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Background: Gastric cancer (GC) is a highly heterogeneous disease. In recent years, the
prognostic value of the mRNA expression-based stemness index (mRNAsi) across
cancers has been reported. We intended to identify stemness index-associated genes
(SI-genes) for clinical characteristic, gene mutation status, immune response, and tumor
microenvironment evaluation as well as risk stratification and survival prediction.

Methods: The correlations between the mRNAsi and GC prognosis, clinical
characterist ics, gene mutation status, immune cell infi l tration and tumor
microenvironment were evaluated. Weighted gene correlation network analysis
(WGCNA) was performed to identify SI-genes from differentially expressed genes
(DEGs) in The Cancer Genome Atlas (TCGA). Single-sample gene set enrichment
analysis (ssGSEA) was employed to calculate the sample SI-gene-based ssGSEA
score according to the SI-genes. Then, the correlations between the ssGSEA score
and GC prognosis, clinical characteristics, gene mutation status, immune cell infiltration
and tumor microenvironment were analyzed. Finally, the least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm was used to construct a prognostic
signature with prognostic SI-genes. The ssGSEA score and prognostic signature were
validated using the Gene Expression Omnibus (GEO) database.

Results: The mRNAsi could predict overall survival (OS), clinical characteristics, the gene
mutation status, immune cell infiltration, and the tumor microenvironment composition.
Fourteen positive SI-genes and 178 negative SI-genes were screened out using WGCNA.
The ssGSEA score, similar to the mRNAsi, was found to be closely related to OS, clinical
characteristics, the gene mutation status, immune cell infiltration, and the tumor
microenvironment composition. Finally, a prognostic signature based on 18 prognostic
SI-genes was verified to more accurately predict GC 1-year, 3-year, and 5-year OS than
traditional clinical prediction models.
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Conclusion: The ssGSEA score and prognostic signature based on 18 prognostic SI-
genes are of great value for immune response evaluation, risk stratification and survival
prediction in GC and suggest that stemness features are crucial drivers of GC
progression.
Keywords: gastric cancer, stemness index, prognostic signature, tumor microenvironment, immune response
INTRODUCTION

Gastric cancer (GC) was ranked fifth in incidence among all
cancers and third in cancer-related deaths in 2018. With the
eradication of Helicobacter pylori, the incidence and mortality of
GC have decreased in recent years (1, 2). However, according to
an epidemiological survey conducted in 2018, there are still
1,033,701 new cases of GC and 782,685 GC-related deaths
every year worldwide (3). The high incidence and mortality of
GC place a substantial burden on the social economy, especially
in Asian countries, such as South Korea, Japan, and China. The
majority of patients are already at an advanced stage at
the time of diagnosis, such as those in China, which causes the
mortality rate of GC in most parts of the world to remain above
75% (4). Therefore, accurate prognostic evaluation,
postoperative follow-up, and timely intervention are of utmost
importance. At present, histopathological classification is
commonly used clinically to predict the outcomes of GC
patients. However, studies have shown that the impact of grade
on prognosis varies greatly depending on the tumor site and
patient age (5). The same types of tumors also have great
variability due to their cytological features and architecture,
resulting in different histological classifications (6). In addition,
the International Union Against Cancer classification, Ming
classification, Borrmann classification, and Laurén classification
have all been proposed (7). These histopathological classification
systems predict the prognosis of GC at the level of pathological
features, but it is often difficult to accurately predict patient
outcomes. We know that the occurrence and development of GC
are the result of the accumulation of multiple molecular changes.
Only a thorough understanding of the mechanism of cancer can
better predict terminal events and guide clinical treatment.
Therefore, the development of novel molecular biomarkers for
GC genetic classification is urgently needed.

Tumor growth is maintained by extremely limited self-
renewing stem cells. These cancer stem cells (CSCs) are
generally in a dormant state but are easily activated after
radiotherapy or chemotherapy to promote tumor invasion and
metastasis (8). The activation of CSCs is also an important cause
of chemotherapy resistance (9). Vermeulen et al. used a cancer
stem cell model in 2012 to explain the mechanism of tumor
metastasis and drug resistance in detail (10). GC stem cells were
first isolated in 2007 to study the interaction mechanism between
Helicobacter pylori and tumor cells, and a Helicobacter pylori
culture that upregulated the expression of telomerase in GC stem
cells was discovered (11). In the past 10 years, research on GC
stem cells has discovered many possible signaling pathways (12)
and potential stem cell biomarkers (13, 14), prompting us to
2

conclude that stem cells have a profound impact on the
prognosis of GC patients. In recent years, stemness indices
have been calculated to indirectly describe stemness features.
The degree of oncogenic dedifferentiation was evaluated by
Malta et al. (15) using a machine learning algorithm to
calculate stemness indices for pluripotent stem cell samples.
Studies have shown that the mRNA expression-based stemness
index (mRNAsi) is closely related to the prognosis of GC, which
provides new insights for predicting GC tumor outcomes,
recurrence, and metastasis. The slight shortcoming of that
study was that it aimed to evaluate the correlation between the
mRNAsi and pan-cancer data. Pluripotent stem cell samples
were used to evaluate the mRNAsi values of GC; however, this
complicated method is not suitable for clinical application.
Hence, based on this research, we used bioinformatic
algorithms to focus on the prognostic value of the GC
mRNAsi and stemness index-associated genes (SI-genes) that
affect mRNAsi values, and single-sample gene set enrichment
analysis (ssGSEA) and a logistic regression risk prediction model
were employed to explore a novel stemness index-associated
signature to accurately predict the prognosis and tumor
stratification of GC.
MATERIALS AND METHODS

Data Sources and Processing
The RNA-seq profile of 375 patients with GC and their clinical
information were downloaded from The Cancer Genome Atlas
(TCGA) website (https://portal.gdc.cancer.gov/). The GTF
annotation file was downloaded from the Ensembl Genome
Browser (http://asia.ensembl.org/index.html) to convert the
Ensembl gene ID into the gene symbol and extract the mRNA
profile. Two microarray cohorts, GSE66229 and GSE15459, were
enrolled in our study. The expression profile and clinical
information of the microarray cohorts were acquired from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). Then, the
ComBat method was used to remove batch effects by the R
package “sva”. The TCGA-STAD somatic mutation data were
obtained from the TCGA website. The mutation status was
identified and visualized using the R package “maftools”. The
tumor mutational burden (TMB) was defined as the total
number of mutations per megabase in tumor tissue, including
base substitutions, deletions, insertions, and coding errors, which
were extracted and estimated by Perl scripts (Supplementary
Table 1). In addition, PD-L1 protein expression data for
GC (level 3) was obtained from The Cancer Proteome Atlas
(TCAP) (https://tcpaportal.org/tcpa/index.html). Finally, the
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mRNAsi of GC was provided by Malta et al. (15) using a one-
class logistic regression machine learning algorithm, which was
obtained from the NIH Genomic Data Commons (https://gdc.
cancer.gov/about-data/publications/PanCanStemness-2018).
The TCGA cohort was set as the training group for this study,
and the GSE66229 and GSE15459 datasets were set as the
validation cohorts.

Immune Cell Infiltration and the Tumor
Microenvironment Score
Tumor IMmune Estimation Resource (TIMER) (http://timer.
cistrome.org/) is a web server for comprehensive analysis of
tumor-infiltrating immune cells. TIMER (16), CIBERSORT (17),
and EPIC (18) methods were employed to evaluate infiltrating
macrophage, M2 macrophage, and cancer-associated fibroblast
(CAF) abundances based on a GCmRNA expression profile. The
tumor microenvironment score of each sample, including the
stromal score, immune score, ESTIMATE score, and tumor
purity, was calculated by the package “estimate” in R according
to the GC mRNA expression profile.

Weighted Gene Correlation Network
Analysis
WGCNA aims to identify coexpressed gene modules and explore
the relationships between gene networks and a phenotype of
interest, as well as investigate the core genes in a network. Before
performing WGCNA, we used the “limma” R package to screen
differentially expressed genes (DEGs) in GC between tumor
tissue and normal tissue in the TCGA cohort. The filter
conditions were | logFC |>1 and adj. PValue<0.05. The
WGCNA was conducted with the “WGCNA” package. First,
the correlation coefficient between any two genes was calculated,
and the weighted value of the correlation coefficient was used to
make the connections among the genes in the network obey
scale-free networks. Then, a hierarchical clustering tree was
constructed from the correlation coefficients between genes.
Different branches of the clustering tree represent different
gene modules, and different colors represent different modules.
Next, module significance (MS) was calculated and used to
measure the correlations of an mRNAsi value with the
different modules and record the genes in each module. The
genes in each module were considered module eigengenes (MEs).
The correlations between an mRNAsi value and genes were
measured by gene significance (GS). Module membership (MM)
was defined as the correlation between a DEG expression profile
and the module genes. In addition to the mRNAsi, the
epigenetically regulated mRNAsi (EREG-mRNAsi) was also
selected as the clinical phenotype. The module with the
minimum MS value was regarded as the negative module, and
the module with the maximum MS value was regarded as the
positive module. After selecting the module of interest based on
the MS value, SI-genes were screened according to the previously
reported standard (19): GS value>0.5 and MM value> 0.8. The
SI-genes in the negative module were used as negative SI-genes,
and the SI-genes in the positive module were used as positive SI-
genes. Module-trait relationships were estimated using Pearson’s
Frontiers in Oncology | www.frontiersin.org 3
correlation analysis between the module eigengene and the
values of the mRNAsi and EREG-mRNAsi, which allowed easy
identification of the mRNAsi values highly correlated with the
expression set.

Gene Set Enrichment Analysis
The possible signaling pathways involved in GC progression
were explored using GSEA performed with GSEA software.
mRNAsi values were used as the phenotype, and “hallmark
gene sets” were downloaded from the Molecular Signatures
Database (MSigDB, v7.2) (http://software.broadinstitute.org/
gsea/msigdb/). Pathways were considered statistically
significant with an FDR < 0.25.

Positive and negative SI-genes were previously identified
through WGCNA. Then, ssGSEA was applied to calculate a
sample SI-gene-based ssGSEA score with the R package “GSVA”,
and the SI-gene-based ssGSEA score of each sample was equal to
the positive SI-gene-based ssGSEA score minus the negative SI-
gene-based ssGSEA score.

Construction of a Prognostic Signature
Genes that were highly correlated with prognosis and crucial
were identified by univariate Cox regression analysis, and a forest
plot was drawn using the “survival” package. The least absolute
shrinkage and selection operator (LASSO) Cox regression
algorithm was used to select prognostic SI-genes and calculate
variable coefficients with the “glmnet” package. Then, we
calculated the riskScore of each sample according to the
following formula:

riskScore = on
i=1Coefi � Xi

where coef is equal to the gene coefficient, and X represents the
gene expression level. The median value of the riskScore for all
samples in the TCGA cohort was taken as the cut-off value.
According to the cut-off value, the samples in the training and
validation cohorts were divided into high- and low-risk groups.

Prognostic Value of the Prognostic
Signature
Kaplan-Meier survival analysis was applied to compare the
overall survival (OS) of GC patients in the high- and low-risk
groups. Receiver operating characteristic (ROC) curve analysis
was performed to detect the sensitivity and specificity of the
riskScore in predicting OS. Univariate and multivariate Cox
regression analyses were applied to evaluate whether clinical
characteristics and the riskScore are risk factors for the prognosis
of GC and to calculate the hazard ratio (HR) with the R package
“survival”. A nomogram was plotted to predict the of 1-, 3-, and
5-year OS GC patients by the R package “regplot”. A calibration
curve was drawn to compare the difference between the predicted
survival probability and observed survival probability using the
“rms” and “foreign” packages. The concordance index (C-index)
calculated with the “rms” package was used to reflect the ratio of
the predicted result to the actual result. Decision curve analysis
(DCA) (20) was performed to describe the potential clinical
impact of the prognostic signature and compare it with the
March 2021 | Volume 11 | Article 626961
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benefit rate of a single indicator. On this basis, a clinical impact
curve (CIC) was drawn by the R package “rmda” to predict risk
stratification. The net reclassification index (NRI) (21) was
calculated with the “nricens” package to compare the
predictive capabilities of the new model and old models.
Integrated discrimination improvement (IDI) was evaluated to
examine the overall improvement represented by the new model
compared to an old model using the R package “PredictABEL”.

Statistical Analysis
The Wilcoxon test was used to compare differences between two
groups of nonnormally distributed data. A two-tailed unpaired
Student’s t test was used to compare differences between two
groups of normally distributed data. Differences between rates were
tested by the chi-square test or Fisher’s exact test (n>40 for the chi-
square test, and n ≤ 40 for Fisher’s exact test). Kaplan-Meier curve
analysis was performed to compare differences in prognosis
between two groups of patients. Pearson’s correlation analysis
was performed to compare correlations between two sets of data
Frontiers in Oncology | www.frontiersin.org 4
and calculate the correlation coefficient. R software (version 3.6.3),
SPSS 22.0, and Prism 8 were used for statistical analysis and
graphing. P<0.05 was considered statistically significant.
RESULTS

Data Processing
This study procedure was conducted methodically based on the
steps outlined in the flow diagram (Figure 1). To make the
results of this study sufficiently reliable, a TCGA dataset was
categorized as a training cohort, GSE66229 (n = 300) and
GSE15459 (n = 200) were categorized as validation cohorts,
and the corresponding clinicopathological characteristics were
extracted (Table 1). The training cohort included 32 normal
tissue samples and 375 tumor tissue samples. Transcriptome
profiling was standardized using the “limma” package. Next, we
used Perl software to select an mRNA expression microarray
from the transcriptome profiling. At the same time, the mRNAsi
FIGURE 1 | Flow diagram presenting the main plan and process of the study.
March 2021 | Volume 11 | Article 626961
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corresponding to the tumor tissue samples was extracted from
pan-cancer mRNAsi datasets (Supplementary Table 2).

Predicting Outcomes and Clinical
Characteristics Using the mRNAsi
First, a Kaplan-Meier curve was plotted to observe the effect of
mRNAsi values on the prognosis of GC patients. Patients with
higher mRNAsi values had prolonged OS (P=0.007) and disease-
free survival (DFS) (P=0.025) (Figure 2A). These results were
consistent with the results of Malta et al. (15) (OS: P<0.05, HR<1;
DFS: P<0.05, HR<1). In addition, this study further found that
mRNAsi values affected progression-free survival (PFS:
P=0.0003, HR<1) and disease-specific survival (DSS)
(P=0.0014, HR<1) (Figure 2A). Microsatellite instability (MSI)
is an important indicator that affects the response to
chemotherapy and prognosis of GC. A large-sample multi-
center meta-analysis reported that patients with MSI are more
likely to benefit from treatment than those with microsatellite
stability (MSS) (22). There was also a close relationship between
mRNAsi values and MSI, and mRNAsi values were higher in the
MSI-H and MSI-L groups than in the MSS group (P<0.001)
Frontiers in Oncology | www.frontiersin.org 5
(Figure 2B). Groups with high mRNAsi values had a higher
incidence of MSI and were able to achieve better chemotherapy
responses and thus exhibited a better prognosis. This explanation
was consistent with the previous meta-analysis. Then, we
compared differences between mRNAsi values and
clinicopathological characteristics. The mRNAsi values for the
pathologic T2, T3, and T4 stages were significantly lower than
those for the pathologic T1 stage (P<0.01). The same
phenomenon was observed for the pathologic tumor stage. The
mRNAsi values for the pathologic tumor stage II, III, and IV
groups were significantly lower than those for the stage I group
(P<0.05). However, the mRNAsi value distinction was not seen
for different pathologic N or M stages (Figure 2C).
mRNAsi Evaluated in the Context of the
Tumor Microenvironment
We found a strong association between the mRNAsi and a known
tumor microenvironment composition. Tumor tissues with a
relatively high mRNAsi often contained fewer immune and
stromal components and the ESTIMATE score. However, in the
high mRNAsi group, tumor purity was higher (Figure 3A). We
also computed the correlations of tumor microenvironment
compositions with the mRNAsi by Pearson’s correlation analysis.
mRNAsi values showed obvious negative correlations with
immune scores (P<0.0001, r=-0.3421), stromal scores (P<0.0001,
r=-0.7561) and ESTIMATE scores (P<0.0001, r=-0.5980). For the
mRNAsi, higher positive correlation values were seen with tumor
purity (P<0.0001, r=0.5976) (Supplementary Figure 1A).

We further clarified the correlations between the mRNAsi
and immune microenvironment variables in the context of the
immune cell subtypes of tumors. Significantly increased
macrophage and CAF infiltration was observed in GC samples
with decreased mRNAsi values compared with those with
increased mRNAsi values (Figure 3B). Additionally, to make
the analysis more reliable, we tested the expression of the
macrophage markers CD11B, F4/80 (23), CD206, and CD163.
Among these markers, CD206 and CD163 are mainly M2
macrophage markers (24). The CAF markers FAP and a-SMA
(25) were also examined. The results showed that the expression
of these characteristic markers (Figure 3C) was also decreased in
the high mRNAsi value group compared to the low mRNAsi
value group. Anti-PD-L1 and anti-PD-1 antibodies are currently
considered to be relatively good immunotherapeutic drugs, but
there is no definite clinical method to predict therapeutic
response. The expression of PD-L1 in tumors is considered to
be a good indirect reflection of the therapeutic effect (26). We
observed a significant positive correlation between PD-L1
protein expression and mRNAsi values (Figure 3D). PD-L1,
CD11b, F4/80, CD 206, CD 163, FAP, and a-SMA expression
levels were divided into high and low groups according to the
median values. The correlations between mRNAsi values and
immune cell types, which were classified based on the expression
of PD-L1 and characteristic markers, were analyzed using
the chi-square test. Increases in mRNAsi values were found
to be associated with significantly depressed marker expression
and increased PD-L1 expression (Figure 3E). The mRNAsi
TABLE 1 | Clinicopathological characteristics of GC patients from the TCGA and
GEO cohorts.

Characteristics TCGA training
cohort
(n = 375)

GSE66229
validation cohort

(n = 300)

GSE15459
validation cohort

(n = 200)

Sex
Female 134 101 67
Male 241 199 124
Unknown 0 0 9

Survival status
Alive 201 148 96
Dead 174 152 95
Unknown 0 0 9

Age (years)
≤60 121 117 60
>60 250 183 131
Unknown 4 0 9

T stage
T1 19 0 NA
T2 80 188
T3 168 91
T4 100 21
Unknown 7 0

N stage
N0 114 38 NA
N1 99 131
N2 76 80
N3 74 21
Unknown 12 0

M stage
M0 347 273 NA
M1 25 27
Unknown 3 0

Stage
Stage I 54 30 31
Stage II 116 97 29
Stage III 151 96 72
Stage IV 39 77 59
Unknown 15 0 9
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seemed to be better at distinguishing CAF subtypes than
macrophage subtypes. Overall, our analysis indicates that
mRNAsi values positively correlate with PD-L1 expression and
negatively correlate with macrophages and CAFs. We know that
macrophages, especially M2 macrophages (27), and CAFs (28,
Frontiers in Oncology | www.frontiersin.org 6
29) play important roles in driving the progression of GC. By
evaluating the numbers of these two types of cells, the outcome of
GC can be better predicted. The above results suggest that
mRNAsi values themselves can serve as a novel predictive
biomarker of immunotherapy response.
A

B

C

FIGURE 2 | Relationships between the mRNAsi and clinicopathological characteristics. (A) In the group with high mRNAsi values, the OS, DFS, PFS, and DSS of
GC patients were better than those in the low mRNAsi value group. (B) Evaluation of mRNAsi values on the basis of MSS. (C) mRNAsi values were associated with
clinical characteristics.
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Using the mRNAsi to Evaluate
the Gene Mutation Status and
Reveal a Tumor Signaling Pathway
First, based on the TCGA cohort, the top 10 mutated genes in
GC and their mutation rates were obtained (Figure 3G). To
evaluate whether the mRNAsi can be used as a predictor of the
Frontiers in Oncology | www.frontiersin.org 7
gene mutation status, we analyzed the correlations between
somatic mutations in the top 10 mutated genes and the
mRNAsi. Strong associations were found between the mRNAsi
and the subtypes of mutations in the genes. The mRNAsi values
of the mutant subtype group were significantly higher than those
of the wild-type subtype group (P<0.05), so we could use
A

C

D

E

B F

G

I

H

FIGURE 3 | Relationships between mRNAsi values and the mutation status or tumor microenvironment. (A) Higher mRNAsi values corresponded to a lower immune
score, stromal score, and ESTIMATE score and higher tumor purity. (B, C) mRNAsi values were closely related to macrophages, CAFs (B) and their markers (C).
(D) mRNAsi values were used to evaluate the efficacy of immunotherapy in GC. (E) The correlations between mRNAsi values and immune cell types (F–G) The top
10 mutant genes in GC (G) and their correlations with the mRNAsi are shown, *P<0.05; ***P<0.001; ****P<0.0001 (F). (H) The mRNAsi values in the high TMB group
were significantly increased. (I) EMT signaling was significantly enriched during GC progression.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mao et al. Stemness Characteristics in Gastric Cancer
mRNAsi values to indirectly predict the mutation status of genes
(Figure 3F and Supplementary Figure 1B). Additionally, the
sample TMB could be calculated according to the status of gene
coding errors, substitutions, deletions, insertions, etc., which was
used to describe the mutation density of a gene. Similar to the
trend in the single-gene mutation status, the mRNAsi values of
the high TMB group were also increased significantly (P<0.0001)
(Figure 3H). The mRNAsi was effective in evaluating prognosis,
immune cell infiltration and the gene mutation status. Finally, we
used GSEA to explore the possible signaling pathways involved
in the progression of GC according to mRNAsi values. In
addition to remarkable enrichment of epithelial-mesenchymal
transition (EMT), enrichment of the hedgehog signaling
pathway, inflammatory response, and Kras signaling was also
observed (Figure 3I). Previous studies have shown low epithelial
subtype genomic integrity and high mesenchymal subtype
genomic integrity, and mesenchymal subtypes exhibit low
mutational rates and microsatellite stability (30). This study
also compared whether the mRNAsi can distinguish key
markers of EMT. The results showed that the expression of
epithelial subtype markers was positively correlated with
mRNAsi values but negatively correlated with mesenchymal
subtypes (Supplementary Figure 1C). The results of this study
were consistent with those of previous studies. In short,
combined with the results of our previous analysis, low
mRNAsi values were associated with EMT promotion, low
mutation rates, microsatellite stability, and a poor prognosis,
and these results were consistent with the results of Cheul Oh
et al. (30).

Identification of Differentially Expressed
Genes and Construction of Co-Expression
Modules
The calculation of mRNAsi values cannot be practically applied
in the clinic due to the high number of reference datasets used.
Here, we used a variety of algorithms to gradually reduce
Frontiers in Oncology | www.frontiersin.org 8
dimensionality in the hope that key mRNAs would be found
to establish a prediction model that was highly similar to the
mRNAsi prediction model. First, the “limma” package was used
to search for differentially expressed genes between normal tissue
and tumor tissue. Under the threshold conditions of |logFC|>1
and adj. Pvalue<0.05, a total of 3099 mRNAs were selected.
Based on the 3099 mRNAs and mRNAsi values, co-expression
modules were constructed with the WGCNA algorithm to
identify mRNAsi-related modules. The most critical parameter
of the soft threshold power was set at 4 to assure integral
connectivity of co-expression modules. Seven co-expression
modules were constructed and displayed in different colors.
Clustering dendrograms clustered genes in common gene
expression patterns in the same color module (Figure 4A).
Figure 4B shows that the blue and brown modules were
positively correlated with the mRNAsi (MEblue: r = 0.76, P =
4e−65; MEbrown: r =0.18, P = 0.001). The green, yellow, red,
turquoise, and gray modules were negatively correlated with the
mRNAsi (MEgreen: r = -0.065, P=0.2; MEyellow: r =-0.57, P = 1e
−30; MEred: r =-0.14, P= 0.008; ME turquoise: r =-0.77, P= 9e
−69; MEgray: r =-0.023, P= 0.7) (Figure 4B and Supplementary
Table 3). The genes in the blue module were regarded as positive
SI-genes (n=14), and those in the turquoise module were
negative SI-genes (n=178).

Verification of SI-Genes by Single-Sample
Gene Set Enrichment Analysis
Here, ssGSEA was applied to estimate the score of each sample
based on positive or negative genes. The SI-gene-based ssGSEA
score of each sample was calculated as the positive gene score
minus the negative gene score. Pearson’s correlation analysis was
performed to verify whether ssGSEA scores were in agreement
with mRNAsi values. The results showed a powerful correlation
between ssGSEA scores and mRNAsi values (r=0.89, P<0.0001)
(Figure 5A). Then, the value of ssGSEA scores in the prognostic
evaluation of GC was verified. We noted that ssGSEA scores
A B

FIGURE 4 | Co-expression module construction. (A) Clustering dendrograms of genes. Genes with the same expression pattern were clustered in the same color.
(B) Module-trait associations. Seven modules were significantly associated with the mRNAsi.
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FIGURE 5 | ssGSEA scores were used to evaluate the prognosis and clinicopathological characteristics of GC. (A) The association between ssGSEA scores and
mRNAsi values. (B) The survival time of the GC patients in the high ssGSEA score group was longer than that of those in the low ssGSEA score group in the training
and validation cohorts. (C, D) Genes in the high ssGSEA score group were more susceptible to mutation than those in the low score group, *P<0.05; **P<0.01;
***P<0.001; ****P<0.0001 (C), and the TMB (D) was also higher in the high score group than in the low ssGSEA score group. (E) Evaluation of the ssGSEA score as
a predictor the efficacy of anti-PD-L1 immunotherapy. (F) The ssGSEA score was a good predictor of MSI. (G) Assessment of infiltrating macrophage and CAF
stratification by ssGSEA scores. (H) Assessment of tumor microenvironment components by ssGSEA scores.
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could predict the OS of GC accurately in the training cohort
(Figure 5B). The same results were obtained in the validation
cohorts (Figure 5B).

The ssGSEA scores of the high TMB group were higher than
those of the low TMB group, and the results were congruous with
the prediction based on mRNAsi values (Figure 5D). The
ssGSEA score could distinguish the mutation status very well,
especially for the TP53 subtype, producing better results than the
mRNAsi (Figure 5C). Then, we noticed that the association
between ssGSEA scores and PD-L1 protein expression
(Figure 5E) was higher than that between PD-L1 protein
expression and mRNAsi values (Figure 3B), which suggested
that ssGSEA scores could better evaluate the efficacy of
immunotherapy. Next, by comparing the correlations between
ssGSEA scores and MSI or MSS in the TCGA cohort, it was
found that the ssGSEA scores in the MSS group were
significantly lower than those in the MSI-H and MSI-L groups
and that ssGSEA scores could clearly predict the MSI status of
patients (Figure 5F). However, ssGSEA scores did not
distinguish between MSI-H and MSI-L. In the process of
evaluating EMT, we found that in the training and validation
cohorts, the expression of epithelial markers in the high ssGSEA
score group was increased, while that of mesenchymal markers
was downregulated (Supplementary Figure 2A).

We tested the value of ssGSEA scores for predicting infiltrating
macrophage and CAF abundances, which were low in the high
ssGSEA score group compared to the low group (Figure 5G).
Surface markers were also detected to support our conclusion
(Supplementary Figure 2B). The results suggested that the ability
of ssGSEA scores to evaluate the immune components of tumors
was not lower than that of the mRNAsi. From the perspective of cell
infiltration abundances and marker differences, it seemed that
ssGSEA scores were more effective in evaluating CAFs than
macrophages, and this phenomenon was also seen with the
mRNAsi. Finally, high correlations between ssGSEA scores and
tumor microenvironment components were observed (Figure 5H
and Supplementary Figure 2C). In conclusion, the ssGSEA score
we created based on SI-genes was equivalent to the mRNAsi in
predicting the prognosis of GC and immune cell infiltration.
Therefore, the screened SI-genes were potential prognostic
markers identified through the WGCNA algorithm.

Construction of a Prognostic Signature
The abilities of positive SI-genes (n=14) and negative SI-genes
(n=178) to predict GC outcomes and evaluate immune cell
infiltration were indicated by the ssGSEA score. However, many
of the included genes were still not convenient for clinical
application. Here, we first performed univariate Cox analysis of
192 SI-genes and found that 25 SI-genes were statistically
Frontiers in Oncology | www.frontiersin.org 10
significant in the TCGA cohort (Supplementary Figure 3A).
Then, the logistic Cox regression algorithm was used to select 18
SI-genes (NDN, ARHGAP10, FERMT2, KIF18B, CC2D2A, RERG,
MSRB3, TCEAL7, MAP6, MAPK10, CNRIP1, PDLIM3, ROR2,
JAM3, FBXL7, PDE2A, MFAP4, and MICU3) to construct a
prognostic risk signature based on the minimum partial
likelihood deviance (Figure 6A). The coefficient (Figure 6B) was
multiplied by the expression of each gene, and their sum was
considered the riskScore for each sample. According to the median
value of the riskScore (cut-off=1.2776), which was used as the cut-
off value, the TCGA cohort samples were divided into high- and
low-risk groups. Next, the same coefficients and cut-off were
applied to the GSE66229 and GSE15459 cohorts. The GSE66229
cohort was divided into 119 high-risk samples and 181 low-risk
samples. The GSE15459 cohort was divided into 96 high-risk
samples and 95 low-risk samples (nine samples were removed
due to lack of follow-up information). We noticed that the
proportion of deaths in the samples with a riskScore higher than
the cut-off value was increased based on the distribution of the
riskScore and survival status (Figures 6C, D). Finally, we analyzed
the expression of the 18 genes included in the signature in the high-
and low-risk groups, of which KIF18B was expressed at low levels
in the high-risk group, while the other genes were all highly
expressed (Figure 6E).

The Prognostic Signature Is Related to
Clinical Characteristics and the Immune
Response
After the risk groups for the training and validation cohorts were
selected based on the cut-off, the value of the riskScore for GC
needed to be tested. First, Kaplan-Meier curve analysis was
conducted to determine the difference in GC survival between
the high- and low-risk groups. The results showed that the
survival time of the high-risk group was significantly shorter
than that of the low-risk group in the training and validation
cohorts (Figure 7A). The 3- and 5-year AUCs were 0.725 and
0.726, respectively, in the training cohort. The 1- and 5-year
AUCs were 0.702 and 0.702, respectively, in the GSE66229
cohort. In the GSE15459 cohort, the AUCs for 1, 3, and 5
years were 0.728, 0.709, and 0.730, respectively (Figure 7B).
Univariate Cox regression analysis showed that the riskScore was
an important risk factor for GC (HR>1, P<0.001) (Figure 7C).
Additionally, using multivariate Cox analysis, the riskScore was
found to be an independent prognostic factor for GC patient
survival (HR>1, P<0.001) (Figure 7D). Both univariate and
multivariate Cox regression analyses indicated that the HR
value of the riskScore was greater than that of tumor stage,
which showed that the riskScore was a better predictor of a poor
prognosis in GC than was the tumor stage.
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FIGURE 7 | The prognostic signature was related to clinical characteristics and immune cells. (A) The survival time of the high-risk group was significantly shorter
than that of the low-risk group. (B) The ROC curve shows the diagnostic value of the riskScore for GC prognosis. (C, D) Univariate (C) and multivariate (D) Cox
regression analyses suggested that the riskScore was an independent prognostic factor. (E) The negative correlation between the riskScore and mRNAsi. (F) There
was no significant correlation between the riskScore and PD-L1 expression. (G) The high TMB group corresponded to a lower riskScore than the low TMB group.
(H) Differences in the riskScore among MSS and MSI groups. (I) Assessment of immune cell infiltration abundance by the riskScore.
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Subsequently, a negative correlation was observed between
the riskScore and mRNAsi, but the correlation was much weaker
than that between the mRNAsi and ssGSEA score (Figure 7E).
Accordingly, the riskScore was found to be less valuable in
predicting the efficacy of anti-PD-L1 immunotherapy (Figure
7F). However, the riskScore was a perfect predictor of the TMB,
and the high TMB group had a lower riskScore than the low
TMB group (Figure 7G). In addition, the riskScore was higher in
MSS patients than in MSI-H patients, but there were no
statistically significant differences between MSS and MSI-L
patients (Figure 7H). Pearson’s analysis was performed to
analyze the correlations between the riskScore and tumor
microenvironment components, and the riskScore was found
to be related to stromal components and tumor purity in the
training and validation cohorts. However, there were no
statistically significant differences in immune components
found in the TCGA or GSE15459 cohort (Supplementary
Figure 3B). Finally, we further explored the infiltration of
immune cells in different risk groups. The infiltration
abundances of macrophages, M2 macrophages, and CAFs in
both the training and validation cohorts were higher in the high-
risk group than in the low-risk group (Figure 7I and
Supplementary Figure 3C). In short, the prognostic signature
we developed had perfect predictive value for GC prognostic
evaluation, immune cell infiltration, the TMB, and microsatellite
instability, but its ability to predict PD-L1 blockade response was
not as great as that of the ssGSEA score we established earlier.

Prognostic Value of the Eighteen
SI-Gene-Based Signature
At present, the pathological characteristics of patients are
commonly used in the clinic to roughly evaluate patient
outcomes, but disappointingly, accurate prediction cannot be
achieved. Here, the developed risk signature was used in
combination with pathological characteristics to predict 1-, 3-,
and 5-year OS. First, 1-, 3-, and 5-year OS rates were marked in a
nomogram, which was established based on the riskScore and
clinicopathological characteristics (Figure 8A). According to the
nomogram, when the total score was 240, the 1-year OS rate was
74.3%, the 3-year OS rate was 39%, and the 5-year OS rate was
23.5%. The AUCs for the OS predictions for 1, 3, and 5 years
were 0.702, 0.731, and 0.727, respectively, for the constructed
nomogram in the training cohort. The predictive value of the
nomogram was verified in the validation cohorts. In the
GSE66229 cohort, the AUCs for the OS predictions for 1, 3,
and 5 years were 0.894, 0.857, and 0.832, respectively. In the
GSE15459 cohort, the AUCs for OS predictions for 1, 3, and 5
years were 0.779, 0.739, and 0.736, respectively (Figure 8B). The
calibration curves for this nomogram showed that the predicted
survival probabilities at 3 and 5 years were the same as the
observed survival probabilities in the training and validation
cohorts. Therefore, the established nomogram was relatively
reliable in predicting the prognosis of GC (Figure 8C). The C-
index was used to reflect the ratio of the predicted results to the
actual results, which was used to evaluate the predictive ability of
the model. The C-indexes of the nomogram for the TCGA,
Frontiers in Oncology | www.frontiersin.org 13
GSE66229, and GSE15459 cohorts were 0.742, 0.813, and 0.804,
respectively (Figure 8D).

Here, we focused on analyzing the role of the riskScore in the
prognostic efficiency of the nomogram by using some evaluation
indicators. DCA results were plotted to describe the net benefit
(NB) of evaluating the outcome of GC patients using the
riskScore, tumor stage, or a combination of all features. The
NB of using the riskScore to predict GC outcomes was similar to
that of using tumor stage in the training cohort. However,
combining the riskScore with tumor stage, T stage, M stage, N
stage, age, and sex significantly increased the NB when the
threshold was approximately 0.1-0.7 (Figure 8E). On this
basis, the CIC was drawn to show the proportion of true-
positive patients using clinical characteristics and the riskScore.
As shown in Figure 8F, when the risk threshold was 0.2,
approximately 750 patients were classified as high risk by
clinical characteristics. Only 280 patients were real outcome
cases. However, when we included the riskScore in the model
and plotted the CIC for the riskScore combined with clinical
characteristics, we found that when the risk threshold was 0.2,
approximately 650 patients were classified as high risk by the
combined index, and only 250 patients were true outcome cases
(Figure 8G). The results suggested that the riskScore could
improve the prediction of clinical risk stratification for GC.

Next, a ROC curve was plotted to observe the predicted value
of the nomogram with or without the riskScore. After the
riskScore was added to the predictive model, the AUC showed
corresponding improvements in the training and validation
cohorts (Figure 8H). Sometimes, when a new index is
introduced into a prognostic model, the AUC is not
significantly improved, and the incremental increase in the
AUC is not significant. In this case, the NRI was required to
compare the predictive abilities of the old and new models. The
NRI showed that after the introduction of the riskScore, the
ability of the nomogram to predict OS improved (NRI>0) in
the training and validation cohorts (Figure 8I). Finally, IDI was
used to investigate the overall improvement in the model. After
introducing the riskScore, the predictive power of the nomogram
was improved by 5.03%, 8.22%, and 9.26%, which were
statistically significant increases (P<0.001), in the training and
validation cohorts (Figure 8J).
DISCUSSION

Based on the role of the mRNAsi across cancers reported by
Malta et al. (15), this study further explored the relationships
between SI-genes and clinical characteristics, somatic mutations,
the tumor microenvironment, immune cell infiltration and a
prognostic signature from the perspective of GC by ssGSEA and
LASSO Cox regression. Our study found that the ssGSEA score
could clearly predict clinical characteristics, somatic mutations,
immunotherapeutic responsiveness, tumor microenvironment
composition, and macrophage and CAF infiltration in the
training and validation cohorts. Finally, to improve application
in the clinic, a prognostic signature was constructed based on
March 2021 | Volume 11 | Article 626961
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18 prognostic SI-genes. ROC curves, calibration curves, DCA,
the C-index, CICs, the NRI, and IDI were used to verify
that the constructed prognostic model could perfectly predict
OS. Thus, our study suggests that the screened SI-genes play
important roles in the progression of GC and can be used as
important reference markers for further research on tumor
cell stemness.

Chemotherapy resistance and early lymph node and
peritoneal metastasis are the main causes of a poor prognosis
in GC. Studies have suggested that the continuous proliferation
Frontiers in Oncology | www.frontiersin.org 14
and activation of CSCs promote the immortalization of tumor
cells (31). The signaling pathways (12, 32) and markers (31, 33)
associated with GC CSCs have been widely reported, but no
consensus has been reached on the specific mechanism. In
addition to Malta et al., Alex et al. (34) inferred cancer
stemness using ssGSEA. Zheng et al. (35) provided a stemness
index based on relative expression orderings (REOs). The
shortcoming was that the previous stemness index was aimed
at studying pan-cancer datasets, so no stemness index study
specifically targeting GC was developed. For this reason, we
A B
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FIGURE 8 | Prognostic value of the established signature. (A) The nomogram of clinical characteristics and the riskScore. (B) ROC curve analysis for OS prediction
by the nomogram in the training and validation cohorts. (C) Calibration curve of the nomogram for predicting the OS rates of GC patients in the training and
validation cohorts. (D) The C-index was plotted to reflect the ratio of the predicted result to the actual result. (E) DCA was performed to describe the NB of
evaluating the outcome. (F) CIC for the clinical characteristics-based risk model. Among 1,000 patients, the dark orange solid line shows the total number of patients
considered high risk at each risk threshold. The dark turquoise dashed line shows how many of the high-risk patients would be positive. (G) CIC for the risk model
based on clinical characteristics and the riskScore. (H) ROC curve analysis of OS predictions by the nomogram with or without inclusion of the riskScore. (I) The NRI
evaluated the predictive power of old and new models. (J) IDI evaluated the overall improvement in the model after introducing the riskScore indicator.
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intended to identify SI-genes through machine learning to
understand the progression of GC from a new perspective.

In this study, we first retrospectively analyzed the established
mRNAsi, which has close associations with the prognosis,
clinical characteristics, immune cell infiltration, tumor
microenvironment, and immunotherapy responsiveness of GC.
Then, WGCNAwas applied to screen 14 positive SI-genes and 178
negative SI-genes, which were highly correlated with the mRNAsi.
A total of 192 SI-genes were used to calculate the ssGSEA score,
which was also associated with prognosis, clinical characteristics,
immune cell infiltration, the tumor microenvironment, and
immunotherapy responsiveness. Therefore, the SI-genes screened
by WGCNA were feasible and could be used for further analysis.
Then, we unexpectedly found that the ssGSEA score was even
better than the mRNAsi in assessing the mutation status of TP53.
The mutation rate of the tumor suppressor gene TP53 is 46%
in GC. Deletion of TP53 may upregulate vascular endothelial
growth factor A (VEGF-A) expression and promote cancer cell
angiogenesis, leading to a poor prognosis (36). Gurzu et al.
(37) analyzed a large number of human gastric cancer samples
and found that mutation of exon 7 in TP53 may induce
downregulation of the expression of the tumor suppressor gene
Maspin, which leads to GC invasion and metastasis. In addition,
TP53 mutations induce hypoxic signaling (38) and inhibit
antitumor immunity (39). Through GSEA, we found that the
EMT signaling pathway was significantly enriched based on the
mRNAsi value. CSCs are an important cause of tumor metastasis
and migration, and studies have shown that a mesenchymal
phenotype is one of the main features of CSCs (40). Our study
reported that mesenchymal marker expression was upregulated in
the low ssGSEA score group, while epithelial marker expression
was downregulated. The ssGSEA score perfectly evaluated the
EMT process. In addition, this study also found that the stemness
index was relatively useful for immune response evaluation. PD-L1
protein expression was positively correlated with mRNAsi and
ssGSEA scores in the TCGA cohort. In the low mRNAsi and
ssGSEA score group, the infiltration of macrophages, M2
macrophages, and CAFs was significantly increased. To make
our results more reliable, specific surface markers were also
compared, and the results were consistent with the results for
cell infiltration. The relationship between CAF infiltration and the
stemness index was not reported previously. Here, we found that
the ssGSEA score could more accurately assess the abundance
of infiltrating CAFs than that of infiltrating macrophages.
Macrophages, especially M2 macrophages, are an important
cause of tumor cell invasion and EMT (41). Maeda et al. (42)
found that stem cell niche factors secreted by CAFs derived from
stromal cells conferred tumor invasiveness. Macrophages
could induce mesenchymal stem cells to differentiate into a
CAF phenotype (43). There are complex connections among
macrophages, CAFs, and CSCs. In this study, the ssGSEA
score was employed to evaluate the abundances of infiltrating
macrophages and CAFs to indirectly predict tumor invasion
and metastasis.

Currently, clinicopathological characteristics are commonly
used in clinical practice to predict the outcomes of GC patients.
Frontiers in Oncology | www.frontiersin.org 15
However, the predictions are not as accurate as expected (5).
Eighteen prognostic SI-genes were used to establish our
prognostic signature to improve the accuracy of 1-, 3-, and 5-
year OS prediction. Among these 18 genes, Wnt5a-ROR2 signal
in GC mesenchymal stem cells, which is associated with
enhanced expression of CXCL16 and associated tumor-
promoting activity (44). JAM3 is a member of the JAM family.
Studies have shown that JAM3 is a new type of surface marker
for neural stem cells (45) and an important prognostic marker
for haematopoietic stem cells (45). The ZEB1-MSRB3 axis is a
vital regulator that maintains the characteristics of breast cancer
stem cells and reduces DNA damage during differentiation (46).
Next, ROC curves, calibration curves, and the C-index were used
to identify a nomogram with strong accuracy for OS prediction.
Then, we focused on assessing the value of including the
riskScore in the nomogram for OS prediction. DCA, CICs, the
NRI, and IDI all showed that the riskScore could significantly
improve OS prediction by the nomogram. The established
prognostic signature could be of great help for the clinical
prediction of GC patient outcomes.

In conclusion, our study described an SI-gene-based ssGSEA
score for GC in detail for the first time, which was closely
associated with prognosis, clinical characteristics, the TMB,
EMT, the immune response, and the tumor microenvironment.
The prognostic signature significantly improved OS prediction
compared to traditional prediction methods. However, this study
was completed at the machine learning level, and further
experiments are needed to verify our findings.
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mesenchymal markers in high-low mRNAsi.
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5 (A) Differential expression of epithelial and mesenchymal markers in high-low
ssGSEA score. (B) The ssGSEA score was closely related to the expression of
surface markers of macrophages and CAFs. (C) The ssGSEA score was closely
related to tumor microenvironment components.

Supplementary Figure 3 | Construction and verification of prognostic
signature, Related to Figures 6 and 7 (A) The univariate cox analysis showed
that 25 SI-genes were associated with prognosis in the TCGA cohort. (B) The
riskScore was closely related to tumor microenvironment components. (C) The
riskScore was closely related to the expression of surface markers of
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