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A hallmark of cancer cells includes a metabolic reprograming that provides energy, the
essential building blocks, and signaling required to maintain survival, rapid growth,
metastasis, and drug resistance of many cancers. The influence of tumor
microenviroment on cancer cells also results an essential driving force for cancer
progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/
or signaling pathways linked to critical regulators of lipid metabolism can influence gene
expression and chromatin remodeling, cellular differentiation, stress response pathways,
or tumor microenviroment, and, collectively, drive tumor development. Reprograming of
lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol
biosynthetic pathway in specific cancer cells which, in comparison with normal cell
counterparts, are dependent of the continuous availability of MVA/cholesterol-derived
metabolites (i.e., sterols and non-sterol intermediates) for tumor development.
Accordingly, there are increasing amount of data, from preclinical and epidemiological
studies, that support an inverse association between the use of statins, potent inhibitors of
MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate,
liver, breast, hematological malignances). In contrast, despite the tolerance and
therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment
demands the use of relatively high doses of single statins for a prolonged period,
thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant,
synergistic effects of tolerable doses of statins with conventional chemotherapy might
enhance efficacy with lower doses of each drug and, probably, reduce adverse effects
and resistance. In spite of that, clinical trials to identify combinatory therapies that improve
therapeutic window are still a challenge. In the present review, we revisit molecular
evidences showing that deregulated activity of MVA biosynthetic pathway has an essential
role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors
to improve therapeutic window in cancer.
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INTRODUCTION

Adaptive metabolic reprogramming is often observed in cancer
cells. It is widely accepted that metabolic disruptions of
carbohydrates, proteins, and lipids are one of the hallmarks of
cancer (1–3). Metabolic adaptations provide energy and the crucial
building blocks needed to maintain abnormal survival, rapid
growth, metastasis, and drug resistance in many tumors. In
addition to tumor microenviroment, they are main driving forces
for cancer progression (4, 5). Lipid metabolism reprograming
involves lipid-related enzymes, metabolites, and signaling
pathways linked to key regulators that can directly influence gene
expression and chromatin remodeling, cellular differentiation, stress
response pathways, or tumor microenviroment that collectively
drive tumor development (6). An elevated or deregulated activity
of mevalonate (MVA)/cholesterol biosynthetic pathway in specific
cancer cells suggests that they are dependent of the continuous
availability of MVA-derived metabolites (7–10). Furthermore, the
aberrant activity of 3-hydroxy-3-methylglutaryl coenzyme A
(HMGCoA) reductase (HMGCR), the rate-limiting enzyme of
MVA pathway, can promote malignant transformation (7) and
provides essential metabolites (i.e., sterols and non-sterol
intermediates) that collectively drive tumor growth and
development. Despite clinical evidences supporting the use of
MVA pathway inhibitors (i.e., statins) for limiting cancer
morbimortality are relatively low, increasing preclinical (11–19)
and epidemiological (20–28) studies sustain the inverse association
between statins and cancer-specific mortality rate. This beneficial
effects of statins have been described in several types of cancer,
including osteosarsocoma/chondrosarcoma (16–18), prostate (24,
26), colon (29, 30), breast (19, 31), liver (32, 33), pancreas (34),
ovarian (35, 36), esophageal (37, 38), lung (39), and hematological
malignances (40). Interestingly, statins may suppress epithelial-
mesenchymal transition (EMT) program together with the
inhibition of cancer stem cell generation, maintenance, and
expansion (6, 41). Unluckily, the use of statins in cancer is
currently limited by the requirement of using high doses for
prolonged periods, thus generating adverse effects. Therefore,
studies focused on elucidating new strategies targeting the MVA
signaling pathway to improve the therapeutic window in cancer are
urgently needed (42). Clinically relevant, synergistic effects of
tolerable doses of statins with conventional chemotherapy could
enhance treatment efficacy, by reducing doses of each drug and,
probably, adverse effects. To date, clinical trials that identify
combinatory therapies (statins-chemotherapy) that improve
therapeutic window in different cancer types are still a challenge.
In this review, we revisit preclinical and molecular evidences
showing that aberrant MVA biosynthetic pathway may has an
essential role in oncogenesis and we discuss how potent inhibitors of
MVA pathway may best be applied to improve cancer therapy.
THE MVA BIOSYNTHETIC PATHWAY

In normal cells, cellular cholesterol can arise from receptor-mediated
uptake of LDL-cholesterol from circulation, or be de novo synthesized
Frontiers in Oncology | www.frontiersin.org 2
from acetyl-CoA by the MVA biosynthetic pathway. The precise
regulation of MVA pathway is essential to guarantee continuous
production of MVA-derived products, and to guard cells from
accumulation of toxic end products, including cholesterol (43,
44). MVA pathway produces lipoproteins, dolichol, ubiquinone
or cholesterol derived products (i.e., steroid hormones,
oxysterols, vitamin D, bile acids) which are essential regulators
of cellular metabolism. Cholesterol is essential for the buildup
and maintenance of the structure and function of cellular
membranes, cholesterol-rich microdomains or membrane rafts
(lipid rafts). These structures constitute a core of organization for
several signaling pathways and intracellular transport systems
where cholesterol acts as a signaling molecule. The MVA
biosynthetic pathway (Figure 1) starts with the formation of
HMGCoA from three molecules of acetyl-CoA (43, 45), the end
product of glycolysis. This reaction is catalyzed by the enzyme
HMGCoA synthase. Subsequently, HMGCR converts HMGCoA
to MVA which is the rate-limiting step of whole MVA pathway.
The MVA is phosphorylated by the MVA kinase and converted
to isopentenyl pyrophosphate (IPP). This step is decisive for the
biosynthesis of farnesyl pyrophosphate (FPP) and geranylgeranyl
pyrophosphate (GGPP) and is regulated by a cascade of different
synthases including the farnesyl diphosphate synthase (FDPS)
and the GGPP synthase (GGPS). Then, FPP can be converted to
squalene and, subsequently, by further enzymes such as squalene
synthase and squalene epoxidase, to cholesterol. Further lipid
products FPP downstream include dolichol and ubiquinone,
both with antioxidant properties, and crucial for glycosylation
and mitochondrial electron transport processes. The synthesis of
FPP and GGPP is essential for protein prenylation, a key
posttranslational modification for localization, membrane
anchoring and function of many signaling proteins. Protein
prenylation is mediated by the enzymes farnesyltransferase
(FTase) I and geranylgeranyl transferases (GGTase) I and II.
The MVA pathway also participates in other biological
mechanisms including long-term memory of innate immune
cells, survival, and polarization of effector immune cells (i.e.,
macrophages) or metabolic reprograming in cancer cells
(46–48).
REGULATION OF THE MVA
BIOSYNTHETIC PATHWAY

The MVA biosynthetic pathway is regulated by transcriptional
and post-transcriptional mechanisms including modulation of
gene transcription, mRNA translation, protein degradation, and
enzymatic activity (44, 49). The HMGCR enzyme, which
regulates the rates of cholesterol synthesis, is in turn controlled
by very fine-tuned regulatory mechanisms. Transcriptional
regulation of HMGCR is mediated by two members of the
sterol regulatory element binding proteins (SREBP) family
called SREBP1 and SREBP2 (44, 49). SREBP proteins are
encoded by two separate genes, SREBP-1 and -2. An
alternative splicing of SREBP-1 can be produced, driving the
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synthesis of two isoforms, SREBP-1a and -1c. Whereas SREBP-1
has been clearly associated with homeostasis of cholesterol and
fatty acids, SREBP-2 is mainly involved in synthesis and uptake
of cholesterol. Thus, in response to intracellular sterol levels,
SREBPs regulate the MVA biosynthetic pathway. Briefly, when
the amount of intracellular sterol increases, SREBPs are held in
an inactive form at the endoplasmic reticulum (ER) by their
binding partner SREBP cleavage-activating protein (SCAP) and
the insulin-induced genes (INSIG)-1 and -2. However, in
response to sterol deprivation (e.g., when HMGCR activity is
inhibited), intracellular end products of the MVA biosynthetic
pathway are depleted. As the number of sterols diminishes, they
no longer bind SCAP, thus producing a conformational change
that triggers the SCAP-SREBP complex dissociation from the
INSIGs and translocation from the ER to the Golgi. The SREBPs
are successively cleaved by Golgi-resident proteases and released
on their activated form, so they can translocate to the nucleus
where they bind to sterol regulatory elements (SRE). This
initiates the transcription of target genes that translate into key
proteins involved in the biosynthesis of MVA-derived metabolites
(i.e., HMGCoA synthase, HMGCR, FPP synthase, Insig-1) and
cholesterol uptake (i.e., LDLR) to restore intracellular isoprenoid
and sterol levels. Intracellular sterol levels are also regulated by
oxysterols, metabolites derived from cholesterol oxidation. The 7a-
and 27-hydroxycholesterols are synthesized in the liver by CYP7A1
and CYP27A1, the genes encoding the rate-limiting enzymes of
neutral and acid bile synthetic pathways, respectively, which
contribute to eliminate cholesterol. Oxysterols contribute to
cholesterol homeostasis through activation of Liver X receptors
(LXR) (50). LXR were originally characterized by their role in the
positive regulation of the gene CYP7A. This relevant physiological
Frontiers in Oncology | www.frontiersin.org 3
role was further confirmed by the phenotype of LXRa null mice,
which appear healthy when fed on a standard mouse diet but, when
fed with a cholesterol-enriched diet, failed to induce CYP7A (51).
Consequently, LXRa null mice suffered from a dramatic
accumulation of cholesteryl ester in the liver and a reduction in
bile acid production. Upon binding to LXR, oxysterols induce the
transcription of specific ATP-binding cassette (ABC) transporters
A1 and G1, that increase cholesterol efflux from enterocytes and
macrophages, respectively (52). In addition to LXR activation,
oxysterols (e.g., 25-hydroxysterol (25HC)), and high sterol
concentrations, lanosterol, or Insig, can provoke ubiquitination
and proteasomal degradation of HMGCR (53). Furthermore, the
sterol-accelerated degradation of HMGCR is strengthen by non-
sterol isoprenoids, including derivatives from FPP and GGPP.
Notably, lanosterol does not interact with the sterol-sensing
domain of SCAP and, therefore, does not suppress the processing
of SREBP. Thereby, oxysterols downregulate HMGCR by increasing
its ubiquitination-mediated degradation as well as suppress
HMGCR gene transcription by inhibiting the delivery of SREBP-
SCAP complex from ER. In contrast, lanosterol enhances the
HMGCR degradation rate, and cholesterol limits the translocation
of SREBP-SCAP (54). Furthermore, negative feedback responses of
IPP, FPP, and GGPP suppress the activity of the MVA kinase.
Expression of HMGCR is further modulated at the translational
level, where the translation rate of HMGCRmRNA is controlled by
the demand of the cell for non-steroid isoprenoids (e.g., MVA).
WhenHMGCR dependent-MVA production is inhibited by statins,
HMGCR mRNA is efficiently translated, even in the presence of
sterols, being in contrast reduced when MVA is added. Finally, as
mentioned below, the catalytic activity of HMGCR can be inhibited
via phosphorylation by AMPK, a sensor of cellular energy state (55).
FIGURE 1 | The mevalonate (MVA) pathway and its connection with the intracellular energy metabolism signaling. Diagram of the different steps of the intracellular
MVA anabolic pathway, from the entry of acetyl-coenzyme A (CoA) to the production of isoprenoid metabolites. Acetyl-CoA is transformed into hydroxy-
methylglutaryl-CoA (HMG-CoA) which is used by the enzyme hydroxy-methyl-glutaryl-CoA reductase (HMGCR) to synthesize MVA. MVA is further metabolized to
farnesyl pyrophosphate (FPP), a precursor of cholesterol and sterols. FPP is also converted to geranylgeranyl pyrophosphate (GGPP), and these lipids are used for
post-translational modification of proteins, including N-glycosylation and protein prenylation.
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THE MVA PATHWAY IN CANCER

The Warburg phenomenon (56) is the best studied metabolic
adaptation program developed by cancer cells. It was described as
the preference of cancer cells to use aerobic glycolysis to obtainmost
of their energy, even in the presence of abundant oxygen supply,
when normal cells would typically use the aerobic cellular
respiration. Therefore, tumor cells will be highly dependent on
glucose to produce large quantities of energy and provide other cells
with intermediates necessary for the biosynthesis of amino acids,
nucleic acids, and lipids (5, 57). This metabolic reprograming
provides energy, the crucial building blocks, and signaling
required to keep survival, rapid growth, and drug resistance of
many cancers (1–3). Glycolysis generates acetyl-CoA (45), a
molecule that is derived from acetate and/or glutamine
metabolism. Acetyl-CoA can be incorporated into the MVA
biosynthetic pathway, into lipids by fatty acid synthase (FAS) or
into phospholipids by the action of different enzymes, including the
pro-oncogene choline kinase (CK) (58). Acetyl-CoA feeds theMVA
biosynthetic pathway to generate metabolites that are essential to
maintain survival and rapid growth of multiple tumors.
Accordingly, transcriptional profiling studies support the
hypothesis that genes involved in cholesterol and fatty acid
metabolism are upregulated in cancer cells and play an essential
role in transformation (59). Several studies suggest that an elevated
requirement for cholesterol is an innate metabolic hallmark in
cancer cells, which could be used in a prophylactic and
therapeutic manner. However, the complexities of how lipid
metabolism interconnects with oncogenesis and tumor
progression are not yet well understood. The list of molecules
functionally connected with the MVA biosynthetic pathway in
cancer is wide and diverse. It includes: 1) enzymes [e.g., HMGCR
(8, 60–62), small GTPases (63, 64), ATP citrate lyase (ACL) (5),
AMPK (65–67), FAS (68), pyruvate kinase M2 (PKM2) (69)]; 2)
CD36, a fatty acid transporter (68); 3) signaling pathways [e.g.,
PI3K-AKT-mTOR (70, 71), Hippo (72, 73), Hedgehog (74, 75)]; 4)
transcriptional regulators [e.g., SREBPs (68, 76), HIF-1 (77), STAT3
(78–80)], c-MYC (6, 81), YAP/TAZ (72, 73); and 5) nuclear
receptors such as LXRs (82), ERa (62, 83), and Estrogen-Related
Receptor (ERRa) (84, 85). Additionally, the loss-of-function of
tumor suppressor proteins such as p53 (86, 87) and pRb (88–90)
can also contribute to adapt lipid metabolism to tumor growth,
metastasis, and drug resistance (Figure 2).
HMGCR

Originally, the hypothesis that MVA-derived metabolites have a
role in cancer cell biology was suggested by studying liver cancer
(91) and primary chronic lymphocytic leukemia cells (92).
Further gene expression profiling and inmunohystochemical
analysis identified that HMGCR expression can be associated
with a molecular gene signature of certain subtypes of breast
cancer (93). The proto-oncogenic role of HMGCR was
functionally shown by overexpression of constitutively active
HMGCR, which potentiated both anchorage-independent
Frontiers in Oncology | www.frontiersin.org 4
cellular growth in soft agar as well as the development of
xenografts (7). Furthermore, dysregulated HMGCR was shown
to induce anchorage-independent growth of an immortalized,
non-transformed cell line, and support the formation of myeloid
colonies from normal hematopoietic progenitors. A link between
MVA pathway and oncogenic signaling was also reported with
the cooperation between HMGCR and the small GTPase Ras to
promote cell transformation (7). Clinically relevant, increased
levels of HMGCR were shown to correlate with poor prognosis
in breast (93) and prostate cancer (94) patients. Several
ep idemio log i ca l s tud ies have a l so ev idenced that
hypercholesterolemia and increased oxysterol production are
associated with higher cancer risk (e.g., postmenopausal breast
cancer, colon cancer, lung cancer, non-Hodking lymphoma,
acute mieloide leukemia) (95). Accordingly, high levels of
cholesterol could provide cancer cells with immune
surveillance and/or resistance to drug therapy (9, 60). Thus,
cholesterol is recognized as an inherent metabolic demand in
cancer cells and increased rates of cholesterol synthesis can
potentiate the progression of numerous types of cancer (7, 8).
This is explained by the fact that highly proliferative cancer cells
need to rapidly produce membranes, so requiring higher
cholesterol availability than normal cells (8). Besides,
cholesterol is an integral component of lipid rafts, which
constitute a core of organization for several signaling pathways
and intracellular transport systems (96), and is also a precursor
of downstream products such as oxysterols and steroid
hormones which can drive activation of nuclear receptors in
several cancers (97). Thus, decreasing intracellular cholesterol
biosynthesis could be a promising strategy to restrain cancer
progression. Indeed, it was reported that acute myeloid leukemia
(AML) cells exposed to high-cholesterol media in vitro, increased
their cholesterol synthesis and influx compared to their normal,
non-tumorigenic counterparts. Moreover, AML cells did not
usually display efficient feedback repression of cholesterol
synthesis and influx, and this appeared to be associated with
increased survival of leukemic cells. Interestingly, synthetic LXR
ligands can block tumor cell proliferation, tumorigenesis, and
metastasis in multiple cancer models, which emphasizes the
potential role of LXRs in cancer therapy (82, 98). Cholesterol is
also the precursor of steroid hormones, responsible for driving
the initiation and progression of hormone-dependent breast and
prostate cancers. Recently, it has been shown that long-term E2
withdrawal of ERa-positive breast cancers triggers to the stable
epigenetic activation of the MVA pathway and cholesterol synthesis
(61). The resulting augmented level of 27-hidroxycholesterol was
enough to induce ERa signaling in the absence of exogenous E2,
promoting the activation of genes that give rise to an invasive
phenotype (62). Likewise, in prostate cancer, the de novo
biosynthesis of androgens from cholesterol activates androgen
receptor (AR) activity in castration resistant disease (99), thus
suggesting a role for the MVA pathway in prostate cancer
progression, also considering the observations that SREBP
expression is enhanced in advanced stages of prostate cancer.
However, these findings require further research into the utility of
inhibitors of the MVA pathway and/or SREBPs in the treatment of
February 2021 | Volume 11 | Article 626971
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hormone-driven cancers. All these evidences indicate that increased
cellular cholesterol and/or oxysterols, represent another hallmark in
many cancers, and suggest that limiting cellular cholesterol levels, or
LXR activity, should be considered to improve therapeutic window
and sensitivity of cancer cells to chemotherapy. Unluckily, the
mechanisms by which HMGCR and the MVA pathway become
dysregulated, or how precisely this deregulation promotes
carcinogenesis, are still poorly understood, so further studies
would be needed in order to elucidate these key questions.
SMALL GTPases

Rho GTPases belong to the Ras superfamily which comprises
more than 20 members classified into eight subfamilies (Rho,
Rac, Cdc42, RhoD/RhoF, RhoH, RhoU/RhoV, Rnd, and
RhoBTB) according to their structure and function (63, 64).
Most Rho family proteins act as molecular switches cycling
Frontiers in Oncology | www.frontiersin.org 5
between an inactive guanosine diphosphate GDP-bound state
in the cytoplasm, and an active guanosine triphosphate (GTP)-
bound state in the cell membrane. The activation state of Rho
GTPases is tightly regulated and occurs in a cell-type and
pathway-dependent manner. Although Rho GTPases are
mostly known as master regulators of the actin cytoskeleton,
they are also involved in cell proliferation, apoptosis, cell cycle
progression, and genomic stability, and they are dysregulated in
several human cancers (100). Notably, some Rho GTPases have
been related to tumor metabolism through activation of
glutaminase, which catalyzes the conversion of glutamine to
glutamate and ammonia, a crucial step in glutamine
metabolism and contributor to the Warburg phenomenon. As
Rho GTPases need isoprenylation to properly function, their
activity essentially depends on the HMGCR enzyme, thus
providing a critical link between the MVA pathway and tumor
cell metabolism. Specifically, the isoprenoids FPP and GGPP post-
translationally modify proteins with C-terminal CAAX, CXC or CC
motifs, such as small GTPases, with very well established roles in
FIGURE 2 | Main mechanisms involved in mevalonate (MVA) pathway dysregulation and different cancers associated. MVA pathway is upregulated in several
cancers including breast, prostate, pancreatic, lung, esophageal, hepatic, and leukemia. Main mechanisms involved in the dysregulation of MVA pathway include:
abnormal regulation of the enzyme hydroxy-methyl-glutaryl-CoA reductase (HMGCR) by different transcription factors such as hypoxia-inducible factor 1 (HIF-1);
mutations or abnormal activation of sterol regulatory element-binding proteins (SREBPs); mutations on tumor suppressor proteins such as tumor protein (p53);
decreased AMP-activated protein kinase (AMPK) activation; increased activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)—protein kinase B
(AKT)—mammalian target of rapamycin complex 1 (mTORC1), Janus Kinase (JAK)/Signal Transducer and Activator of Transcription 3 (STAT3) or Hippo signaling
pathway (YAP-TAZ).
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carcinogenesis (100). Rho can only be geranylgeranylated, whereas
H-Ras is purely farnesylated, and K-Ras and N-Ras can be both
farnesylated and geranylgeranylated. Accordingly, inhibition of the
MVA pathway can reduce the isoprenylation of these GTPasas and
promote apoptosis of cancer cells (100–102). This antitumoral effect
can be prevented by the addition of GGPP, and sometimes FPP,
suggesting that these MVA-derived metabolites are vital for cancer
cell viability. Isoprenoids are also involved in the production of the
ubiquinone (quinone coenzyme Q). In this case, the hydrophobic
isoprenoid chain places the ubiquinone to the inner membrane of
themitochondria, where the quinone group transfers electrons from
complex I or II to complex III of the electron transport chain (ETC)
(103). Therefore, ubiquinone is essential for ATP production in
cancer cells that rely on oxidative phosphorylation to generate
energy. It seems that the depletion of isoprenoid pools, which
potentially affect the many proteins that are isoprenylated,
mediates the anticancer activity of HMGCR inhibitors (i.e.,
statins). However, despite dependency of isoprenoids, inhibitors
that directly inhibit isoprenylation of small GTPases have not been a
successful anticancer strategy to date because, in part, their narrow
therapeutic window.
CD36

The fatty acid transporter CD36 is considered as a novel connection
between lipids and cancer. It may contribute to regulate cholesterol
synthesis (88) and phenotypic changes linked to tumor growth and
metastasis (68, 104, 105). In hepatocytes, activation of CD36
increases phosphorylation of Ser872 in HMGCR, and the
recruitment of the Insig 1/2 contribute to degradation of
HMGCR by the ubiquitin-proteasome pathway. In addition,
genes encoding key enzymes involved in MVA pathway, and
under the control of SREBP2, remained unresponsive to sterol
depletion, due to retention of Scap by Insig-1/2. Interestingly, some
fatty acids (e.g., palmitic acid), or a high-fat diet, enhance the
metastatic potential of cells in a CD36-dependent manner, whereas
blocking CD36 causes inhibition of metastasis in mouse models of
human oral cancer, with no side effects (104). Relevant to the
connection between oncogenic STAT3 and aberrant lipid
metabolism, it has been shown that STAT3-activated CD36
contributes to fatty acid uptake in chronic lymphocytic leukemia
cells (106), which supports a critical role of STAT3 in the regulation
of CD36-dependent leukemia.
AMPK

The AMP-activated protein kinase (AMPK) was originally
described as a protein to lessen anabolic pathways activity
when intracellular ATP levels are low (66). AMPK acts as an
energy sensor and central regulator of glucose, lipid, and
cholesterol metabolism in specialized tissues (e.g., liver, muscle,
adipose). This function has placed AMPK as a key therapeutic
target in cancer. Decreased AMPK activation can promote
carcinogenesis, and the pharmacological induction of AMPK
Frontiers in Oncology | www.frontiersin.org 6
has been reported to be cytotoxic to cancer cells (65, 67). This is
in part, because AMPK can regulate the MVA pathway through
phosphorylation and thereby inhibition of HMGCR (55) and
SREBPs (107) activities. AMPK can phosphorylate the Ser872
within the catalytic domain of HMGCR, suppressing its
enzymatic activity, independently of its feedback regulation by
MVA-derived metabolites. Moreover, the transcription factors
SREBPs are direct targets of AMPK phosphorylation, as AMPK
inhibits the proteolytic processing, nuclear translocation, and
transactivation activity of SREBPs, after their activation (e.g.,
under hyperglycemic and hyperinsulinemic conditions).
Interestingly, activation of AMPK in the liver of insulin-
resistant mice was shown to inhibit the transcription of
enzymes that participate in lipid and cholesterol biosynthesis,
including HMGCS1 and HMGCR, thereby reducing hepatic
triglyceride and cholesterol levels. Thus, AMPK can inhibit the
activity of MVA pathway both, directly, via HMGCR
phosphorylation and, indirectly, through SREBPs inhibition.
However, the relevance of this regulation in the context of
cancer is still scarcely regarded. The MVA pathway may
besides modulate AMPK activity, thereby forming a feedback
loop (108). The discovery that the serine-threonine kinase Liver
Kinase B1 (LKB1), a known tumor suppressor, was a crucial
upstream activator of the AMPK, added a relevant piece of
information to our understanding about the connection
between cell metabolism and cancer (109). It is therefore
feasible that the anticancer effects of AMPK activation and the
tumor suppressor role of its upstream kinase LKB, are in part due
to the inhibition of HMGCR and the MVA pathway. LKB1 is
modified by protein farnesylation and it phosphorylates and
activates AMPK. This suggests a negative feedback loop, where
AMPK activation, in response to reduced cellular energy, results
in the suppression of the MVA pathway via the phosphorylation
of HMGCR and SREBPs. This reduces in turn the FPP pool
inside the cell, thereby hampering LKB1 farnesylation and
blocking activation of AMPK. Remarkably, AMPK activation
has also been reported to suppress cell proliferation in normal
and cancer cells by regulating cell cycle progression or inhibiting
protein synthesis (110, 111). In line with this, recent studies have
shown that simvastatin, a potent HMGCR inhibitor, induces
apoptosis and cell cycle arrest by activating AMPK and
inhibi t ing the Signal Transducer and Activator of
Transcription 3 (STAT3) axis, both in liver cancer cells and
tumor xenografts (112, 113). However, restoration of MVA
reversed the activation of AMPK and the suppression of
STAT3 caused by statin treatment. These findings contributed
to demonstrate that AMPK induction and STAT3 inhibition in
liver cancer cells are dependent on HMGCR activity. Thereby,
MVA signaling pathway, AMPK and STAT3 activities may
represent potential therapeutic targets in liver cancer.
THE PI3K-AKT-mTORC1 AXIS

In normal cells, the mTORC1 activity can be activated by diverse
stimuli (i.e., growth factors, nutrients, energy, and stress signals),
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and key signaling pathways (i.e., PI3K-AKT,MAPK and AMPK), in
order to regulate cell growth, proliferation and survival. Upon
stimuli, PI3K produces PtdIns(3,4,5)P3 which binds to AKT and
3-phosphoinositide-dependent protein kinase (PDK1). In contrast,
the inactivation of AKT is regulated by PTEN that converts PtdIns
(3,4,5)P3 into PtdIns(4,5)P2, driving to a lower recruitment of AKT
to the cell membrane (114, 115). An increased mTORC1 activity is
observed in 40–90% of the most frequent human cancers. The
aberrant activation of PI3K-AKT-mTORC1 signaling leads to an
increase activity of the MVA biosynthetic pathway and lipogenesis,
and the reprograming of lipid metabolism contributes to potentiate
tumor growth (70, 71). Several mechanisms are implicated,
including the inactivating mutation of PTEN (116, 117), the
mutation/amplification of PI3K-AKT (118), the hyperactivation of
PI3K-AKT signaling pathway by growth factors (e.g., insulin,
PDGF, VEGF, HER-2, IGF-I), the overexpression of mTORC1
targets (i.e., S6K1, 4BP1, eIF4E), or the loss of tumor suppressors
(e.g., PTEN, LKB1, or TSC). These are common mechanisms that
increase de novo cholesterol synthesis and fatty acid biosynthesis in
cancer (119, 120). Upregulated PI3K-AKT activity increases glucose
uptake and glycolysis rate in cancer cells, a mechanism that provides
NADPH and acetyl-CoA to the MVA pathway. Conversely,
inhibition of the MVA pathway can decrease PI3K activity. The
PI3K-AKT-mTOR pathway connects with SREBP-mediated lipid
biosynthesis by using complex protein-protein interactions and
phosphorylation of regulatory elements (121, 122). Interestingly,
AKT prevents proteasomal degradation of nuclear SREBPs which
increases de novo cholesterol and fatty acid biosynthesis. This role of
AKT on lipogenesis, and tumorogenesis, is blocked after gene
silencing of SREBPs. Furthermore, the connection of mTOR with
SREBPs was evidenced by enhanced lipogenesis in response to
mTORC1 activation whereas inhibition of mTORC1 with
rapamycin blocked both active SREBP and expression of SREBP
target genes. In addition to a positive regulation of SREBP,
mTORC1 has a main role in regulation of protein synthesis
through phosphorylation of downstream effectors such as 4EBP1
and S6K1. Targets of S6K1 include 40S ribosomal protein S6,
protein elongation factors, and IGF-II. Clinically relevant, human
primary breast cancer samples with high levels of pS6K1, as a
marker of mTORC1 activity, had high expression of SREBP target
genes (e.g. FASN, LDLR, MVA kinase). In contrast, breast cancer
cell lines with silenced SREBPs (1 and/or 2) showed reduced
proliferation and increased cell death despite activation of
mTORC1. Finally, mTORC1 activation has also been linked to
proteins such as STAT3, STAT5 and PPARg, in a rapamycin
sensitive manner. Thereby, aberrant activation of PI3K-AKT-
mTOR axis can reprogram protein and lipid biosynthesis in an
orchestrated manner to provide efficient tumor growth.
THE HIPPO PATHWAY

The Yes-associated protein (YAP) and the transcriptional co-
activator with PDZ-binding motif (TAZ) are key downstream
terminal effectors of the Hippo signaling pathway (123). In
normal tissues, YAP-TAZ proteins are phosphorylated at
Frontiers in Oncology | www.frontiersin.org 7
specific serine residues in order to confine their subsequent
degradation in the cytoplasm (124). However, in cancer, YAP-
TAZ proteins are translocated into the nucleus where they bind
to TEA domain (TEAD) proteins which drive the transcriptional
activation of proliferative genes, the repression of pro-apoptotic
genes and the amplification of stem/progenitor cells. Increasing
evidences have shown that deregulated Hippo pathway is
significantly associated with cancer development (72, 73).
Remarkably, YAP and TAZ require the MVA biosynthetic
pathway to translocate into the nucleus and be fully functional
(72). In fact, it has been reported that the concurrent knockdown
of SREBPs (1 and 2) reduces nuclear localization of YAP-TAZ,
suggesting the importance of SREBP-mediated induction of the
MVA for YAP and TAZ nuclear localization (72). Interestingly,
activation of both the MVA pathway and YAP-TAZ is correlated
with mutant p53 expression in primary tumors, suggesting a
dysfunctional mutant p53-SREBP-YAP-TAZ axis in cancer (72).
Relevant to this review, the MVA pathway is an essential
intermediate in the oncogenic activation of YAP and TAZ by
mutant p53 (72). When statins are used to inhibit the HMGCR
activity in the MVA pathway, the nuclear localization and
transcriptional activity of YAP-TAZ are also inhibited. GGPP
may be involved in this process, as it is known to promote YAP-
TAZ nuclear translocation and increase their transcriptional
activity via activation of Rho GTPases. Thus, when MVA
pathway is inhibited, also GGPP is, thereby reducing YAP-
TAZ activity. Additionally, it has been shown that YAP-TAZ
can be activated by SREBPs, main regulators of MVA pathway,
in a breast cancer cell line. Interestingly, mutant p53 promoted
YAP-TAZ transcriptional activity and contributed to cancer cell
malignancy by maintaining SREBP expression in MVA pathway.
Taken together, these data clearly show that MVA participates in
the regulation of YAP-TAZ expression and transcriptional
activity and reveal an original process through which statins
have anticancer effects.
THE HEDGEHOG PATHWAY

Members of the Hedgehog (Hh) family of secreted signaling
proteins have an essential role in the regulation of vertebrate
development and adult tissue homeostasis, including regulation
of stem cell physiology (74, 75). Reduced Hh pathway activity
can cause development defects in mice and humans, and
aberrant increased activity of this pathway is linked to
tumorigenesis. The core components of the Hh pathway
include: the secreted signaling ligand Hh, the twelve-pass
transmembrane receptor Patched (PTCH), the seven-pass
transmembrane co-receptor G-protein-coupled receptor
(GPCR)-like transducer Smoothened (SMO), and the glioma
associated-oncogene (GLI) (74, 75). After secreted from the
producing cells, Hh binds to PTCH on the cell surface, and
subsequently release suppression of PTCH on SMO. Then,
activation of SMO triggers GLI-dependent expression of
downstream target genes through a complex network of post-
translational modifications and translocations. There are positive
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and negative feedback loops that ensure a homeostatic regulation
of Hh signaling pathway, which include an increment of GLI
levels or the potentiation of the activity of negative regulators
such as PTCH1, respectively. Relevant to this review, the Hh
signaling pathway is regulated by cholesterol and oxysterols,
main products of MVA biosynthetic pathway (74). It has been
established that cellular cholesterol is an endogenous ligand of
SMO. Thereby, cholesterol levels can modulate the Hh signaling
pathway by direct binding to GPCR-SMO (50). Thus, cholesterol
itself can be used as a substrate for the post-translational
modification of Hh ligands, required for biological activities of
Hh, as well as a molecule for long-distance and local Hh signal
communication. Thereby, inhibitors of MVA pathway (e.g.,
statins) that modulate Hh pathway activity could represent
potential drugs in Hh pathway-related cancers.
HYPOXIA-INDUCIBLE FACTORS (HIF)

Under hypoxic conditions, cells respond by suppressing energy-
consuming processes to preserve energy, including
mitochondrial respiration (125, 126). These conditions
promote the activation of the Hypoxia-Inducible Factors
(HIF). The HIF protein family consists of three a members
(i.e., HIF-1a, HIF-2a, and HIF-3a) and two b members (i.e.,
HIF-b and ARNT2), which have a similar domain structure
(127). Under hypoxic conditions, HIF-1a is stabilized, binds
DNA, and regulates the transcription of glycolytic target genes in
cancer cells (125, 128). Several observations have shown that the
MVA pathway can be directly or indirectly modulated under
hypoxic conditions, in part, because HMGCR expression is
regulated through the transcriptional activity of HIF-1a (129,
130). It has been reported that HIF-1a connects pathways for
oxygen sensing and feedback regulation of cholesterol synthesis
in human fibroblasts by directly inducing the transcription of the
INSIG-2 gene. INSIG-2 is an ER membrane protein that inhibits
cholesterol synthesis by mediating sterol-induced ubiquitination
and subsequent degradation of the HMGCR. Furthermore,
pharmacologic stabilization of HIF-1a in the liver was shown
to trigger accelerated HMGCR degradation by prior
ubiquitination (131). Pharmacologically relevant, in other
pathologic fields such as Alzheimer´s disease, statins
(simvastatin) have been shown to reduce intracellular levels of
HIF-1 expression (132). Likewise, fluvastatin was shown to
accelerate ubiquitin/proteasome-dependent degradation of
HIF-1, effect that was reversed by concomitant treatment with
mevalonate, farnesyl pyrophosphate, or geranylgeranyl
pyrophosphate (133). While HIF has been broadly studied as
an essential protein for modulation of transcriptional program
during the hypoxia response, many other transcription factors
(e.g., NFkB, Nrf2, Myc, STAT3) and/or tumor suppressors also
function under hypoxic conditions to promote the acquisition
and maintenance of metabolic reprogramming phenotype in
cancer. Further understanding about the connections between
these transcription factors and the MVA pathway constitutes an
ongoing challenge.
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SIGNAL TRANSDUCERS AND
ACTIVATORS OF TRANSCRIPTION (STAT)

The STAT family of transcription factors consists of 7 members
within STAT3 highlights by its oncogenic activity. STAT3 appears
constitutively active in a broad variety of cancers that often become
addicted to its activity (78–80). In contrast to normal STAT3
activity, which is transient, constitutively active STAT3 is
associated with abnormal cell growth and survival, angiogenesis
andmetastasis, tumor immune evasion, and aberrant mitochondrial
function. While tyrosine phosphorylation by Janus Kinases (JAK),
represents the main activation mechanism of STATs, alternative
mechanisms, such as the interaction with HIF signaling pathway,
phosphorylation of STAT3 on S727 (134), and regulation of activity
and nuclear traffic by small GTPases (135), appear to play important
roles that connect STAT3 oncogenic activities with deregulated
metabolism in cancer cells. An important component of STAT3
oncogenic activity resides in the induction of aerobic glycolysis,
making cancer cells highly sensitive to glucose deprivation, whereas
they are protected from apoptosis and senescence. Accordingly,
inhibition of STAT3 tyrosine phosphorylation in several cancer cells
down-regulates glycolysis prior to leading to growth arrest and cell
death. STAT3-addicted cancer cells can develop a switch towards
aerobic glycolysis program through two mechanisms: a) the up-
regulation of HIF-1a, which in turn mediates the induction of
several glycolytic genes [e.g., hexokinase 2, LDH-A, pyruvate
dehydrogenase kinase 1 (PDH), PKM2] (136); and b) the down-
regulation of mitochondrial activity, which is totally or partially
independent of HIF-1a. HIF-1a induces PKM2 expression, which
maintains STAT3 tyrosine phosphorylation, a mechanism that
initiates a positive feedback loop that leads breast cancer cells to
adapt and grow into hypoxia conditions (137). Similarly, hypoxia
can activate oncogenic STAT3 in prostate cancers cells, and,
together with the AKT and HIF-pathways, induces an androgen-
independent and invasive phenotype (138). In addition, STAT3
phosphorylation on S727 has emerged as a crucial regulator of
metabolic processes in the mitochondria. Indeed, S727-STAT3 was
found to enhance Complex I and II activities and reduce ROS
production within the mitochondria (139, 140). This function
appears to be essential for cellular survival under certain stress
conditions such as heart ischemia, where mitochondrial STAT3
protects cardiac cells from apoptosis (140). Furthermore,
mitochondrial STAT3 potentiates RAS-mediated oncogenic
transformation. This finding supports the role of STAT3 in
maintaining cell survival and oncogenesis, linked to a metabolic
adaptation of cancer cells. In contrast, mitochondrial expression of
an inactive mutant S727A-STAT3 was shown to inhibit growth and
metastatic capacity of the breast cancer cell line 4T1, and this
inhibition correlated with reduction of Complex I activity under
hypoxia (141). The form S727-STAT3 can also be induced by the
mTOR pathway to potentiate the expression of STAT3 target genes
(e.g., Bcl-xL, VEGF, cyclin D2) (142, 143). Moreover, activated
forms of small GTPasas such as Rac1, Cdc42 or RhoA directly or
indirectly promote the phosphorylation and activation of STAT3
(134, 144, 145). Particularly, Rac1 specifically induces an increase in
Rac1 and Cdc42 protein levels and activities, and stimulates
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autocrine IL6 secretion, which contributes to an increase of STAT3
activity. Interestingly, the activated form of Rac1, but not its inactive
variant, forms a complex with STAT3 to regulate its
phosphorylation and activity (146, 147). Interestingly, the Rac
(and Cdc42) GTPase activating protein MgcRacGAP plays also a
critical role in STAT3 activation (148, 149). When activated, the
complex MgcRacGAP-Rac-GTP interacts with STAT3 to promote
its binding to the IL6 receptor thus facilitating that JAK
phosphorylates and activates STAT3. These observations suggest
that MgcRacGAP, a core regulator of cytokinesis, and other Rho
proteins, support oncogenic properties of STAT3. All observations
indicate that STAT3 can integrate different pro-survival and growth
signals in a context of energy and respiratory metabolism, emerging
as a key molecule to target within the mitochondrial metabolism.

Tumor immune microenvironment (TIM), including
surrounding (niche) and inflammatory cells, plays a key role in the
development of angiogenesis, proliferation, immunosuppression, and
tumor progression (150). These biological effects depend, at least in
part, on the aberrant activation of STAT pathway which is an
immuno-inflammatory-carcinogenic pathway. Thus, in addition to
their roles in adaptive metabolism of cancer cells, aberrant STAT
activity can drive cancer development through the regulation of TIM.
This is particularly relevant for STAT3 and STAT5 which are highly
expressed in Tumor-Associated Macrophages (TAMs), a critical
cellular component of TIM. It is well known that TAMs are
recruited into tumor formation by chemo-attractant cytokines and,
once inside the tumor, tumor cells secrete cytokines that prolong the
survival of TAMs; these cells, in turn, express multiple factors that
promote tumor development and immunosuppression. STAT3 and
STAT5 have been reported to act by inhibiting the antitumor
immune response by activating, at least in part, the production of
inflammatory cytokines (IL-1, IL-17, IL-10, TGF-b, or VEGF) and
promoting tumor growth andmetastasis (150). Moreover, it has been
described that TAMs could favor the development of tumor
resistance to conventional chemotherapy, highlighting the
importance of the microenvironment in tumor development. In
addition to TAMs, the influence of niche stem cells on tumor
development and drug resistant is also relevant. Interestingly, many
studies have shown that STAT activity is essential to localize,
maintain, and renew Hematopoietic Stem/Progenitors cells (HSPC)
into tumoral niche and that STAT hyperactivation is associated with
uncontrolled proliferation of HSPC (151–155). Thereby, dual
strategies targeting both tumor cell proliferation and tumor niche
and/or regulation of TIM represent a promising therapeutic strategy
(156, 157). Interestingly, the effects of MVA biosynthetic pathway
inhibitors (i.e., statins, bisphosphonates) on TAMs suggest that TIM
can be regulated byMVA biosynthetic pathway (158–160). However,
despite TIM is known to be highly dependent of cholesterol
biosynthesis (10, 161–164), its interplay with MVA biosynthetic
pathway and STAT signaling, remains unexplored.
MYC

MYC belongs to the Myc gene family that is comprised by C-MYC,
N-MYC, and L-MYC, and they have been shown to influence
Frontiers in Oncology | www.frontiersin.org 9
almost all aspects of carcinogenesis, including rapid cell growth,
inhibition of cell differentiation, genomic instability, metastasis, or
angiogenesis (165–167). Aberrant regulation of MYC is observed in
more than 50% of cancers, where this oncoprotein is overexpressed,
either due to enhanced transcription of the Myc gene or to
dysregulated stability of MYC protein. The stability of MYC can
be modulated by a) the ubiquitin/26S proteasome pathway, and b)
the sequential phosphorylation of MYC at S62 and T58. The
phosphorylation of S62 is controlled by the MAPK/ERK pathway
and leads to the stabilization of MYC, whereas its phosphorylation
on T58 is mediated by GSK3b and promotes ubiquitin-dependent
MYC degradation once S62 is dephosphorylated by, for example,
the serine/threonine-protein phosphatase 2A (PP2A) (165, 168).
Mutations on the phosphorylation sites that stabilize MYC have
been identified in human cancers, thus highlighting the relevance of
S62 and T58 phosphorylation as regulators of MYC tumorigenic
activity (169). MYC is a major driver of metabolic reprogramming
in cancer, where this transcription factor regulates the expression of
genes involved in anabolic metabolism, cellular bioenergetics and
lipid metabolism (167, 170, 171). This oncoprotein can reprogram
cancer cell metabolism toward glycolysis and MVA pathway to
drive the proliferation and survival of cancer cells. Accordingly, it
has been reported that knockdown of c-Myc in gastric cancer cells
suppresses glycolysis rates and cell proliferation capacity. MYC can
also bind SREBP to drive somatic cell reprogramming into induced
pluripotent stem cells (171), or bind to promoters of MVA pathway
genes in close proximity to SREBPs (8), suggesting that MYC may
contribute to the expression of MVA pathway enzymes. Notably,
HMGCR is a positive regulator of phosphorylation, activation, and
tumorigenic properties of MYC in a MYC-driven model of
hepatocellular carcinoma where exogenous mevalonate deliver
can enhance cancer growth (168). In agreement with the positive
role of MVA pathway in MYC-induced oncogenic activities, the
antitumoral effects of statin were prevented by mevalonate. This
effect was associated with a reduction of small GTPase RAC
isoprenylation levels and PP2A activation. Moreover, when
tumors that expressed active phosphorylated mutants of MYC at
S62 or Th58 were studied, there was an increase of tumor resistance
to statin treatment which supported the role of serine/threonine
phosphatase PP2A as a negative regulator of MYC (168). Recently,
studies onMYC null mice showed that mice had improved lifespan,
which was linked to the decreased expression of MVA pathway
genes, including HMGCR and SREBP2, and most likely to caloric
restriction (172). Finally, RAS, whose activity is also regulated by the
MVA pathway is thought to modulate MYC activity and enhance
levels of HIF-1, independently of hypoxia conditions (173, 174).
These findings reinforce the hypotheses that MYC dependent
oncogenesis is linked to a deregulated MVA biosynthetic pathway.
THE ERRa PATHWAY

Estrogen-Related Receptors (ERRs) are a group of nuclear receptors
with three isoforms (a, b, and g) (84, 85, 175). ERRa is mainly
expressed in high-energy demanding tissues where it associates with
the co-regulator peroxisome proliferator-activated receptor—g co-
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activator 1 (PGC-1). In differentiated cells, ERRa, together with
PGC, controls cellular metabolism, assists the growth of rapidly
proliferating cells, directs metabolic programs necessary for cell
differentiation, and keeps cellular energy homeostasis. In several
cancer cells, the expression, and the activity of ERRa, and its
cofactor PGC-1, is further influenced by oncogenic signals (e.g.,
IGF1 receptor pathway, estrogen signaling, mTOR pathway) and
induces metabolic programs favoring cell growth and tumor
progression. This is particularly relevant when there is a
functional relation between augmented cholesterol levels and
certain cancer phenotypes, with an overexpression of ERRa [i.e.
colorectal cancer (176), prostatic, and breast cancers (177)].
Notably, ERRa activity promotes an inflammatory environment
by the production of cytokines that supports a protumoral
microenviroment (178). Recently, affinity chromatography and
transcriptional assays have identified cholesterol as an endogenous
ligand and agonist of ERRa (84). A functional link between
cholesterol (or MVA pathway) and ERRa has been described in
bone, muscle, and in the immune system (macrophages).
Particularly, cholesterol-induced bone loss or bisphosphonate
osteoprotection are lost in ERRa knockout mice. In addition,
statin induction of muscle toxicity and cholesterol suppression of
macrophage cytokine secretion are impaired by loss or inhibition of
ERRa. These findings showed that cholesterol is an ERRa agonist
and that the MVA biosynthetic pathway impacts biological
functions of ERRa (85). Thereby, the use of therapeutic strategies
that aim to decrease cholesterol levels (e.g., statins, biphosphonates)
could be an encouraging way to counteract metabolic reprograming
in cancer cells where ERRa plays a critical role.
ERa

The MVA biosynthesis pathway was recently reported to be up‐
regulated in ERa‐positive breast cancer cells lines that are resistant
to E2 withdrawal (61, 62, 83). This suggests that dysregulation of
cholesterol biosynthesis may be a mechanism of anti-estrogen
resistance in ER‐positive breast cancer. Mechanistically relevant,
chronic estrogen removal in ERa‐positive breast cancer cells seems
to stabilize the epigenetic activation of the MVA pathway and
cholesterol biosynthesis (61). This leads to the accumulation of
cholesterol-derivative metabolites (i.e., 27HC) which, in the absence
of estrogens, acts as ERa agonist, and then potentiates ERa
signaling to induce the transcription of genes involved in
proliferation and invasion. Therefore, statins might act as anti-
breast cancer drug by reducing circulating cholesterol and 27HC,
and the availability of these ERa agonists in breast cancer cells.
Furthermore, direct suppression of HMGCR by statins depletes
intratumoral levels of isoprenoids, which are also key modulators of
breast cancer cell proliferation and metastasis.
TUMOR SUPPRESSOR PROTEINS

Loss-of-function of tumor suppressor protein p53 (TP53) (86, 87)
and cyclin-dependent kinases (cdks)- retinoblastome suppressor
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protein (Rb)- transcription factor E2F Transcription Factor 1
(E2F1) pathway (88–90), novel regulators of metabolism,
promotes the acquisition and maintenance of glucose and/or lipid
metabolism reprogramming phenotype in cancer. The mutated
forms of the tumor suppressor protein TP53 confer oncogenic
properties to p53 in a broad range of cancer types (87). Specific
oncogenic mutations lead p53 to functionally interact with nuclear
SREBP2 and enhance the transcription of MVA genes (86) (Figure 3).
Furthermore, an increased expression of mutant p53 in primary
breast cancer tissues has been associated to the augmented
expression of MVA pathway genes. In contrast, wild-type p53 can
decrease lipid synthesis under glucose starving conditions by
inducing the expression of phosphatide phosphatase LPIN1, a
protein that can prevent SREBPs-DNA binding. Thus, the
interaction between p53 and the MVA axis suggests that this
pathway may be a novel therapeutic target for tumors with
specific p53 gain-of-function mutations. Another example of
mutated tumor suppressor gene that leads to an oncogenic
phenotype is the cdks-Rb-E2F1 pathway. Analysis of genetically
engineered mice deficient in cdk, E2F1, or Rb protein, showed an
adaptive reprogramming to metabolism of glucose and/or lipids,
including MVA biosynthetic pathway. This showed that the cdk-
Rb-E2F1 pathway acts as a key regulator of cell growth,
proliferation, and development by sensing external signals that
require a particular adaptive metabolic reprograming. Particularly,
this cell cycle regulatory pathway is an essential regulator for
decreasing oxidative metabolism and, at the same time, to
increase lipid synthesis and glycolytic metabolism. Interestingly,
loss of Rb causes abnormal expression of the farnesyl diphosphate
synthase (FDPS), many prenyltransferases, and their upstream
regulators SREBPs, in an E2F-dependent manner, leading to an
increased isoprenylation and activation of N-Ras (89). Additionally,
loss of Rb reduces the suppression of E2F (1 and 3), a mechanism
that leads to promoter activation of prenyltransferase genes.
Conversely, the presence of active Rb prevents the association of
SREBPs with the FDPS promoter, suggesting that Rb negatively
modulates the MVA pathway at both the transcriptional and the
post-translational level.
CHOLESTEROL CONTRIBUTES TO
CHEMOTHERAPY RESISTANCE

Upregulated MVA pathway contributes to chemotherapy
resistance by increasing both isoprenoids and cholesterol levels
(10), thus generating a serious problem that arises in the
treatment of many cancers. It has been shown that, in response
to chemotherapy in vitro, some leukemic cells (i.e., AML cells)
abnormally increased their cholesterol levels, whereas when this
response is blocked with HMGCR inhibitors (i.e., statins), they
increased its sensitivity to cytotoxic drugs (179). Interestingly,
apoptosis resistance, typically observed in cancer (i.e.,
hepatocellular carcinoma (HCC), colon cancer and HeLa cells),
has been related to cholesterol accumulation in mitochondria,
resulting in decreased membrane fluidity (180–182). These data
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suggest that high mitochondrial cholesterol content contributes
to chemotherapeutic resistance, especially to chemotherapeutic
agents targeting mitochondria (182). On the other hand, as
deeply discussed in a later section of the present review, it has
been reported that HMGCR inhibitors (i.e., simvastatin) are able
to overcome resistance or to potentiate the antitumoral effects of
conventional chemotherapy in several models of cancer (in vitro
and in vivo), such as, non-small cell lung cancer (183), resistant
colorectal tumors (184) and human gastric cancer (39, 185).
Therefore, inhibition of de novo cholesterol synthesis by statins
may restore the efficacy and overcome resistance to
conventional chemotherapy.
EFFICACY AND RESISTANCE TO MVA
PATHWAY INHIBITORS IN
HUMAN TUMORS

MVA biosynthetic pathway is considered a potential drug target
to improve therapeutic window in cancer (11) (Figure 4).
However, despite mounting body of preclinical and
epidemiological evidences suggesting MVA pathway inhibitors
(i.e., statins) as anticancer agents, many patients remained non-
responsive to drug treatment in some cancer clinical trials (13,
20, 23, 30, 33, 186). This is, in part, because cancer cell selectivity,
as well as predictive biomarkers of drug efficacy and drug
resistance, is still poorly understood. Therefore, clinical trials
are still required to further characterize the subset of cancers that
are especially sensitive to MVA pathway inhibitors. The major
limitation for the development of MVA pathway-based therapy
is the absence of predictive biomarkers of efficacy and
chemotherapy resistance, which is due to, at least in part, the
lack of routine genotyping of human tumors. Therefore,
predictive biomarkers, stratifications of patients, and selection
Frontiers in Oncology | www.frontiersin.org 11
of drug combination-based therapies may lead to a more effective
MVA pathway-based therapy in cancer. Nowadays, there are a
few completed clinical trials in which statins are used as
monotherapy. Some of them have exhibited promising
evidence of therapeutic potential and survival benefit mainly in
breast cancer (187–189) and multiple myeloma (MM) (190, 191)
(Table 1). Breast cancer clinical trials, using atorvastatin and
fluvastatin, have shown decreased proliferation index marker in a
subset of patients who were treated with cholesterol-
management doses of statins between cancer diagnosis and
surgery (187, 189) (Table 1). Moreover, a phase II window-of-
opportunity trial has shown that high-dose atorvastatin (80 mg/
day) induced anti-proliferative effects in breast cancer through
cell cycle regulation via cyclin D1 and p27 (188) (Table 1).
Although the molecular mechanisms are still unknown,
hepatocarcinoma also seems to be particularly responsive to
statins (193). Exposition to simvastatin has also been
associated to reduced risk of hematological malignancies (194).
Although clinical trials with statins show that some tumors may
be more sensitive to statins than others, few of them have
specifically enriched for subsets of patients whose tumors are
preferentially sensitive to statins. As described above, tumors
harboring an aberrant MVA pathway may be more sensitive to
the antitumoral action of statins. This hypothesis follows the
general principles of oncogene addiction and may provide the
basis on which patients should be treated with statins. However,
follow-up studies are still needed before validating those
biomarkers to predict which cancers will be specifically
sensitive to statin therapy. For example, certain phases of
cancer progression, such as breast cancer recurrence, are
particularly sensitive to the antitumoral effects of statins (195,
196). This is in line with the current paradigm of inter-patient
cancer biodiversity. This lack of response might also be expected
considering the evidence that the MVA pathway is regulated by
many critical oncogenic signals. For example, a poor outcome
FIGURE 3 | The mevalonate (MVA) pathway in cancer progression. The MVA pathway is dysregulated in several cancer cells due to mutations or abnormal signaling
of different proteins/pathways. Upregulation of MVA pathway drives to increased protein prenylation thus promoting a malignant phenotype of cancer cells with an
uncontrolled cell invasive growth and survival. In cancer cells expressing a mutation of tumor protein p53, there is a positive-feedback loop where p53 interacts with
sterol regulatory element-binding protein (SREBP), leading to increased activation of the MVA pathway activity, and therefore higher levels of MVA. This MVA leads to
the stabilization of p53 mutation as well as promotes protein prenylation, thus accelerating cancer progression.
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has been reported in clinical breast cancer samples that carry a
mutant form of p53 that stimulates the activity of MVA pathway
(86). A molecular hallmark of basal transcriptome has been
developed to forecast statin response in breast cancer in vitro
(197) and aberrant MYC expression has been proposed as an
indicator of statin response in specific cancer types (198).
Notably, subsets of statin-sensitive and statin-insensitive cells
were described in MM cell lines (199, 200). Remarkably,
insensitive cells exhibited a robust feedback response, like
normal cells, with an immediate up-regulation of different
SREBP target genes, including HMGCR. In fact, recently, it has
been reported that resistance of breast cancer cells to statins is, at
least in part, due to the induction of HMGCR (201). Although
the sterol feedback response tried to reinstate the MVA pathway,
sensitive cells appear to show, in comparison with statin-
insensitive cells, a weaker feedback response. This suggest that
statin-sensitive cells have either lost checkpoint controls
maintaining the MVA pathway intact, or that the pathway is
deregulated and decreased HMGCR activity was not detected by
the common intracellular sensors (i.e., SCAP, INSIGs). It appears
that the sterol feedback response may serve as a protective
mechanism, warranting that normal or statin-insensitive tumor
cells are protected from the effect of statins. However, the loss of
this sterol feedback response may not be a universal
phenomenon across all statin-sensitive cancer types as it has
been shown an intact sterol feedback response in AML cells
(202). Moreover, tumor cholesterol may also be used a as a
biomarker of statin sensitivity in many AML cells exposed to
chemotherapy in vitro (202, 203). All these observations suggest
that aberrant MVA pathway may be both a promoter of
transformation and an indicator of statin sensitivity. Moreover,
these data also establish the bases to further developing
biomarker tools that could allow to predict which cancers are
more sensitive to statins. That may provide a personalized
medicine approach in which statins, and/or other inhibitors of
MVA pathway, would constitute a successful class of anti-
cancer drugs.
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SREBP, A DRUG TARGET TO INCREASE
STATIN EFFICACY AND OVERCOME
DRUG RESISTANCE

Inhibition of the MVA pathway leads to the activation of the
SREBPs and the increased expression of MVA pathway genes, an
effect that may be intensified in cancer cells and be responsible of
statin resistance (201, 204). This SREBP-mediated feedback
mechanism also increases the expression of the LDLR, and
LDL-cholesterol uptake, which has been shown relevant in
cancer cells (205, 206). Thus, the SREBPs work to replenish
MVA-derived metabolites, which can depress the apoptotic
response following statin treatment. Recent studies targeting
the maturation or transcriptional activities of SREBPs supply
proof of concept for the efficacy of SREBP inhibition in cancer
therapy (204). Inhibiting the SREBP-regulated feedback response
together with statin therapy could prevent drug resistance and
increase the antitumoral efficacy of statins. In addition to
HMGCR, the MVA pathway genes HMGCoAS1, GGPS1,
SCAP, and SREBP2 are also good candidates to either
suppressing other enzymes in the MVA pathway or blocking
the SREBP-mediated feedback response in combination with
statin therapy (207). Particularly, the clinically approved agent
dipyridamole may be repurposed as an inhibitor of statin
(fluvastatin)-induced SREBP processing and blocks the SREBP-
regulated feedback response. This mechanism can potentiate
antitumoral efficacy of statins, at least in prostate cancer, and
most likely prevent drug resistance (208). However, preclinical
and clinical investigations performed in order to investigate the
utility of this combinatory drug strategy in cancer (i.e., HMGCR
inhibitors plus SREBP inhibitors), are still a pharmacological
challenge. Hopefully, other molecules can be repurposed as
potentially antitumoral candidates in combination with statins.
Thereby, fatostatin, a nonsterol diarylthiazole derivative
originally developed to inhibit insulin-induced adipogenesis,
suppresses (in vitro and in vivo) prostate cancer cell
proliferation and induces apoptosis through inhibition of
FIGURE 4 | Antitumoral effects of mevalonate (MVA) pathway inhibition. The inhibition of MVA pathway triggers a series of anticancer events that get to inhibit tumor
growth and progression. These include the reduction of MVA synthesis, which in turn decreases the levels of downstream products (isoprenoids) and therefore
prevents protein prenylation; the reduction in the translocation of small GTPases such as Rho and Ras to the cell membrane; and the inhibition of cholesterol
synthesis. All these inhibitory actions suggest that targeting the MVA pathway could represent a key mechanism to prevent cancer progression.
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SREBP-regulated pathways, such as MVA pathway (209).
Moreover, the combination of the anti-chronic myelogenous
leukemia (CML) drug imatinib and simvastatin resulted in a
synergistic killing effect on imatinib-resistant CML cells (210).
COMBINATORY THERAPY, A STRATEGY
TO IMPROVE THERAPEUTIC WINDOWS
OF MVA PATHWAY INHIBITORS
IN CANCER

Monotherapy with statins (e.g., simvastatin) displays anticancer
activity in vitro (11). However, it is undefined whether lipophilic
statins accumulate in tumor tissues at concentrations in which
they are cytotoxic to cancer cells and efforts are still underway to
determine tolerable and therapeutic dose of statins that could
potentially be used in cancer (211). This is particularly jumbling
as statins are also known to exert effects on certain normal cells.
For example, myopathy is a rare but potentially dangerous side
effect of statin treatment that is thought to be consequence of the
induction of apoptosis in skeletal muscle cells (212).
Interestingly, many studies have shown that statins can directly
and specifically trigger the apoptosis of cancer cells (213, 214).
Noteworthy, statins trigger apoptosis of cells derived from AML,
Frontiers in Oncology | www.frontiersin.org 13
whereas normal myeloid progenitors do not suffer apoptosis and
keep a proliferative phenotype (213). This optimal therapeutic
index may be result of the altered metabolic reprogramming of
AML cells leading to an increased dependence on MVA-derived
metabolites for survival and proliferation. These findings and the
widespread use of statins for hypercholesterolemia control
strongly suggest that these drugs might have a high therapeutic
window to target tumors in vivo, despite the MVA pathway is
active in both normal and cancer cells. Therefore, the therapeutic
window of statins in cancer patients is being explored in several
clinical trials that have been conducted to study the tolerability of
high dose statins in cancer patients. Phase I–II clinical trials have
shown that statins can be given to cancer patients in relatively
high dosages (i.e., 15 mg/kg/day for simvastatin; 25 mg/kg/day
for lovastatin). In these studies, the maximum tolerated dose of
simvastatin was defined to be 15 mg/kg/day, 25-fold higher
compared to a typical dose. However, response may not be
satisfactory because to treat human cancer high doses of statins
(10–100 mM) need to be used. Moreover, statins can cause
anorexia and death in some individuals when serum
concentrations reached levels higher than 20–25 mM (215,
216). An efficient strategy that might increase therapeutic
window of statins in cancer patients is its combination with
conventional chemotherapy in those cancers where altered
aberrant cholesterol metabolism is linked to oncogenic
TABLE 1 | Completed clinical trials with statins used in mono- or in combination therapy for cancer treatment.

Cancer
type

Drugs Research findings and conclusions Study
phase

References and
ClinicalTrials.gov

Identifier

Breast
Cancer
(BC)

Fluvastatin Fluvastatin reduces tumor proliferation and increases apoptosis in high-grade, stage 0/1 BC. These data
support further evaluation of statins as chemoprevention for ER-negative high-grade BC

Phase
II

(187)
NCT00416403

Breast
Cancer
(BC)

Atorvastatin High-dose atorvastatin (HD-Atorv) induces anti-proliferative effects through up-regulation of tumor suppressor
p27 and down-regulation of oncogene cyclin D1 in BC

Phase
II

(188)
NCT00816244

Breast
Cancer
(BC)

Atorvastatin Atorvastatin and its metabolites are detectable in breast fine needle aspiration biopsies and its use is
associated with decreased C-reactive protein (CRP). These results support atorvastatin further evaluation in
phase II BC prevention studies

Phase
I

(189)
NCT100637481

Multiple
Myeloma
(MM)

Simvastatin Standard-dose simvastatin (SD-Sim) is well tolerated without grade 3/4 toxicity and shows reduction of cell
adhesion-mediated drug resistance in MM by inhibition of HMG-CoA-reductase. Moreover, authors suggest
that SD-Sim efficacy needs to be improved either by dose escalation and/or by combination with other
mevalonate pathway inhibitors

Phase
II

(190)
NCT00399867

Multiple
Myeloma
(MM)

Simvastatin High-dose simvastatin (HD-Sim) has not beneficial effect on markers of bone turnover in MM. In fact, HD-Sim
seems to be harmful rather than beneficial for MM patients due a transient stimulation of osteoclast activity

Phase
II

(191)
NCT00281476

Pancreatic
Cancer
(PC)

Simvastatin/
Gemcitabine

Adding low-dose simvastatin (LD-Sim) to gemcitabine in treatment of advanced pancreatic cancer does not
provide additional benefit but it also does not result in greater toxicity compared to gemcitabine alone. Since
data point to an emerging role of statins in overcoming resistance to anti-epidermal growth factor receptor
(EGFR) treatments, these results support further evaluation of efficacy and safety of combined LD-Sim and
anti-EGFR agents (e.g., erlotinib or cetuximab) plus gemcitabine for treating advanced and metastatic PC

Phase
II

(34)
NCT00944463

Small-Cell
Lung
Cancer
(SCLC)

Pravastatin/
Etoposide/
Cisplatin or
Carboplatin

Pravastatin combined with standard platinum chemotherapy in patients with SCLC, although safe, does not
benefit patients. Authors concluded that ongoing and future trials of statins used for either cancer prevention
or treatment should monitor clinical efficacy and ensure that preclinical data are strong enough to warrant
large-scale randomized studies

Phase
III

(39)
NCT00433498

Advanced
Gastric
Cancer
(AGC)

Simvastatin/
Capecitabine
– Cisplatin

(XP)

Addition of low-dose simvastatin (LD-Sim) to XP does not increase median progression free survival (PFS) in
AGC, but it does not increase toxicity. Authors concluded that LD-Sim to chemotherapy is not
recommended in untargeted patients with AGC. However, given the emerging role of statins as anti-cancer
agents, this study also suggest that intermediate or high-dose simvastatin synergistically combined with
standard chemotherapy regimens should be further evaluated in AGC

Phase
III

(192)
NCT01099085
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signaling. This strategy can improve antitumor efficacy, by
taking advantage of the synergistic effects of these drugs, and,
potentially, reduces therapy-associated toxicity (8, 13, 217). For
example and related to hematological cancers, cholesterol levels
are abnormally elevated in many AML cells exposed to
chemotherapy in vitro (202, 203). Suppressing this cholesterol
response was further shown to sensitize AML cells to drug
treatment, suggesting that MVA pathway inhibition by statins
may improve the efficacy of conventional chemotherapy (203,
218). Thus, when pravastatin was combined with conventional
treatment in AML resulted in complete or partial response in 60%
of patients with AML (218). Furthermore, simvastatin also has
potential application in oncohematology as it is able to potentiate
the effects of imatinib in CML cells, inducing cell cycle arrest and
apoptosis through the inactivation of STAT3 and STAT5 (210).
Interestingly, lovastatin can enhance the antitumor effects of the
antiretroviral drug saquinavir against human lymphoma cells,
decreasing some of its side effects while potentiating the
antitumor effectiveness (219). In another study, the combination
of lovastatin with thalidomide and dexamethasone in patients with
relapsed or refractory multiple myeloma prolonged overall survival
and progression-free survival (220). Recently, it has been reported
that combination of statins (atorvastatin, fluvastatin and
simvastatin) and conventional chemotherapy (topotecan,
paclitaxel and doxorubicin) acted synergistically to inhibit cell
proliferation and to induce cytotoxicity in an aggressive natural
killer cell leukemia (221). On the other hand, and related to solid
tumors, a combinatory strategy has also been safely used to increase
statin efficacy and security in HCC. Thus, pravastatin was combined
with conventional treatment in HCC, resulting in significantly
longer median survival (193). Moreover, promising results from
both epidemiological studies (222, 223) and clinical trials (187, 224)
suggest that patients with hormone dependent breast and prostate
cancers, may benefit from the addition of statins to their
conventional treatment regimens. Accordingly, it has been
reported that simvastatin has additive effect with the antiandrogen
enzalutamide promoting a greater inhibition of prostate cancer cells
(225, 226). Moreover, simvastatin also enhances ex vivo the tumor
cell inhibition effects of cisplatin or docetaxel in head and neck
squamous carcinoma (HNSCC) (227) and sensitized human
osteosarcoma cells to doxorubicin and cisplatin (228). Preclinical
data have also shown that simvastatin in combination with
cetuximab/irinotecan allows overcoming the resistance to
irinotecan and oxaliplatin in KRAS mutant colorectal cancer
(184). Moreover, simvastatin can potentiate the antitumor effect
of capecitabine by suppressing proliferation and tumor invasion
mediated by NFkB in a xenograft mouse model of human gastric
cancer (185). In addition, it has been observed that lovastatin
increases in vitro TNF-a -induced cell death in two gefitinib-
resistant cholangiocarcinoma cell lines (229). Finally, statins can
overcome the resistance to EGFR tyrosine kinase inhibitors in a
non-small cell lung cancer cells (183) and to gefitinib in KRAS-
mutant human non-small cell lung cancer cells (230). Paradoxically,
several clinical trials have shown that combinatory therapy with
statins does not add any benefit in comparison with conventional
therapy. Clinical trials where simvastatin was combined with
Frontiers in Oncology | www.frontiersin.org 14
capecitabine–cisplatin (XP) in patients with previously untreated
advanced gastric cancer (AGC) showed that addition of low dose
(40 mg) of simvastatin to XP does not increased the median
progression free survival (PFS) (192) (Table 1). Moreover, it has
been reported that using a combination of pravastatin, a hydrophilic
statin, with etoposide plus cisplatin or carboplatin in order to treat
small-cell lung cancer does not provide additional benefit for patients
(39) (Table 1). Alike, a randomized double-blind phase II clinical trial
in which patients with locally advanced and metastatic pancreatic
cancer participated, reported no clinical benefits when low doses of
simvastatin were added to gemcitabine (34). The limited effectiveness
of statins in these and previous studies (231, 232), and in clinical trials
mentioned above (34, 39, 192) (Table 1) might be linked to low statin
biodisponibility in cancer cells. Pharmacokinetic studies in chronic
lymphocytic leukemia patients have shown that when simvastatin is
administered at the maximum tolerated dose of 7.5 mg/kg, twice
daily, plasma concentrations were dose proportional relative to the
hypolipidemic doses, but lower than those required for in vitro
cytotoxicity on cancer cells (231). This lower drug bioavailability in
cancer cells might explain, at least in part, the absent or low efficacy of
statins in cancer patients.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Nowadays, an increasing amount of data, from preclinical and
epidemiological studies, support an inverse association between the
use of potent inhibitors of MVA pathway and the mortality rate in
specific cancers (e.g., breast, colon, prostate, liver, hematological
malignances). Furthermore, inhibitors of MVA pathway seem to
have potential features that overcame main limitations of current
chemotherapy: drug resistance and toxicity. Cancer treatment
demands the use of relatively high doses of single inhibitors of
MVA pathway for a prolonged period, thereby limiting this
therapeutic strategy due to adverse effects. Clinically relevant,
synergistic effects of tolerable doses of MVA inhibitors with
conventional chemotherapy might enhance efficacy with lower
doses of each drug and, probably, reduce adverse effects and
resistance. In spite of that, clinical trials to identify combinatory
therapies that improve therapeutic window are still a challenge.
Dual strategies targeting both tumor cell proliferation and tumor
niche and/or regulation of TIM represent a promising therapeutic
strategy. However, despite TIM is known to be highly dependent of
cholesterol biosynthesis, interplay of MVA biosynthetic pathway
and TIM remains unexplored. Therefore, research needs to be
performed in order to identify an effective MVA pathway
inhibitor that may be clinically used, individually or in
combination with conventional chemotherapy, in the treatment of
cancers with addiction to cholesterol biosynthetic pathway.
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