercial
auto-segmentation software have not been made public by
the manufacturer.
Training Dataset
Approval for this study was obtained from our institutional
research ethics board. A total of 210 contoured computed
tomography (CT) scans were obtained for training of DCs;
only structures already contoured on these scans were included
in the training dataset as not every case had all of the structures
of interest contoured (e.g., no aorta for treatment of peripheral
tumor). Developed DC models and the number of training cases
with that structure included: aorta (n = 34), esophagus (n = 156),
heart (n = 191), left lung (n = 174), right lung (n = 177), left
brachial plexus (BP; n = 58), right BP (n = 56), proximal
bronchial tree (PBT; n = 88), spinal cord (n = 105), trachea
(n = 143), and GTV (n = 96). The median number of contours
used for training a structure model was 105 (range 34 to 191).
The GTVs did not encompass all physiological tumor motions
seen on a 4D CT scan, so they did not represent an internal target
volume or internal GTV.

Publicly available CT scans with lung OAR and GTV
contours were obtained from datasets accessible through the
Cancer Imaging Archive (17). These datasets included contoured
CT scans from auto-segmentation studies, proteogenomic
June 2021 | Volume 11 | Article 626499
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studies, image verification studies, and conventional
radiotherapy plans (18–22). One hundred and sixty publicly
available CT scans containing lung OAR and/or GTV contours
were utilized, and their existing contours were reviewed and
edited by an external radiation oncologist according to consensus
guidelines (23, 24) prior to training. The majority of these cases
did not use intravenous (IV) contrast and were free-breathing
image sets. Specific proportions of IV contrast use and CT image
set used were not reported in these datasets. The other 50
training cases were lung SABR plans used for patient treatment
at center A. Appropriate cases were identified in reverse
chronological order starting from study conception and
encompassed a period between January 2017 and August 2018.
Planning 4D CT images were captured using a GE Healthcare
Optima CT580 series scanner with the following parameters:
120kVp, 100-440mAs, 2.5 mm slice thickness, 1.270mm in-plane
pixel size, and 65cm field of view. Contours from these plans
were created and peer-reviewed prior to treatment by radiation
oncologists at that center. After selection for use in this study, an
external radiation oncologist converted the spinal cord if only a
spinal canal contour was available, and extracted an aorta
contour from a ‘Great Vessel’ structure. The 4D CT average
image set in 46 cases was used for treatment planning and DC
model training, while the free-breathing image set was used in
the other 4 cases. None of these 50 cases were scanned with
IV contrast.

Patient demographics, tumor characteristics, and tumor
locations of the 160 publicly available cases used for training
were not available. In the 50 training cases from center A, 46%
were male, the median age was 76 years (range 40–93 years), and
74% of patients were being treated for a primary lung cancer as
opposed to oligometastatic disease in the lung. The 54 lung
nodules in these cases included 19 left upper lobe (35%), 5 left
lower lobe (9%), 17 right upper lobe (31%), 3 right middle lobe
(6%), and 10 right lower lobe (19%) nodules.

Validation Dataset
DCs for lung OARs and GTV were generated on 100 planning
CT scans used for lung SABR treatment. The DCs were
generated in a median of 3.6 min per patient (range 1.0–4.7
min) using a MacBook Pro (2018, 2.3 GHz Intel Core i5, 16 GB
2133 MHz LPDDR3). The 100 validation cases consisted of 50
additional cases from center A and 50 from center B. Center A
cases were chosen in reverse chronological order after model
training was complete and contained cases treated between
December 2015 and February 2019; there was no overlap with
cases in the training dataset. Center B cases were treated between
August 2016 to October 2018, also being selected in reverse
chronological order. Center B images were captured using a GE
Lightspeed RT16 using 120kVp, 400mAs, slice thickness 2.5mm,
0.9766mm in-plane pixel size, and 50cm field of view. The
original manual clinical contours (CCs) on all planning scans
underwent peer-review prior to treatment and after selection for
use in this study, and aorta contours were extracted from the
“Great Vessel” structure when necessary by an external RO; no
further review or adjustments were performed. Twenty-two of
Frontiers in Oncology | www.frontiersin.org 3
the 50 cases from center A were planned on the 4D CT average
image sets, while the remaining 28 cases were free-breathing
image sets. The average image set was used in 49 of 50 cases from
center B. One case from center A and no cases from center B had
IV contrast.

In the 100 validation cases, 54% were male, the median age
was 76 years (range 52–91 years), and 85% of patients were being
treated for a primary lung cancer as opposed to oligometastatic
disease in the lung. The 106 treated lung nodules in these cases
included 28 left upper lobe (26%), 17 left lower lobe (16%), 39
right upper lobe (37%), 4 right middle lobe (4%), and 18 right
lower lobe (17%) nodules.

The CCs for each validation case were compared with DCs
using a software function written in Python to calculate the Dice
Similarity Coefficient (DSC) and 95% Hausdorff distance (HD).
DSC and 95% HD are derived from each contour 3D volume,
and 3D volumes were reconstructed from output data DICOM
RT-Structure Set Contour Data. DSC represents the relative
overlap of segmentation volumes and can range from 0 to 1,
with 0 indicating no overlap and 1 for perfect overlap. The 95%
HD is the distance that represents the largest surface-to-surface
separation among the closest 95% of surface points.

Nodules segmented by the GTV DCmodel that did not have a
corresponding CC were ignored; the specificity of this model was
not evaluated in this study as false positives can be easily deleted
by users in clinical workflow. Only spinal canal CCs were present
for most cases and were compared to spinal cord DCs. The CCs
tended to only include the portion of BP, spinal cord/canal, and
aorta in the areas in close proximity to the target volume so the
superior and inferior borders of these DC structures were
cropped to the same axial planes prior to comparison. Similar
cropping was done for the inferior trachea and superior PBT
DCs. Fourteen BP CCs from center A were contoured on non-
consecutive slices (e.g., every 3rd or 4th slice) and excluded from
the contour comparison analysis.
RESULTS

The DC to CC (DC-CC) DSC and 95% HD values for the
validation cases are summarized in Table 1 and presented in
Figure 1. Example images of DCs and CCs for all structures can
be found in the Supplementary Files.

Twenty-one lung nodules did not have a GTV DC-CC
comparison. Seven of these cases only had an internal GTV
CC, which takes into account other CT image sets, so a
comparison was not performed. The Limbus Contour software
did not generate a DC in 11 cases. The remaining three lung
nodule instances were in close proximity to another nodule, with
both being included in a single GTV; these GTVs were still
included in the analysis and compared to the closest matching
GTV DC.

Comparison metrics according to validation case center are
shown in Figure 2 and summarized in Table 2. Similar DC-CC
values are seen between the two centers for the aorta, esophagus,
heart, lungs, BP, PBT, spinal cord, and trachea. Less similarity
June 2021 | Volume 11 | Article 626499
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was seen for the mean GTV DSC and 95% HD, which were 0.76
and 5.02mm for center A, and 0.66 and 5.44mm for center B.

DC-CC comparison metrics for center A free-breathing and
average 4D CT scan image sets are reported in the
Supplementary Files. Similar DSC and 95% HD values were
seen for the OARs and GTV for these two groups.
DISCUSSION

In this study, we investigated the feasibility of developing DC
models with retrospective radiotherapy planning contours. We
trained DCs for lung SABR OARs and GTVs using publicly
available data and existing radiotherapy planning contours from
one center and evaluated their accuracy to peer-reviewed manual
Frontiers in Oncology | www.frontiersin.org 4
contours on radiotherapy plans from the same and a different
center. We observed that the DCs for most OARs approximated
the CCs, regardless of the center from which the validation cases
were obtained. The DCs for structures that were associated with
more contouring variability between cases tended to have less
similarity to the CCs, but still had results comparable to other
auto-segmentation studies; these structures are discussed further
in subsequent paragraphs.

It is difficult to define a DSC or 95% HD threshold at which
DCs are felt to be clinically useful since manual contours from
different clinicians will inevitably demonstrate some amount of
IOV (21, 25). Additionally, Cha et al. investigated prostate
radiotherapy DCs in the clinical workflow and found that
geometric indices when comparing the unedited and final
contours were not strongly correlated with contouring times or
TABLE 1 | Summary of Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD) metrics from comparing deep learning-based auto-segmented contours to
clinical contours for lung stereotactic ablative radiotherapy planning structures.

Structure N Median DSC Mean DSC (range) Median 95% HD (mm) Mean 95% HD (range; mm)

Aorta 81 0.92 0.93 (0.85–0.98) 2.77 2.85 (1.26-5.25)
Esophagus 99 0.82 0.81 (0.64–0.96) 3.15 3.32 (2.05–6.94)
Heart 100 0.95 0.95 (0.87–0.98) 4.48 5.09 (2.54–8.55)
Lung Bilateral 188 0.98 0.98 (0.92–0.99) 2.83 2.99 (1.26–6.73)
Lung Left 93 0.98 0.98 (0.92–0.99) 2.74 2.93 (1.97–6.73)
Lung Right 95 0.98 0.98 (0.96–0.99) 2.91 3.04 (1.26–5.40)
Brachial Plexus 90 0.53 0.52 (0.04–0.81) 6.3 7.08 (2.59–20.75)
Brachial Plexus Left 47 0.53 0.53 (0.17–0.81) 5.95 6.88 (2.74–15.82)
Brachial Plexus Right 43 0.52 0.5 (0.04–0.80) 6.4 7.29 (2.59–20.75)
Proximal Bronchial Tree 100 0.83 0.82 (0.65–0.97) 3.74 4.23 (1.73–7.56)
Spinal Cord 100 0.91 0.9 (0.74–0.98) 1.6 1.62 (0.56–2.69)
Trachea 100 0.92 0.91 (0.79–0.98) 2.25 2.27 (1.09–3.80)
GTV 85 0.74 0.71 (0.19–0.90) 4.48 5.23 (2.04–15.17)
June 2021
(N, number of validation contours evaluated; GTV, gross tumor volume).
A B

FIGURE 1 | Dice Similarity Coefficient (DSC, A) and 95% Hausdorff distance (HD, B) box plots from comparing deep learning-based auto-segmented contours to
clinical contours for lung stereotactic ablative radiotherapy planning structures. (PBT, proximal bronchial tree; GTV, gross tumor volume).
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reported quality scores (4). Editing inaccurate DCs may therefore
still provide a workflow benefit and time savings over fully
manually contoured structures (4, 6, 26), and any statistical
analysis into the comparison metrics would be difficult to
interpret clinically. For these reasons, we evaluate the DC
model performance by comparing our DSC and 95% HD
results with other auto-segmentation and IOV studies.

Previous literature that reported DSC and/or 95% HDmetrics
for lung SABR OARs and GTVs have assessed similar DC
models (6, 8, 9, 12), investigated other auto-segmentation
methods (27–30), and/or reported on the IOV of manual
contours (21, 25, 28). These studies are compiled in Table 3
alongside our results. Among the deep learning-based auto-
segmentation studies, manual contours from these studies were
mostly obtained through prospective contouring or from open-
source diagnostic image sets that included manual contours (8, 9,
12). Only one study used prior radiotherapy planning contours
for training (6), and no studies used existing radiotherapy
contours for validation.

We observed that the DCs in our study approximated CCs
(high DSC and low 95% HD) for the majority of the lung SABR
OARs, with results comparable to other DC studies. For example,
the heart DSC and 95% HD was 0.95 and 5.09mm using the
current model trained with 191 contours and validated with 100
Frontiers in Oncology | www.frontiersin.org 5
contours; this result is improved over a DSC and 95% HD of 0.90
and 13mm from a model that used 450 cases for training and 20
cases for validation (6), and approximates manual contouring
IOV (0.93 and 6.42mm) (21). Similar comparisons to other
studies are noted in Table 3 for lung and spinal cord DCs, the
latter of which was compared to spinal canal CCs in most cases
in our study.

The esophagus had a lower mean DSC of 0.81 compared to
other OARs (>0.90). However, our esophagus DC model still
appears to be at least on par with other auto-segmentation (6, 27)
and IOV studies (21, 25). The esophagus being difficult to
delineate with certainty when collapsed likely contributes to
contouring IOV; therefore, using a higher number of training
case may not significantly improve validation results as there
may always be a proportion of users that will interpret the
esophagus differently than the DC model. The esophagus DC
model may still assist contouring in clinical workflow, but likely
would be better suited for auto-segmentation of every second or
third slice and then manually edited and interpolated.

The PBT was another structure with a lower mean DSC value
than most of the other OARs. We were unable to find any
literature evaluating auto-segmentation or manual IOV for the
PBT, but it is likely that some degree of IOV exists since
adjustments to PBT contours are commonly suggested on peer
A

B

FIGURE 2 | Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD) box plots from comparing deep learning-based auto-segmented contours to clinical
contours for center (A) and center (B) lung stereotactic ablative radiotherapy planning structures. (PBT, proximal bronchial tree; GTV, gross tumor volume).
June 2021 | Volume 11 | Article 626499
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review (31). The appearance of bronchial segments on CT scans
varies among patients, so it would be important to expose the DC
model to as much of this variation as possible during training in
order to have reliable performance during clinical use. Training
with additional cases could improve the performance of this DC
model, although careful review and editing of this structure
would be needed regardless since even expert manual contours
commonly require adjustments (31).

BP DCs had the worst similarity to CCs among the structures
evaluated in this study with mean DSC and 95% HD of 0.52 and
7.08mm, respectively. The BP is not always well visualized, so
contouring guidelines based on anatomic landmarks have been
developed (23). Despite these guidelines, contouring variations
still exist due to personal contouring preferences and differing
interpretations. One study noted a mean DSC and 95% HD of
0.26 and 20.06mm from comparing Radiation Oncology resident
contours with expert contour when both groups were instructed
to contour according to guidelines (28). DSC comparisons of the
four expert RO contours in that study ranged from 0.23 to 0.52,
which is similar to our results.

On review of the BP CCs, a wide range of contouring practices
were observed; we noted that approximately 65% of validation
cases contoured the BP similar to guidelines (23), while the
remaining cases contoured only the visualized BP or contoured
non-consecutive slices. Because of this variation, there is unlikely
to be a single BP DC model that will be satisfactory for all users
and it might be more appropriate to view this DC model as a
starting point that a user can edit and interpolate according to
their clinical practice. Nevertheless, considering that our model
had relatively poorer DC-CC comparison metrics and used a
lower number of training cases compared to other OARs, we feel
that training this model with additional contours would
be reasonable.

Finally, the GTV was the remaining structure that was seen to
have fairly poor DC-CC comparisons with a mean DSC and 95%
HD of 0.71 and 5.23mm. Lung tumors will vary in size, location,
and shape, so adequately exposing the DC model to lesions with
differing characteristics during training is again thought to be
necessary for accurate performance. It is probable that the 96
training contours did not encompass the same range of scenarios
seen in the 85 validation contours. For example, many of the 11
Frontiers in Oncology | www.frontiersin.org 6
instances of false negatives in which the model did not generate a
DC for had GTVs adjacent to the chest wall or hilum, likely
representing an undertrained area.

On the other hand, other GTV DC models that were trained
using a larger number of contours still appear to have suboptimal
DC-CC comparison metrics. For example, Cao et al. used 442
training contours and 544 validation contours for developing
their GTV DCmodel and reported a mean DSC of 0.83 (8), while
Jiang et al. used 681 training and 2669 validation contours for
multiple GTV DC models and reported DSC and 95% HD
metrics of 0.68 and 2.60mm (9). Therefore, training specifically
with cases containing tumor characteristics associated with poor
DC model performance or using novel approaches to DC
training algorithms (32) may be needed to see improved
similarity to manual GTV contours.

Common limitations of auto-segmentation studies can be
attributed to the validation dataset characteristics. Using a
validation dataset containing too few cases, inaccurate
contours, or containing data that is closely related to the
training dataset is generally not recommended (10), as this
may result in favorable validation comparison metrics but poor
performance in clinical practice. Other institutions may have
differing contouring practices and patient populations from the
training institution, so validating with external cases is important
to help inform on the generalizability of the DC models (10).

Our validation dataset contained a mean of 86 contours of
each structure, which is larger than previous auto-segmentation
studies (6, 12, 27), and these contours were peer-reviewed and
approved for patient treatments, so we could also assume that
they represented data of sufficiently high quality. Since cases
from one center were included in the training dataset, we
evaluated DC model performance on radiotherapy plans
contoured by radiation oncologists from another center to
investigate whether DC-CCs comparisons differed depending
on the validation case center of origin. As previously mentioned,
statistical analysis was not performed because statistically
significant differences in contour comparisons would not
necessarily imply that the DCs would not be clinically useful
(4, 26).

Similar mean DC-CC comparison metrics were seen between
center A and center B for OARs. The increased range of BP
TABLE 2 | Summary of Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD) metrics from comparing deep learning-based auto-segmented contours to
clinical contours for center A and center B lung stereotactic ablative radiotherapy planning structures.

Structure Center A
N

Center A Mean DSC
(range)

Center A Mean 95%HD
(range; mm)

Center B
N

Center B Mean DSC
(range)

Center B Mean 95% HD
(range; mm)

Aorta 38 0.93 (0.89–0.98) 2.77 (1.56–4.16) 43 0.92 (0.85–0.98) 2.93 (1.26-5.25)
Esophagus 49 0.80 (0.64–0.91) 3.37 (2.05–6.94) 50 0.83 (0.71–0.96) 3.27 (2.14-5.32)
Heart 50 0.95 (0.87–0.98) 4.89 (2.95–8.09) 50 0.95 (0.87–0.97) 5.30 (2.54-8.55)
Lung Left 43 0.97 (0.92–0.99) 2.97 (2.15–6.73) 50 0.98 (0.96–0.99) 2.89 (1.97-5.75)
Lung Right 45 0.97 (0.96–0.99) 3.08 (2.55–4.74) 50 0.98 (0.96–0.99) 3.00 (1.26-5.40)
Brachial Plexus 70 0.52 (0.04–0.81) 6.82 (2.59–15.82) 20 0.52 (0.23–0.68) 7.97 (3.86-20.75)
Proximal Bronchial
Tree

50 0.83 (0.67–0.97) 3.62 (1.73–5.61) 50 0.81 (0.65–0.88) 4.83 (2.63-7.56)

Spinal Cord 50 0.90 (0.74–0.98) 1.53 (0.56–2.69) 50 0.90 (0.86–0.93) 1.71 (1.22-2.21)
Trachea 50 0.92 (0.83–0.98) 2.26 (1.09–3.25) 50 0.91 (0.79–0.97) 2.27 (1.12–3.80)
GTV 42 0.76 (0.57–0.90) 5.02 (2.96–15.17) 43 0.66 (0.19–0.89) 5.44 (2.04–13.93)
June 20
(N, number of validation contours evaluated; GTV, gross tumor volume).
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performance seen with center A compared to center B (Figure 2)
was likely due to differences in the BP contouring practices
observed between physicians at these two centers on our review
of these cases. A larger difference was seen for the GTV, with the
Frontiers in Oncology | www.frontiersin.org 7
mean DSC being 0.76 for center A and 0.66 for center B. We did
not match patient and tumor characteristics when selecting
validation cases from each center, so we suspect that this
difference is likely related to an unbalanced proportion of cases
TABLE 3 | Summary of Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD) metrics for lung stereotactic ablative radiotherapy planning structures from
the current study and other studies.

Structure aCurrent Study
Number of Cases

Current Study
Mean DSC

Current Study Mean
95% HD (mm)

Study Number
of Cases

Study DSC Study 95%
HD (mm)

Aorta T = 34 0.93 2.85 a,12T = 10 0.83–0.91 1.56–2.44
V = 81 V = 10

Esophagus T = 156 0.81 3.32 b,21N/A 0.82 3.33
V = 99

b,25NA 0.64 –
a,6T = 450 0.70 6
V = 20

c,27T = N/A 0.49 30.6
V = 24

Heart T = 191 0.95 5.09 b,21N/A 0.93 6.42
V = 100

b,25NA 0.92 –
a,6T = 450 0.90 13
V = 20

c,27T = N/A 0.78 31.2
V = 24

Lung Left T = 174 0.98 2.93 b,21N/A 0.96 5.17
V = 93 b,25NA 0.97 –

a,6T = 450 0.98 3
V = 20

c,27T = N/A 0.97 20.8
V = 24

Lung Right T = 177 0.98 3.04 b,21N/A 0.96 6.71
V = 95 b,25NA 0.97 –

a,6T = 450 0.98 3
V = 20

c,27T = N/A 0.97 21.2
V = 24

Brachial Plexus Left T = 58 0.53 6.88 c,29T = N/A 0.53 –

V = 47 V = 1
Brachial Plexus Right T = 56 0.50 7.29 c,28T = N/A 0.31 18.97

V = 43 V = 2
b,28T = N/A 0.26 20.06

V = 2
c,29T = N/A 0.53 –

V = 1
Proximal Bronchial Tree T = 88 0.82 4.23 – – –

V = 100
Spinal Cord T = 105 0.90 1.62 b,21N/A 0.86 2.38

V = 100 b,25NA 0.74 –
a,6T = 450 0.82 4
V = 20

c,27T = N/A 0.71 21.4
V = 24

Trachea T = 143 0.91 2.27 c,30T = N/A 0.79 6
V = 100 V = 10

c,27T = N/A 0.93 7.6
V = 24

GTV T = 96 0.71 5.23 a,8T = 442 0.82 –

V = 85 V = 544
a,9T = 681 0.68–0.74 2.60–7.94
V = 2669
June 202
1 | Volume 11 | Ar
aDeep learning-based auto-segmentation study.
bHuman inter-observer variability study.
cNon-deep learning based auto-segmentation study.
Type of segmentation study, number of training cases (T), and number of validation (V) cases are listed where relevant. (GTV, gross tumor volume).
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with specific tumor characteristics that were under-represented
in the training dataset rather than a difference in image quality or
contouring practices between the two centers.

A similar subset analysis was done to evaluate if DC accuracy
differed on center A free-breathing and average 4D CT image
sets. We did not observe any noticeable differences in the
comparison metrics between these two groups.

While these subset analyses evaluate a smaller number of
cases, their results support the external applicability of our DC
models that included retrospective radiotherapy planning
contours for training. However, few training and validation
cases were scanned with IV contrast, so the applicability of our
DCmodels on contrast CT scans is unknown and the presence of
IV contrast could either improve or detract from model
performance. Furthermore, while the validation contours were
peer-reviewed and approved for patient treatment, they were not
additionally reviewed or adjusted for purposes of this study. The
presence of manual contouring errors that would not have
impacted treatment planning but may have influenced the DC-
CC comparison results could therefore not be excluded.
CONCLUSIONS

With increasing interest in deep learning across Radiation
Oncology (33, 34), auto-segmentation solutions are frequently
being explored for use in radiotherapy planning (7). This study
adds to the limited literature available intended to aid in the
development of these algorithms. We found that the DCs in this
study appear to perform comparably to other auto-segmentation
algorithms, suggesting that existing radiotherapy planning
contours, which are widely available at any institution, can
likely be efficiently leveraged to create DC models for many
OARs. These models will potentially have acceptable
performance at multiple institutions, but further clinical
workflow testing for confirmation is warranted and
currently planned.

DCs for structures that tend to have more IOV or variation
due to anatomic or disease factors were observed to perform less
accurately. Such DC models may still benefit from using
retrospective radiotherapy data during development, but
ensuring a sufficiently large number of training cases, targeting
additional training to areas of poor performance, and/or
exploring other deep learning training approaches may be
Frontiers in Oncology | www.frontiersin.org 8
needed for adequate performance. Additional validation studies
could further investigate the impact of specific training dataset
characteristics, such as the number of training cases used or the
proportion of retrospective data used.

Knowledge of being able to utilize existing high quality
treatment plans in the development of auto-segmentation and
our findings will hopefully facilitate the growth and uptake of
machine learning auto-segmentation applications in Radiation
Oncology clinical practices.
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