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Metastasis and relapse account for the great majority of cancer-related deaths. Most
metastatic lesions are micro metastases that have the capacity to remain in a non-dividing
state called “dormancy” for months or even years. Commonly used anticancer drugs
generally target actively dividing cancer cells. Therefore, cancer cells that remain in a
dormant state evade conventional therapies and contribute to cancer recurrence. Cellular
and molecular mechanisms of cancer dormancy are not fully understood. Recent studies
indicate that a major cellular stress response mechanism, autophagy, plays an important
role in the adaptation, survival and reactivation of dormant cells. In this review article, we
will summarize accumulating knowledge about cellular and molecular mechanisms of
cancer dormancy, and discuss the role and importance of autophagy in this context.
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INTRODUCTION

Cancer is the cause of death for millions of people every year, hence it’s one of the most devastating
disease. Detection and diagnosis at early stages of cancer remarkably improve the chance of cure.
However, the incidence of cancer continues to rise due various factors, including tobacco use, air
pollution, obesity, increased life expectancy and cancer-causing infections. First approach in the
treatment of cancer is usually surgical resection of the primary tumor, often followed by
chemotherapy and/or radiotherapy. Besides, recent advances in targeted therapies and
immunotherapies help to reduce the tumor burden. Thanks to high resolution diagnostic tools,
advances in tumor ablation techniques, drug combinations, and targeted therapeutics, 5-year
survival rates are improved for some cancer types, yet overall cancer survival rates for patients
suffering from advanced disease are still low. A major reason for such discrepancy is the spread of
cancer cells to organs other than the primary site and formation of the metastatic lesions. In other
words, metastasis is among the leading causes of cancer-related deaths.

Metastasis of cancer to distant organs requires a sequential and complex chain of events. Cancer
cells need to undergo several mutations and adaptations in order to gain motility and invasiveness,
intravasate (migration into vessels), survive in the blood circulation and the lymphatics, extravasate,
nestle and grow at secondary sites. Metastasis and survival of cancer cells at secondary sites are also
affected by “the soil” in which tumor cells are seeded, namely the tumor microenvironment or
stroma (1).

Mutations promoting epithelial-to-mesenchymal transition (EMT) greatly contribute to
metastasis of cancer cells. Cells of normal tissues are tightly regulated by cell-to-cell and cell-to-
matrix interactions. During cancerous transformation, epithelial cells may acquire mesenchymal
cell-like properties, including loss of critical epithelial markers (e.g., E-cadherin, a-catenin), and
March 2021 | Volume 11 | Article 6270231

https://www.frontiersin.org/articles/10.3389/fonc.2021.627023/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dgozuacik@ku.edu.tr
https://doi.org/10.3389/fonc.2021.627023
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.627023
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.627023&domain=pdf&date_stamp=2021-03-19


Akkoc et al. Autophagy and Cancer Dormancy
expression of mesenchymal markers (e.g., N-cadherin and
vimentin) (2). A transcriptional program orchestrates this
transformation (e.g., ZEB1/2, Snail etc.) (3–5). Remodeling of
epithelial junctions and cytoskeleton promotes motility and
invasiveness of cancer cells (6). Cancer cells that are now
motile and invasive, penetrate through the tissue extracellular
matrix (ECM) and spread to lymph nodes and secondary sites
through blood and lymph vessels. Seeding to metastatic sites and
metastatic growth require reversal of this process, namely
mesenchymal-to-epithelial transition (MET).

Advances in the last decade showed that in many tumor types,
a small population of progenitor cancer cells, namely cancer stem
cells (CSC), are responsible for the evolution and progression of
the disease and metastasis (7, 8). Cancer cells and CSC might
spread from primary tumors at various stages of tumor
progression. These disseminated cells or clusters of cells
(disseminated tumor cells, DTC) continue their evolution in
their new tumor niches and they generally acquire genetic and
epigenetic signatures that are different from the tumor of origin
(9–13). Although aggressive proliferation of DTC might result in
overt metastasis, latency periods lasting for months or even years
were observed. During the latency period that spans the time
between tumor formation and recurrence (also known as
relapse), some cancer cells stay in a “dormant” state, a state of
balanced proliferation or no proliferation at all (14, 15). At least
some of these dormant cells have capacity to reactivate and form
new metastatic lesions. Recurrent tumors were associated with
drug resistance and aggressive behavior. So, most patients with
recurrent disease show a very poor prognosis (16–18). For this
Frontiers in Oncology | www.frontiersin.org 2
reason, as an important mechanism contributing to tumor
recurrence, cancer dormancy became a focus of attention in
recent years.

There are two major mechanisms of cancer dormancy, namely,
tumor mass dormancy and tumor cell dormancy (or cellular
dormancy) (Figure 1). In tumor mass dormancy, proliferation of
tumor cells counterbalanced by cellular demise and the tumor mass
is preserved to a certain extent. A reason for limited tumor growth is
hypoxia and inefficient nutrient supply due vascularization defects
(angiogenic dormancy). Trimming of tumor cells by the cells of the
immune system is another mechanism limiting tumor growth and
expansion (immunological dormancy). On the other hand, cellular
dormancy involves transition to a quiescent, cell cycle-arrest state,
while cells retain the capacity to perpetuate neoplastic behavior
when reactivated. In this review, we will mainly focus on the role of
autophagy in cellular dormancy.
AUTOPHAGY AND CANCER DORMANCY

Mechanisms of Mammalian Autophagy
Autophagy activation was reported as a novel characteristic of
dormant cells in different tumor types (19). Three major types of
autophagy were described: Macroautophagy, chaperone-
mediated autophagy (CMA) and microautophagy. Although a
clear connection between cancer and CMA was established (20),
according to our knowledge, so far no study directly connecting
CMA to cancer dormancy was published. Similarly,
microautophagy was not studied in this context either. On the
FIGURE 1 | Time-dependent progression of metastasis and dormancy. Conventional diagnostic tumor scans are able to detect tumors bigger than 1 mm3 (tumor
mass = mprimary). After diagnosis with cancer (time = t0), patient may undergo chemotherapy, radiotherapy or adjuvant therapy, yet dormant cells escape and
become resistant to these treatments (time = t2), and awaken after years or even decades (time = t3). In tumor dormancy, tumor mass (m1) stagnates due to limited
neovascularization and constant immune cell attack that balance tumor cell demise and proliferation. After the latency period, dormant tumor cells awaken and lead
to tumor outgrowth (tumor mass>m1). In cellular dormancy, cancer cells hibernate as single cells or small clusters (tumor mass = m1≈0) and lead to massive tumor
growth (tumor mass≥mprimary) following exit from dormancy.
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other hand, the number of studies implicating a role for
macroautophagy in cancer dormancy continues to increase.
Macroautophagy (autophagy herein) is an evolutionarily
conserved catabolic process and an important stress response in
all eukaryotic cells. Activation of autophagy leads to the clearance
of various cellular components, including damaged organelles
(e.g., mitochondria) as well as unfolded proteins and abnormal
protein aggregates. As such, autophagy helps cells to combat stress,
thereby contributes to survival. Mechanisms orchestrating
autophagy activation, autophagic vesicle (autophagosome)
formation and autophagic degradation were studied in detail.

Autophagic machinery primarily relies on the activity of ATG
(autophagy-related) proteins (Figure 2). Following exposure to
stress, activation of a core pathway involving ATG proteins leads
to formation of double-membrane structures (phagophores)
around target molecules and organelles. Phagophores eventually
elongate and seal, forming closed vesicular structures called
autophagosomes or autophagic vesicles. Autophagosomes fuse
with late endosomes or lysosomes, to form autolysosomes. Lytic
enzymes in the lumen of autolysosomes are responsible for the
degradation of cargos carried by autophagosomes.

Autophagic activity is tightly controlled by protein complexes
containing the mTOR kinase: mTORC1 and mTORC2 (21).
These protein complexes are highly responsive to cellular cues,
such as nutrient and growth factor availability, and in the active
state, they work to inhibit autophagy (22). PKB/AKT pathway
provides input from growth-related signals in order to regulate
the mTOR complexes and autophagy. AMPK pathway, an
energy sensor of the cell that monitors AMP/ATP ratios,
comes into play when energy levels are low (23–25). While the
mTORC1 has been documented to regulate autophagy directly,
mTORC2 complex provides regulatory and feedback signals
from insulin receptor phosphoinositide 3-kinase signaling (26–
28). Under nutrient-rich conditions, mTORC1 keeps ULK1 and
ATG13 in an inactive state. Nutrient deprivation leads to
dephosphorylation of mTORC1 sites on ULK1 and ATG13
(24). ULK1 then autophosphorylates and phosphorylates its
Frontiers in Oncology | www.frontiersin.org 3
partner proteins ATG13 and FIP200 (29, 30). By this way,
ULK1 activation initiates a cascade of events that promotes
autophagosome formation.

Phagophore nucleation results from phosphorylation of
lipids by the VPS34 lipid kinase complex (the class III PI3K,
PI3KC3), BECN1 (Beclin-1), AMBRA1 and ATG14 (31, 32).
Phosphorylation of inositol lipids on cellular membranes, such
as ER membranes, leads to accumulation of phosphatidylinositol
3-phosphates (PI3P) (33). PI3P formation at membrane sites
called omegasomes (or cradles), through recruitment of proteins
with PI3P-binding domains, such as WIPI1/2 proteins and
DFCP1 (34–36).

Proteins from the ubiquitin-like ATG8 family control
elongation of phagophores through the activity of two key
protein complexes. ATG12-ATG5–ATG16L1 complex facilitates
coupling of ATG8 proteins, including MAP1LC3 (LC3) and
GABARAPs, to phosphatidylethanolamine (PE) molecules on
elongating membranes (37). Lipidated ATG8 proteins on
autophagic membranes allow growth and closure of phagophore
membranes (38, 39). Autophagy can be selective or non-selective.
In the latter case, autophagy receptors, such as SQSTM1/p62,
bridge between ATG8 proteins and ubiquitylated targets and
direct them to autophagosomes. Hence, assessment of lipidation
of ATG8s, especially LC3 lipidation, is a widely accepted as a
powerful approach for monitoring autophagic activity (40, 41).

Mature autophagosomes are then transported along
microtubules toward late endosomes and lysosomes. SNARE
proteins facilitate fusion of autophagosomal outer membrane
with endosomal or lysosomal membranes (42). Lysosomal acidic
hydrolases degrade autophagic cargos into their building blocks
(e.g. proteins into amino acids), which in turn are recycled to
cytosol and used in the synthesis of new cellular components. As
such, autophagy functions as a cellular degradation and recycling
mechanism that allows cells to survive under stressful conditions.

Dysregulation of autophagy pathway is associated with
various diseases, including cancer (43–45). In fact, autophagy
plays an important yet context-dependent role at various stages
FIGURE 2 | General mechanism of mammalian autophagy. Autophagy is tightly controlled by the activity of AMPK and mTOR. Under nutrient deprivation, AMPK
activates autophagy, yet mTOR inhibition is relieved. Subsequent activation of ULK1 and BECN1 complexes promotes formation of phagophore. ATG5-12-16L complex
and ATG8 family protein LC3 are required for elongation and closure of phagophore. Fully mature double-layered autophagosome containing cargo molecules fuses with
late endosomes and lysosomes. Autophagosomes and their cargo are degraded through lysosomal enzymes and recycled into cytosol for reuse.
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of cancer progression and metastasis (45, 46). In early stages of
cancer, control of ROS accumulation, prevention of DNA
damage and genome instability require functional autophagic
activity, eliminating damaged mitochondria and misfolded/
aggregated proteins (47). Conversely, in established tumors
and especially those tumors that grow relatively faster (e.g.,
tumors with K-RAS activation), tumor supporting role of
autophagy is prominent. In this context, autophagy
compensates for increased metabolic demands, originating
from nutrient and energy deficiency, hypoxia and acidosis (48).
Tumor stage-dependent dual role of autophagy might be
explained in some models by hypoxia-triggered switches
involving proteins, such as RAC3 (49). Moreover, autophagy
was involved in various tumor progression- and metastasis-
associated phenomena, including cell cycle regulation, stem cell
behavior, extracellular matrix interactions, EMT, anoikis, tumor
cell-stroma interactions, angiogenesis, immune responses and
treatment resistance (50–54). In line with these observations, a
number of autophagy genes and proteins show tumor suppressor
or oncogenic activities (45, 55, 56).

In spite of the importance of autophagy in cancer formation
and progression, contribution and molecular mechanisms of
autophagy to cancer dormancy was not explored in detail in
different cancer types and models. As summarized below, an
increasing number of recent studies begins to provide evidence
about a direct involvement of autophagy in cancer dormancy.

Mechanisms of Cellular Dormancy
Cellular dormancy is characterized by a halt in cancer cell
proliferation and entrance to a quiescence-like state. This non-
proliferative state of existence may last for months or years.
Moreover, no matter how long the dormant state is, some cells
retain the capacity to reactivate and re-enter to a proliferative state
(57–59). So, cellular dormancy is defined as a reversible mechanism.

Dormant cells usually reside and survive in the G0-G1 phase
of the cell cycle. Hence, they lack proliferation markers (e.g.,
Ki67) as well as markers of apoptosis (e.g., active-caspases) and
senescence (e.g., beta-galactosidase) (60–62). Not surprisingly,
several changes in cell cycle regulatory molecules were observed.
For instance, cyclin-dependent kinase (CDK) inhibitors p27Kip1

and p21Cip1/WAF1 controlled the non-proliferative state during
hematopoietic stem cell dormancy (63). In another example,
adhesion of lymphoma cells to bone marrow stromal cells
resulted in cell cycle arrest, involving post-transcriptional
regulation of Skp2, a component of p27Kip1 and p21Cip1/WAF1

containing SCF complex (64).
Another regulator of dormancy-associated cell cycle arrest

was identified as the DREAM complex. The complex consists of
p130 or p107 (Retinoblastoma-like pocket proteins), MuvB and
E2F protein. MuvB was defined as a core component in the
transcriptional regulation of cell cycle genes by the DREAM
complex (65). In dormant cells, elevated p130 levels were shown
to facilitate DREAM complex formation and regulate its
transcriptional effects (65, 66). On the other hand, high levels
of p107 were detected only in proliferating cells. Regulatory
kinases DYRK1A and DYRK1B phosphorylated a subunit of
MuvB, namely LIN52, and activated DREAM complex assembly
Frontiers in Oncology | www.frontiersin.org 4
during entry to the non-proliferative state (67). Additionally,
these kinases stabilized p27Kip1 and induced cyclin D turnover,
further contributing to the non-proliferative state (68, 69).

Mitogen-activated kinase (MAPK) pathway plays a central
role in the regulation of dormancy. A number of dormancy-
related factors and their cognate receptors were associated with a
shift in the balance between proliferative ERK1/2 versus non-
proliferative p38 MAPKs. Independent studies conducted in
different cancer cell types, including breast, prostate,
melanoma cells, supported the involvement of p38 pathway in
cancer dormancy (70), and activation of this pathway
contributed to the proliferation arrest in this context (71, 72).
For instance, p38 kinases were stimulated by the activity of TGF-
b2/TGFbRIII, which in turn supported dormancy of head and
neck squamous cell carcinoma cells in the bone marrow (73). In
addition, as a paracrine factor, secreted TGF-b2 from osteoblasts
in the bone microenvironment contributed to prostate cancer
dormancy through activation of p38 (74). Dormant cells secreted
high levels of TGF-b2, creating an autocrine loop in the
regulation of dormancy (75). In line with this, results revealed
that proliferating cells have low TGF-b2 levels (75).

Urokinase plasminogen activator receptor (uPAR) pathway
was described as another dormancy-associated pathway. In
HNSCC, status of the uPAR was directly related with the
dormancy capacity of cells in vivo. In this tumor type,
interaction of uPAR with a5b1 integrin dictated formation of
insoluble fibronectin fibrils and blocked the activation of p38 (76).
Conversely, decreased uPAR levels were detected correlated with
ERK1/2 pathway attenuation (76). Moreover, downregulation of
uPAR inhibited focal adhesion kinase (FAK) phosphorylation and
downstream Src activity, facilitating the dormant state in vivo
(77, 78).

In addition to the HNSCC model, FAK and Src-related
mechanisms were also studied in breast cancer dormancy.
Activation of Src by CXCL2/CXCR4 signaling correlated with
prolonged survival of DTC in the bone marrow niche via
phosphoinositide 3-kinase (PI3K)/AKT pathway (79, 80).
Interestingly, Src-assisted dormancy was secondary organ-
dependent and its downregulation had no effect on lung
metastasis of breast cancer cells (79, 80).

Bone morphogenetic proteins (BMP) were mainly involved in
dormancy regulating tumor stroma interactions. Investigations
on prostate cancer revealed that, BMP7 (bone morphogenetic
protein 7) regulated dormancy of prostate cancer cells through
affecting cancer stem cell population. This effect required
BMPR2 (BMP receptor 2) expression and activation of
dormancy-associated downstream signaling components, such
as p38, p21 and the metastasis suppressor NDRG1 (81). In
another study, bi-directional communication between tumor
cells and stroma was revealed. Dormant prostate cancer cells,
but not proliferative cells, secreted SPARC, a factor which
stimulated BMP7 expression from bone marrow stromal cells,
contributing to the maintenance of dormant phenotype (82).
Another BMP protein, BMP4, was studied in the context of
breast cancer. High levels of BMP4 expression correlated with
entrance of cancer cells to a dormant state in the lung. In this
organ, dormancy activation was associated with ALK2/3 and
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SMAD1/5 signaling (83). In this system, extracellular BMP
antagonist DAND5 counteracted BMP4-assisted dormancy and
promoted the proliferative state (84).

Dormancy-related signaling pathways lead to the activation
of a specific gene regulatory program. For instance, BHLHE41
transcription factor was documented among the downstream
effectors of p38-regulated dormancy in HNSCC (72). In another
study, Kim et al. identified BHLHE41 and NR2F1 as key factors
promoting ER positive breast cancer dormancy in an in vivo
xenograft mice model (85). Importance of BHLHE41 to breast
cancer dormancy was further confirmed in a 3D endosteal bone
niche model containing bone marrow-derived cells and
endothelial cells (86).

NR2F1 belongs to the NR2F family of cancer-related
transcription factors (77). Dormant cancer cells were found to
express high levels of NR2F1 in comparison to their proliferative
counterparts (79, 87). Moreover, high NR2F1 and TGF-b2
expression were characterized as a dormancy signature in prostate
cancer DTC (87). Moreover, transcription of another p38-regulated
gene, SOX9, was directly controlled by NR2F1 binding elements in
its promoter (87). NR2F1-SOX9 axis was also regulated by
microenvironment-derived retinoic acid (RA) signaling and
RARb (87). In addition to other targets, NR2F1 promoted
expression of the CXCL12 and its receptor CXCR4 and induced-
cell cycle arrest in salivary adenoid cystic carcinoma cells (79).

Receptor tyrosine kinases, including TYRO3, AXL and MER,
were critically involved in the dormancy phenotype of certain
cancer types. For example, activation of AXL or TYRO3 receptor
kinases by GAS6 secreted from osteoblast cells, contributed to
the establishment of metastatic dormancy of prostate cancer cells
in the bone marrow (75, 88, 89). In another example, dormant
state was triggered in lymphoblastic leukemia cells by GAS6 to
MER binding (90). On the other hand, AXL was found to be an
important regulator of myeloid lineage-related gene expression
and dormancy in myeloma cells (91).

Although generally considered as a pathway involved in
cancer dissemination and metastasis (92), Wnt pathway was
implicated in dormancy control in a context- and stimulus-
dependent manner (93, 94). For instance, DKK1-dependent
inhibition of Wnt3a signaling induced growth arrest and entry
to dormancy (95). On the other hand, activation of Wnt5a
pathway was responsible for the entrance of prostate cancer
cells to a non-proliferative dormant state (94).

Overall, several cytokines, growth factors and signaling
pathways involving kinases as well as transcription factors were
identified as regulators of dormancy. Although we are far from
having a complete picture, pathways regulating dormancy are
being better defined. A summary of known proteins and
pathways studied in vitro and in vivo were shown in Tables 1
and 2 respectively, and the reader is referred to recent review
articles about dormancy for further details (58, 191, 192).

Role of Autophagy in the Context of
Cancer Dormancy
In addition to recycling long-lived proteins, autophagy plays a
key role in the management of energy crisis, control of reactive
Frontiers in Oncology | www.frontiersin.org 5
oxygen accumulation through destruction of damaged
mitochondria, and in the elimination of unfolded and
misfolded proteins. Studies in the last decade indicated that
autophagy is involved in various stages of cancer formation and
progression (193–197). As mentioned previously, autophagy
plays a role in various events leading to tumor cell survival,
resistance to treatment and metastasis. Hence, autophagy
emerges as one of the critical determinants of the dormant
state. In fact, several independent studies using cancer cells-
derived from a wide variety cancer types, including breast, ovary,
gastrointestinal tract, pancreas and bone cancers and their
respective mice tumor or xenograft models showed that,
autophagy is highly active in dormant cancer cells (125, 148,
180, 198–200). Some of these observations were even supported
by the analysis of patient-derived tissue samples (201), yet
molecular details of how and why autophagy contributes to the
dormant phenotype are not well known. In this section, we will
o v e r v i ew th e cu r r e n t l i t e r a t u r e on au t opha g y -
dormancy connection.

Autophagy-Dormancy Connection:
Experimental Evidence
Studies using different experimental set-ups, different cancer cell
types and models revealed that, malignant cells entering a non-
proliferative, dormancy-like but reversible cycle arrest state
showed increased autophagic activity (Table 3) (148, 180, 199).
In this context, dormant cancer cells were more sensitive to
autophagy inhibition compared to their proliferating
counterparts and inhibition of autophagy was lethal in most
cases. Moreover, inhibition of autophagy in dormant cancer cells
changed their metastatic behavior in vivo in mice (148, 199).

For instance, in gastrointestinal stromal tumor (GIST) cells,
treatment with a KIT/PDGFRA inhibitor, imatinib, induced a
dormancy-like quiescent state during which cells entered cell
cycle arrest through accumulation of the cell cycle inhibitor p27
(198). Autophagy activation was observed under these
conditions, and inhibition of autophagy using a genetic or
chemical (chloroquine or quinacrine treatment) approach
resulted in the loss of cell viability, and increased the anti-
tumor efficacy of imatinib in in vitro and in vivo tests.

Contribution of autophagy to ovarian cancer dormancy was
studied in detail. DIRAS3 (or ARHI) is a maternally imprinted
tumor suppressor that is frequently downregulated in breast and
ovarian cancers (209, 210). Re-expression of DIRAS3 in cancer
cells robustly induced autophagy (180, 202, 211). Interestingly,
although DIRAS3 expression resulted in the apoptotic death of
cancer cells in culture (203), it promoted a dormancy-like state in
vivo (180, 202). Re-expression of DIRAS3 in a Tet-inducible
manner, stimulated autophagy in ovarian cancer xenografts, and
led to a reversible inhibition of tumor growth and entry to a
dormant state. Downregulation of the tumor suppressor was
sufficient for the establishment of overt metastatic tumors. In this
model, inhibition of DIRAS3-induced autophagy by chloroquine
(a lysosomal autophagy inhibitor) reduced tumor growth,
further underscoring the importance of autophagic activity to
DIRAS3-related dormancy (202).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 1 | Summary of in vitro dormancy models and mechanisms.

t on
ancy

Dormancy Mechanism Reference

ion Tumor niche (96)

ion Tumor niche, apoptosis (97)

ion Integrin and PI3K/Akt signaling (98)
ion p38 signaling, ER stress (99)

ion Wnt signaling (100)

ion Her2/neu and ER/PR hormone receptor
signaling

(101)

ion CDK2 signaling (102)
ion CDKIs (103)

ion CDKIs, Stemness (104)

ion Tumor niche, p38/ERK signaling (77)

ion Tumor niche, p38/ERK signaling, CDKIs (105)

ion N.D. (106)

on EMT, Stemness (107)

on Integrin signaling, FAK, CDKIs (108)

on ERK1/2 signaling, CDKIs (109)
on SMAD, FAK and ERK signaling (110)
on Ca+2 signaling (111)

on CXCL5/CXCR2 signaling (112)
on ECM, JNK/SAPK signaling (113)

on Immunogenic response (114)

ion EMT, CDKIs, Stemness (115)
ion Tumor niche (116)
ion Stat3/Wnt/Notch signaling (117)

ion N.D. (118)

on AKT and p53 signaling (119)

ion CDKIs (120)
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Proteins and Factors Cell line Tissue of
Origin

Metastatic
Target

Dormancy Tests Effec
Dorm

1 Osteopontin Nalm-6 ALL Bone Ki67 positivity, Fluorescent dye retaining (DiR), Drug
resistance (Ara-C)

Induc

2 Bcl-2 CD34-enriched
primary AML

AML N.D. Drug resistance (Ara-C), Fluorescent dye retain (PKH26), Induc

3 FGF-2 T47D, MCF7 Breast N.D. Drug resistance (Taxotere) Induc
4 CK19 BT549, MDA-MB-

231
Breast N.D. G0/G1 cell cycle arrest, Drug resistance (Cisplatin) Induc

5 DNp63a MCF7 Breast N.D. 3D spheroid formation, G0/G1 cell cycle arrest, Drug
resistance (Paclitaxel, Doxorubicin), Ki67and BrdU positivity

Induc

6 NR2F1-AS1 BT474 Breast Lung Ki67 positivity, Colony formation Induc

7 p21 MCF10A Breast N.D. BrdU positivity, G0/G1 cell cycle arrest Induc
8 miR-222/223 MDA-MB-231, T47D Breast Bone G0/G1 cell cycle arrest, Drug resistance (Carboplatin), Stem-

like phenotype (Oct4+)
Induc

9 IKKb MCF7 Breast Bone, pelvic
organs, lung

Colony formation, G0/G1 cell cycle arrest, Ki67 positivity Induc

10 BHLHE41, Wnt3,
HBP1

MDA-MB-231 Breast N.D. 3D spheroid formation Induc

11 IL1b T47D, MCF7 Breast N.D. Drug resistance (Fulvestrant), colony formation, G0/G1 cell
cycle arrest, p-p38/p-ERK1/2 ratio

Induc

12 Fra-1 4TO7 Breast N.D. Drug resistance (Doxorubicin, Cyclophosphamide), G0/G1 cell
cycle arrest, Stem-like phenotype (Sca-1+), Ki67 positivity

Induc

13 LOXL2 MCF7 Breast N.D. Stemness (CD44 high/CD24low), 3D matrigel spheroid
formation

Inhibit

14 MLCK D2.A1, D2OR,
MCF7, MDA-MB-231

Breast N.D. 3D spheroid formation Inhibit

15 Src D2.0R Breast Lung Ki67 positivity, G0/G1 cell cycle arrest, 3D spheroid formation Inhibit
16 Profilin-1 MDA-MB-231 Breast N.D. 3D matrigel spheroid formation Inhibit
17 Parathyroid hormone-

related protein (PTHrP)
MCF7 Breast N.D. RNA-seq dormancy associated gene downregulation (e.g.

SOCS3, AMOT)
Inhibit

18 CXCL5 PyMT Breast Bone Ki67 positivity Inhibit
19 RhoA/RhoC MCF-7, MDA-MB-

231
Breast N.D. Ki67 positivity, Colony formation Inhibit

20 Zeb1 D2A1, 67NR, 168
FARN

Breast Lung, Bone,
Adrenal gland

Fluorescent dye retaining (CFSE) Inhibit

21 ZEB2 SW480 Colorectal N.D. Fluorescent dye retaining (PKH26) Induc
22 SDF-1a HT-29, SW480 Colorectal N.D. Drug resistance (5-fluorouracil, irinotecan, oxaliplatin) Induc
23 IL-23/IL-23R TE-1, ECA

109
Esophagus N.D. G0/G1 cell cycle arrest, Stem-like phenotype (CD133+), p21

and p16 expression, Radioresistance
Induc

24 CXCL12, CXCL16 and
CX3CL1

LN229, T98G Glioblastoma N.D. Drug resistance (Temozolomide), Ki67 positivity, Fluorescent
dye retaining (DiO), p-p38/p-ERK1/2 ratio

Induc

25 PP2A Primary Tumor stem-
like cells (TSCs)

Glioblastoma N.D. G0/G1 cell cycle arrest, BrdU positivity Inhibit

26 Aurora kinase A
(AURKA)

Hep2 Larynx N.D. Drug resistance (5-FU), G0/G1 cell cycle arrest, Induc
t
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t
t

t

t

t
t
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t
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TABLE 1 | Continued

Dormancy Tests Effect on
Dormancy

Dormancy Mechanism Reference

arrest, p-p38/p-pERK1/2 ratio Induction Smad-independent TGF-b signaling,
FOXO1, FOXO3A, MYC and AKT
signaling

(121)

eroid formation, Drug resistance (5-FU), G0/
est, EdU positivity

Induction TGF-b/smad-slug signaling, CDKIs,
stemness

(122)

CNA positivity, G0/G1 cell cycle arrest Induction Integrin signaling, FAK, CDKIs (123)

positivity Induction Immunogenic response (124)

arrest, Ki67 positivity, Drug resistance Induction PI3K/Akt pathway, Autophagy (125)

is by FACS, Drug resistance (Carboplatin) Induction CDKIs (126)

ositivity, G0/G1 cell cycle arrest, 3D sphere Inhibition AKT signaling, CDKIs (127)

arrest, Drug resistance (Cisplatin) Inhibition Nuclear pore architecture (128)
(Erlotinib), 3D spheroid formation Induction Integrin signaling, avb3-KRAS-NF-kB

axis
(129)

Drug resistance (5FU, SN38), G0/G1 cell
matrigel spheroid formation

Inhibition Tumor metabolism (130)

ositivity, Fluorescent dye retaining (DiD) Induction TGFb signaling (75)
retaining (PKH26) Induction Immunogenic response, Type I IFN

pathway (IFNAR)
(131)

Inhibition ECM, TGFb signaling (132)
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Proteins and Factors Cell line Tissue of
Origin

Metastatic
Target

27 miR-122 HCC-BCLC9 stem-
like cell

Liver N.D. G0/G1 cell cycle

28 p53 A549, H460 Lung N.D. 3D matrigel sph
G1 cell cycle arr

29 3D fibrin matrix
stiffness

B16F10 Melanoma N.D. Ki67 positivity, P

30 (TRP)-2 Prominin-1 (CD133)+
RET
transgenic primary
mouse melanoma
cells

Melanoma Bone Ki67 and PCNA

31 IGF2 AXT Osteosarcoma N.D. G0/G1 cell cycle
(Adriamycin)

32 Dyrk1A iOvCa147E2 and
HEY

Ovary N.D. Cell cycle analys

33 AKT OVCAR3, primary
Epithelial ovarian
cancer (EOC)

Ovary N.D. Ki67 and BrdU p
formation

34 NUP62 TOV112D Ovary N.D. G0/G1 cell cycle
35 TBK1 FGb3 Pancreas N.D. Drug resistance

36 AKT AsPC-1 Pancreas N.D. BrdU positivity,
cycle arrest, 3D

37 Axl PC3, DU145 Prostate Bone BrdU and Ki67 p
38 IRF7 RM1 Prostate Bone, Lung Fluorescent dye

39 MLCK LuCaP 86.2, 92, and
93

Prostate N.D. Ki67 positivity
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TABLE 2 | Summary of in vivo dormancy models and mechanisms.

Effect on
dormancy

Dormancy mechanism Reference

Inhibition Tumor niche (133)
Induction Immunogenic response (134)

Inhibition ECM (135)
Inhibition Integrin signaling (136)

Induction EMT (137)

Induction Angiogenesis, Tumor
niche

(138)

Induction p38 signaling, GATA3/
FOXA1 axis

(139)

Induction p38, FAK, PLCb signaling (140)
Induction Wnt signaling (141)

Induction Tumor niche, Notch
signaling

(142)

Induction Tumor niche, CDKIs (143)
Induction Tumor niche (144)
Induction Immunogenic response (145)
Induction N.D. (146)

Induction N.D. (85)

Inhibition Angiogenesis (147)
Inhibition Autophagy (148)
Inhibition EGFR signaling (149)

Inhibition Notch signaling (150)

Inhibition Tumor niche, UBE2N/
Ubc13 signaling

(151)

Inhibition Tumor niche (152)
Inhibition Tumor niche, Integrin and

NFkB signaling
(153)

Inhibition Tumor niche, SMAD
pathway, Stemness

(84)

Inhibition Tumor niche (154)

Induction Immunogenic response,
Type I IFN pathway
(IFNAR)

(155)

Induction p38/ERK and Integrin
signaling

(70)

(Continued)
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Proteins
and Factors

Cell line Tissue of origin Metastatic
target

Dormancy tests

1 Notch3 ICD MOLT-3, MICOL-14 ALL, Colorectal N.D. Xenograft tumor formation
2 CXCL10 DA1-3b cell line AML Bone, spleen

and liver
Allograft tumor formation ratio

3 ILK J82, JB-V Blader N.D. Xenograft tumor formation, Ki67 positivity
4 MMP2 Dunn, LM8 Bone Liver, kidney,

lung
Allograft tumor formation, 3D matrigel spheroid formation

5 miR-200b/
200a/429
cluster

RJ345 Breast Lung 3D matrigel spheroid formation, Xenograft tumor formation

6 POSTN MDA-MB-231, T4-2 Breast Bone, Brain,
Lung

KI6̇7 positivity, Allograft tumor formation

7 MSK1 T47D Breast Bone Ki67 and BrdU positivity, Xenograft tumor formation

8 LPA1 4T1, MDA-MB-231T Breast Liver, Lung Xenografted tumor formation, Ki67 positivity
9 Int2/Fgf3 MMTV(LA)-Induced

Mammary Tumor
Breast N.D. Xenograft tumor fomation, BrdU positivity

10 Notch-2 MDA-MB-231 Breast Liver Ki67 and phospho-Histone H3b positivity, Drug resistance (Doxorubicin),
Xenograft tumor formation, Stem-like phenotype (Sca1, CD34+)

11 TIE2 MCF7, 4T1 Breast Bone G0/G1 cell cycle arrest, Xenograft tumor formation, Drug resistance (5-FU)
12 CXCR4 MDA-MB-231 Breast Lung G0/G1 cell cycle arrest, Ki67 positivity, Xenograft tumor formation
13 Ron PyMT-MSP Breast Lung Allograft tumor formation
14 Fbxw7 E0771 and MDA-MB-

231
Breast Bone Xenograft tumor formation, Allograft tumor formation, Drug resistance

(Paclitaxel), Fluorescent dye retaining (PKH26), G0/G1 cell cycle arrest, 3D
spheroid formation, Ki67 positivity

15 BHLHE41,
NR2F1

MCF7 Breast N.D. Xenograft tumor formation

16 HSP27 MDA-MB-436 Breast N.D. Xenograft tumor formation, Ki67 positivity
17 Pfkfb3 D2.OR, D2.A1 cells Breast Lung Xenograft tumor formation, 3D matrigel spheroid formation
18 FGFR1 Wnt1/

iFGFR1-driven breast
cancer cell

Breast N.D. Xenograft tumor formation, Ki67 positivity

19 HER2/neu MMTV-rtTA;TetO-
NICD1 cells

Breast N.D. Colony formation, Tumor formation

20 miR-205,
miR-31

MDA-MB-231 Breast Bone, brain and
lung

Xenograft tumor formation, 3D sphere formation

21 ROCK1 MDA-MB-231 Breast N.D. Xenograft tumor formation
22 VCAM1 SCP6, TM40D, MCF7,

CN34, MDA-MB-435
Breast Bone Xenograft tumor formation

23 Coco 4TO7, 4T1 Breast Bone, Brain,
Lung

Ki67 and EdU positivity, Allograft tumor formation, Fluorescent dye retaining
(PKH26), 3D spheroid formation

24 Angiopoietin-
2

MCF7 Breast N.D. 3D matrigel spheroid formation, Xenograft tumor formation, p-p38/p-ERK
1/2 ratio,

25 IRF7 4T1 Breast Lung Xenograft tumor fromation, Drug resistance (Methotrexate, Doxorubicin),

26 ERK/p38 MDA-MB-231, MCF7,
Hep3, M24met

Breast, Head and
neck, Melanoma

N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane)
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TABLE 2 | Continued

Effect on
dormancy

Dormancy mechanism Reference

Induction Angiogenesis (156)

Induction Epigenetic alteration,
Stemness

(157)

Induction Angiogenesis, EGFR
signaling

(158)

Inhibition Immunogenic response (159)

Induction Immunogenic response,
antigen presenting

(160)

Induction EMT, TGF-b and p38
signaling

(161)

ell Induction p38 and Integrin signaling (162)

Induction UPR, Rheb-mTOR and
MKK6/p-38 axis

(163)

Induction p53, c-Jun signaling (72)
Inhibition FAK/PI3K/Akt signaling (164)

Induction SMAD pathway, CDKIs (73)
Induction Epigenetic alteration,

Retinoic acid pathway,
Stemness

(87)

Induction p38/ERK and Integrin
signaling

(76)

Inhibition N.D. (165)

Induction EMT, Evasion of apoptosis (166)
Inhibition N.D. (167)

Induction Ca+2 and AKT signaling (168)

Induction Retinoic acid pathway,
STAT3 and p53 signaling,
CDKIs

(169)

t, Induction ECM, IDO1/AhR-
dependent p27 pathway
STAT1 pathway

(170)

Induction N.D. (171)
Inhibition Angiogenesis (172)

ell Inhibition FOXO3A signaling, CDKIs (173)

(Continued)

A
kkoc

et
al.

A
utophagy

and
C
ancer

D
orm

ancy

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

M
arch

2021
|
Volum

e
11

|
A
rticle

627023
9

Proteins
and Factors

Cell line Tissue of origin Metastatic
target

Dormancy tests

27 H2BK, Eph
receptor A5
(EphA5),
Angiomotin

MDA-MB-436, KHOS-
24OS, T98G, SW872

Breast,
osteosarcoma,
glioblastoma,
liposarcoma

N.D. Xenograft tumor formation

28 CUL4B Patient-derived tumor
organoid (PDOs) cell,
HT29 and HCT116

Colorectal Liver, Lung 3D matrigel spheroid formation, Xenograft tumor formation

29 TSP-1,
EGFR

U87-MG, T98G Glioblastoma N.D. Xenograft tumor formation, Drug resistance (Erlotinib, Cetuximab), 3D
matrigel spheroid formation

30 Tissue factor
(TF)

U373 Glioblastoma N.D. Xenograft tumor formation, Ki67 positivity

31 miR-190 T98G, KHOS-24OS Glioblastoma,
Osteosarcoma

N.D. Ki67 positivity, Xenograft tumor formation

32 PRRX1 Cal-27, SCC-9 Head and neck N.D. Xenograft tumor formation

33 a5b1
Integrin

HEp3 Head and neck N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane), G0/G1 c
cycle arrest

34 ATF6a D- and T-variant of
HEp3

Head and neck N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane)

35 BHLHE41 Hep3 Head and neck N.D. Xenograft tumor formation
36 Aurora

kinase A
(AURKA)

Hep2 Head and neck Lung Xenograft tumor formation, G0/G1 cell cycle arrest, Ki67 positivity

37 TGFb2 Hep3 Head and neck Lung, Bone p-p38/p-ERK ratio, Xenograft tumor formation
38 NR2F1 Hep3 Head and neck Spleen, Lung Ki67 positivity, Xenograft tumor formation

39 Fibrinogen
fibrils

HEp3 Head and neck N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane)

40 MYC LAP-tTA Tet-o-MYC
cells

Liver N.D. Ki67 positivity, Xenograft tumor formation

41 YAP/TEAD PC-9 Lung N.D. Xenograft tumor formation, Drug resistance (Osimertinib+ Trametinib)
42 PAX5 Raji Lymphoblastoid N.D. EdU, Fluorescent dye retaining (CFSE), G0/G1 cell cycle arrest, Xenograf

tumor formation, Drug resistance (Etoposide, Daunorubicin)
43 KISS1 C8161.9 Melanoma Lung, Bone,

Kidney, Eye
Xenograft tumor formation

44 Sox2 B16F1, A375 Melanoma N.D. 3D fibrin spheroid formation, Ki67, COUP-TF1 and BrdU positivity, G0/G
cell cycle arrest, Drug resistance (Tazarotene, ATRA, Temozolomide,
Cisplatin), Stemness (CD133+) Xenograft tumor formation

45 IFN-g B16, A375 Melanoma N.D. 3D spheroid formation, Xenograft tumor formation, G0/G1 cell cycle arre
PCNA positivity, Drug resistance (Methotrexate, paclitaxol)

46 Angiostatin B16F10 Melanoma Lung Xenograft tumor formation
47 VEGF B16F10 Melanoma N.D. Xenograft tumor formation
48 GILZ B16F1, B16F1-GM-

CSF
Melanoma Brain Stemness (CD133, CD24 positivity), Xenograft tumor formation, G0/G1 c

cycle arrest
t
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TABLE 2 | Continued

Effect on
dormancy

Dormancy mechanism Reference

Inhibition Tumor niche,
angiogenesis

(174)

Induction Angiogenesis, lipogenesis (175)

Induction N.D. (176)

Induction Angiogenesis, EMT (177)

Induction Angiogenesis, Epigenetic
alterations

(178)

Induction Autophagy, ERK and AKT
signaling

(179)

Induction PI3K and TSC1/2
signaling, autophagy

(180)

g Inhibition EGFR signaling (181)

Inhibition Tumor niche, EMT (182)

Induction IGF1/IGF-1R/AKT/XIAP
signaling axis

(183)

Induction Tumor niche, Cytokine
signaling

(184)

Induction Angiogenesis (185)
Induction p38/ERK signaling,

Stemness
(186)

Induction p38 signaling, SPARC/
BMP7/BMPR2 axis,
CDKIs

(82)

Induction BMPR2/NDRG1/P38 axis (187)

Induction Tumor niche, TGFbRIII-
p38-pS249/T252 RB
signaling axis

(74)

Induction Tumor niche, platelet
aggregation and activation

(188)

Induction Tumor niche (89)
Induction Tumor niche (90)
Induction Tumor niche, mTOR

signaling
(189)

e Inhibition Tumor niche, Wnt5a/
ROR2/SIAH2 signaling
axis, CDKIs

(94)

(Continued)
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Proteins
and Factors

Cell line Tissue of origin Metastatic
target

Dormancy tests

49 EET LLC, B16F10,T241 Melanoma, Sarcoma Lung, axillary
lymph nodes,
liver and kidney

Allograft tumor formation

50 TIMP-1 and
TIMP-2

MLS 402-91 and
primary human myxoid
liposarcoma

Myxoid liposarcoma N.D. Xenograft tumor formation

51 LTBP2 HONE1-2, NP460 Nasopharynx N.D. Colony formation, 3D matrigel spheroid formation, Xenograft tumor
formation

52 miR-34a,
miR-93, and
miR-200c

Saos-2, MG-63 Osteosarcoma Lung Ki67 positivity, Xenograft tumor formation

53 ARHI
(DRAS3)

SKOv3, Hey Ovary N.D. Xenograft tumor formation, Colony formation, PCNA positivity

54 VEGF, IL8
and IGF-1

SKOv3, OVCAR8 Ovary N.D. Xenograft tumor formation

55 ARHI
(DIRAS3)

SKOv3 Ovary N.D. Colony formation, Xenograft tumor formation

56 MED12 HO8910 and SKOV3 Ovary N.D. Xenograft tumor formation, Colony formation, G0/G1 cell cycle arrest, Dr
resistance (paclitaxel, gemcitabine, topotecan, and
5-FU)

57 CXCR4 A2780, SKOv-3 Ovary N.D. Drug resistance (cisplatin, doxorubicin, paclitaxel), Xenograft tumor
formation, Colony formation

58 IGF1 AsPC-1, MIA PaCa-2 Pancreas N.D. Allograft tumor formation, Xenograft tumor formation, G0/G1 cell cycle
arrest, Ki67 positivity

59 IL8 R254, H6c7-kras,
Panc1

Pancreas N.D. Ki67 positivity, p-P38/p-PERK1/2 ratio, Xenograft tumor formation

60 15-LOX-2 DU145, PC-3 Prostate N.D. Xenograft tumor formation, G0/G1 cell cycle arrest
61 MERTK PC3, C4-2B Prostate Bone Xenograft tumor formation, G0/G1 cell cycle arrest, Ki67 positivity

62 BMP-7 PC3mm Prostate Bone Xenograft tumor formation, Stemness (CD24low/CD44high/CD133high),
Fluorescent dye retaining (DiD)

63 BMP7 PC3 mm, C4-2B Prostate Bone 3D sphere formation, Xenograft tumor formation, Stemness (CD24-/CD4
+/CD133+)

64 GDF10,
TGFb2

C4-2B4 Prostate Bone Ki67 positivity, Xenograft tumor formation, p-p38/p-ERK1/2 ratio

65 Axl PC3, C42B Prostate Bone Xenograft tumor formation

66 Axl, Tyro3 PC3, Du145 Prostate Bone Xenograft tumor formation
67 Anxa2 PC3 Prostate N.D. Xenograft tumor formation, G0/G1 cell cycle arrest
68 TBK1 PC3, C4-2B Prostate Bone Xenograft tumor formation, Drug resistance (Taxotere)

69 Wnt5a PC3, C4-2B Prostate Bone Fluorescent dye retaining (DiD), Xenograft tumor formation, Drug resistan
(Docetaxel), G0/G1 cell cycle arrest, Ki67 positivity
u
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In other ovarian cancer studies, ascites-derived primary
cancer cells from patients with high-grade serous ovarian
cancer and ovarian cancer cell lines were used. Treatment of
these cells with an allosteric AKT inhibitor Akti-1/2 induced a
dormancy-like cytostatic response, and under these conditions,
autophagic activity was significantly increased (204).

The role of autophagy in dormancy was studied in detail in
breast cancer cell culture and animal models. Autophagy
activation was observed during a dormancy-like arrest state of
MCF7 breast cancer cells that were cultured with farnesyl
transferase inhibitors (FTIs) (212). In MDA-MB-231 breast
cancer cells, repetitive long-term hypoxia/reoxygenation cycles
resulted in a low proliferation state and dormancy-like reversible
cell cycle arrest (206). In another study, a dormancy-like state
was induced by an adriamycin- (ADR-) treatment in vitro
regimen using breast cancer cells from a Neu-driven cancer
mice model (FVBN202 mice). Autophagy activation was also
observed in this model of dormancy (207).

Other groups used two breast cancer cell lines derived from
murine mammary hyperplastic alveolar nodules for modeling
dormant versus proliferation states of this cancer type. D2.A1
cells were metastatic and D2.0R cells were dormancy-prone
under certain growth conditions. In this system, autophagic
activity of dormant D2.0R cells was found to be significantly
higher than that of D2.A1 metastatic cells (148, 199). Both
autophagosome and autolysosome numbers were increased,
autophagy receptor (e.g. SQSTM1/p62) degradation was
observed, indicating that autophagy in dormant cells was fully
functional (148). In line with studies in other cancer types,
dormant breast cancer cells were sensitive to autophagy
inhibition whereas proliferative cells were resistant (199).
Following tail vein injection to mice, most D2.0R cells stayed
dormant in the lungs. Autophagy-related gene expression and
autophagic activity in micrometastatic dormant lesions of D2.OR
cells were observed higher as compared to the metastatic lesions
of D2.A1 cells (148, 199).

Dormancy was also investigated in pancreatic duct
adenocarcinoma (PDAC). In this cancer type, elevated levels of
copper were associated with the degree of cancer progression.
Interestingly, blockage of copper absorption by targeting the
copper transporter 1 (SLC31A1) or usage of copper chelator
tetrathiomolybdate (TM) inhibited proliferation of cancer cells
and induced a dormancy-like arrest state (200). Under these
conditions, autophagy was activated, and it was responsible for
PDAC cell survival both in vitro and in vivo tests. Indeed, inhibition
of autophagy caused an increase in in vitro cell death and decreased
in vivo tumor burden. These results further provided evidence about
the role of autophagy in the survival of dormant cells.

Dormancy in osteosarcoma following chemotherapy, has
been associated with increased levels of IGF2 (125). Chronic
exposure of osteosarcoma cells to IGF2 or insulin in combination
with serum deprivation, successfully established an in vitro
dormancy and drug-resistance model in osteosarcoma (125).
Under these conditions, autophagy was activated.

Analysis of patient-derived samples provided further
evidence about the importance of autophagy in cancer
dormancy (201). In primary ovarian tumor tissue sections,
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LC3 localization in punctate structures was observed in only 21–
23% of cases. In contrast, LC3 puncta, hence an upregulation of
the autophagic activity was observed in more than 80% of tumor
nodules found on the peritoneal surface of patients at second-
look operations following primary chemotherapy. These results
point out to a significant increase in autophagy in dormant
ovarian cancer cells seeded in the peritoneum compared to
primary tumor samples. These results underline the relevance
and importance of experimental observations about dormancy-
autophagy connection.

Role of Autophagy in Dormancy
Establishment, Dormant Cell Survival,
and Reactivation
Autophagy controls dormant cell survival and behavior in many
ways. In DIRAS3-induced ovarian cancer dormancy model, ARHI
re-expression enabled SKOv3 ovarian cancer cells to remain
dormant when they were grown in mice as xenografts (180).
Reduction of ARHI levels in dormant cells caused xenografts to
grow faster, and inhibition of ARHI-induced autophagy with
chloroquine dramatically blocked regrowth of tumors.

In the D2.0R dormant and D2.A1 metastatic breast cancer cell
models, autophagy was critical for the maintenance of the
dormant phenotype in cancer cells and their survival. In 3D
cultures, dormant D2.0R cells lost viability following treatment
with autophagy inhibitors hydroxychloroquine, bafilomycin or
3-methyladenine, while non-dormant counterparts were not
affected (199). Knockdown of autophagy genes Atg3, Atg7, p62
or FIP200, resulted in the outgrowth of dormant cells in 3D cell
cultures. Moreover, Atg3-deficient D2.0R cells showed an
increased capacity to create pulmonary tumors in mice (148).
Similarly, in the ADR-induced dormancy model of Neu-driven
breast cancer, mice that were i.v. injected with ADR-treated Atg5
knockdown cancer cells developed lung metastasis significantly
sooner than those that were injected with wild-type dormant
cells. As expected, a higher frequency of Ki67 positive, polyploid-
Frontiers in Oncology | www.frontiersin.org 12
like cells was observed in ADR-treated Atg5 knockdown
mammary tumors (207). In line with these results, autophagy
was downregulated in proliferating metastatic cells, but it was
found to be necessary for a dormant-to-proliferative switch
before the establishment of overt metastatic lesions (199).
Consequently, treatment with autophagy inhibitors after the
development of proliferative lesions (i.e. lesions that moved
beyond the dormant-to-proliferative switch) had lesser impact
on the metastatic burden (199).

These observations indicate that autophagy plays an active
role in the initiation and maintenance of the dormant state, as
well as during the switch from dormancy to a proliferative state.

Role of Autophagy in the Clearance of
Mitochondria and Regulation of
Metabolism in Dormant Cancer Cells
Mitochondria are at the center of cellular energy metabolism
control. A side product of oxidative phosphorylation is reactive
oxygen species (ROS), anddysfunctional ordamagedmitochondria
aremore prone toproduceROS.A life-threateningoutcomeofROS
accumulation at a cellular level is oxidation of building blocks such
as proteins and lipids, aswell as damage toDNA.A selective formof
autophagy, mitophagy is a major mechanism that eliminates
dysfunctional and damaged mitochondria and that ensures
control of the mitochondrial mass in cells.

Cancer cells are able to stay in a dormant state for months or
even years. Hence in dormant cells, in addition to elimination of
unfolded/misfolded proteins and other building blocks,
regulation of the mitochondrial mass and prevention of ROS
accumulation should be of utmost importance for long-term
survival and the preservation of reactivation capacity after
transition to the proliferative state. Additionally, control of
mitochondrial mass and function should be critical for
metabolic reprogramming of dormant cells. Indeed, increased
autophagic activity was associated with mitophagy in several
models of cancer dormancy.
TABLE 3 | Dormancy models with documented autophagic activity.

Dormancy activating
conditions

Cell line Cancer type Status of
autophagy

References

1 Re-expression of DIRAS3/
ARHI

SKOv3 Ovarian cancer Activated (180, 202,
203)

2 Akt1/2 inhibition Ascites-derived primary human cancer cells Ovarian cancer Activated (127, 204)
3 LKB1 Ascites-derived primary human cancer cells Ovarian cancer Activated (205)
4 Farnesyltransferase inhibitors

(FTIs)
MCF7 Breast cancer Activated (113)

5 Hypoxia/Re-oxygenation MDA-MB-231 Breast cancer Activated (206)
6 Adriamycin-(ADR-) treatment Neu-derived mammary cancer cells/mice model (FVBN202 mice) Breast cancer Activated (207)
7 ECM D2.A1, D2.0R Breast cancer Activated (199)
8 Pfkfb3 D2.A1, D2.0R Breast cancer Activated (148)
9 SYK inhibitor, R406 4T1 Breast cancer Activated (208)
10 SLC31A1 orT

etrathiomolybdate (TM)
Panc‐1, MiaPaCa‐2 Pancreas cancer Activated (200)

11 IGF2 or Insulin c-MYC in bone marrow stromal cells derived from Ink4a/Arf
knockout mice cells (AXT)

Osteosarcoma Activated (125)

12 KIT/PDGFRA inhibitor,
imatinib

GIST-T1 Gastrointestinal stromal
tumor (GIST)

Activated (198)
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For instance, mitophagy was activated during DIRAS3-induced
dormancy of ovarian cancer cells. Following DIRAS3 induction by
the Tet-on system in ovarian cancer stable cell lines, TMRM
uptake by mitochondria was decreased, indicating accumulation
of depolarized mitochondria in these cells. Reduced TOM20
mitochondrial protein levels and mitochondrial mass as assessed
through mitotracker staining were reported in dormant cells. As
such, dormancy state was associated with a higher rate of
mitochondrial depolarization, and mitophagy was increased as a
mechanism to eliminate depolarized mitochondria and to limit
ROS accumulation (213).

In the D2.0R breast cancer model of dormancy, autophagy
protein LC3 was found to colocalize with mitochondria in cells
growing in a matrix supporting dormancy. During mitophagy,
PINK-assisted ubiquitylation of mitochondrial proteins by E3
ligases such as PARKIN prime mitochondria for mitophagic
degradation. Indeed, accumulation of mitophagy-associated full
length PINK and degradation of mitochondrial protein TOM20
was reported under these experimental conditions. Additionally,
autophagy inhibition using HQ caused an accumulation of
damaged mitochondria as well as ROS. Following suppression of
the autophagic activity, dormant cells suffered fromDNA damage,
caspase-3 activation was prominent, and cells eventually died.
Mitochondrial ROS scavengers prevented cell death, indicating
that an important function of autophagy in dormant cells is the
maintenance of healthy mitochondrial mass, hence limitation of
ROS-induced damage (199). Similarly, in the TM-treated PDAC
cell model of dormancy, inhibition of autophagy by CQ increased
ROS accumulation and resulted in cell death, further showing that
ROS limiting activity of autophagy is central to dormant cancer
cell survival in different cancer models (200).

Autophagic and mitophagy activation during dormancy was
associated with metabolic changes in cells. In the ovarian cancer
dormancy model, induction of DIRAS3 resulted in a higher
glycolytic rate and mitochondrial respiration rate was decreased
(213). Indeed, ATP levels of were found to be attenuated in
different models of dormancy (200, 205, 213). Moreover, in
dormant cells, an increase in glucose and glutamate uptake was
accompanied by extracellular lactate accumulation (213). Under
these conditions, increased glucose uptake was coupled to an
upregulation of glycolysis and glutaminolysis, and all these
changes were autophagy dependent. In this context, blockage
of these metabolic pathways resulted in decreased cell viability
(213). In autophagic tumors in vivo, free valine, glycine, and
alanine concentrations were increased at statistically significant
levels, indicating that bulk degradation of proteins by autophagy
was also accelerated and it further supported metabolic activities
of dormant cancer cells (213).

Molecular Mechanisms of Autophagy
in Dormant Cells
To date, molecular mechanisms governing autophagy activation
during dormancy and autophagy signaling pathways that are
involved are largely unknown. Yet, studies on autophagy-
dormancy connection provided hints about the involvement of
certain autophagy-related proteins and pathways in the process.
Frontiers in Oncology | www.frontiersin.org 13
Among the upstream signaling pathways regulating
autophagy, inhibition of the PI3K/AKT pathway emerges as a
common observation. In many reports, mTOR pathway that is
downstream to AKT was shown to be inhibited in dormant cells.
As mentioned above, mTOR is a central regulator of autophagy,
and its inhibition correlates with autophagy activation in various
systems (214–217).

In ovarian cancer dormancy model, DIRAS3 expression
resulted in the inhibition of signaling through PI3K/AKT and
Ras/MAP through enhancing internalization and degradation of
the epidermal growth factor receptor. As a result, mTOR signaling
downstream to the AKT pathway was also inhibited (180, 201).
Indeed, downregulation the pathway by DIRAS3 resulted in a
decrease in the activation of mTOR downstream pathway
proteins, such as p70S6K and pS6, proteins that are involved in
the regulation of cell size and protein synthesis (180). Autophagic
activity was strongly stimulated under these conditions.

In line with the DIRAS3 model, ascites-derived ovarian
cancer spheroids were in a dormant state that was associated
with AKT downregulation and autophagy activation (127, 205).
In fact, inhibition of the AKT pathway in ovarian cancer cells
using specific inhibitors of the AKT kinase, namely Akti-1/2, was
sufficient to direct the entry of cells to a dormant-like state (127).
Downregulation of AKT and mTOR pathway was also observed
in the osteosarcoma dormancy model (125) and breast cancer
cells entering dormancy following exposure to long-term
hypoxia/reoxygenation cycles (206). Similarly, mTOR and its
downstream pathways were reported to be inhibited in the
imatinib-induced GIST cell dormancy model (198).

Another key protein regulating autophagy activation is the
energy sensor kinase AMPK. Increased AMP/ATP ratio
correlates with problems in energy status of cells, and leads to
the activation of AMPK (218). Hypoxia is another signal that can
activate AMPK (219). Following activation, AMPK was shown to
phosphorylate TSC2 and interfere with the activity of the GTPase
RHEB, an activator of mTORC1 signaling; the net result is
autophagy activation (220, 221). Another mechanism through
which the kinase contributes to autophagy activation direct
phosphorylation of the autophagy protein ULK1 (23, 24).

In dormant cells, intracellular ATP levels are decreased (74,
205, 213). Consequently, AMPK activation was reported in
different experimental models of dormancy. For instance, in
ovarian tumor cells, LKB1 and AMPK expression and activity
were increased during spheroid formation and dormancy (205).
The study showed that LKB1 (and possibly AMPK) was required
for the survival of ovarian cancer cells in a dormant state.
Moreover, AMPK activation in proliferating ovarian cancer
cells caused them to enter cell cycle arrest (205). Similarly, an
increase in AMPK activity was observed during DIRAS-3-
induced dormancy of ovarian cancer cells (180) and chronic
hypoxia-induced dormancy of breast cancer cells (206).

Transcriptional upregulation of autophagy-related genes was
observed in dormancy models. Independent groups reported the
upregulation of key autophagy genes, including LC3, ATG4,
ATG5, ATG7 and BECN1, in dormant cells (148, 199). A
mechanistic explanation on the transcriptional regulation of
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autophagy gene expression in the dormant state came from
studies using ovarian cancer cells. During DIRAS3-induced
dormancy, mTOR inhibition promoted translocation of
transcription factors FOXO3a and TFEB to the nucleus (222).
The end result was a FOXO3a-dependent upregulation of
autophagy proteins ATG4 and LC3 and Rab7, a mediator of
autophagosome-autolysosome fusion (222). Similar to FOXO3a,
TFEB translocation to the nucleus activated transcription of
various autophagy-related genes (223, 224).

Interestingly DIRAS3 itself was subject to transcriptional
regulation downstream to the mTOR pathway (225). Under
conditions of nutrient deprivation, mTOR inhibition resulted in
the dissociation of E2F1 and E2F4 from the DIRAS3 promoter,
leading to the proteasomal degradation of these transcription
factors. Dissociation of E2F1 and E2F4 from DIRAS3 promoter
allowed transcriptional upregulation of the gene and activated
autophagy. On the other hand, another transcription factor,
CEBPa, positively regulated DIRAS3 expression and autophagy.
Hence, transcriptional loops involvingDIRAS3might contribute to
further activate and sustain autophagy during nutrient deprivation
and possibly during dormancy (225).

DIRAS3 was directly participating to autophagy regulating
protein complexes. In fact, DIRAS3 was shown to stabilize the
autophagy initiation complex consisting of VPS34 (PIK3C3),
BECN1 and ATG14 (201). DIRAS3 binding to BECN1
destabilized BECN1-BCL2 inhibitory complexes, displaced BCL2
and allowed recruitment of BECN1 protein by autophagy-related
VPS34 lipid kinase complex. Binding of DIRAS3 to BECN1
facilitated association of BECN1 with VPS34 and ATG14.
DIRAS3 was also shown to directly bind VPS34. Altogether,
DIRAS3 enhanced VPS34 lipid kinase activity that is required
for autophagosome formation and autophagy activation (201).
Moreover, DIRAS3-mediated stabilization of the initiation
complex and subsequent autophagy activation was necessary for
dormant cell survival after chemotherapy (201).

On the other hand in mice, knockdown of Atg7 but not Becn1
decreased numbers of tumors formed by dormancy-prone cells in
a TGFb-induced inflammatory background, indicating that
requirement for Becn1 gene in dormancy-related autophagy and
tumor cell survival might be tumor and cell type-dependent (199).

Role of Autophagic Degradation
in Dormancy
Data that was presented above show that autophagic activity is
prominently higher in dormant cancer cells compared to their
actively proliferating counterparts. Several studies provided clues
about the nature of autophagy in this setting. In addition to an
increase in autophagosome numbers, autolysosome formation and
autolysosomal degradation was reported to be upregulated during
dormancy. Autolysosomal degradation of the selective autophagy
receptor p62/SQSTM1aswell as the LC3protein itself was reported
inmany studies (148, 199). Inhibition of the autolysosomal activity
by chemicals, such as chloroquine and its derivatives, changed the
behavior of dormant cells, influenced cell survival, dormant cell
reactivation and metastatic capacity. As explained above,
mitochondria are among the targets of selective autophagic
degradation during dormancy. Therefore, metabolic outcomes of
Frontiers in Oncology | www.frontiersin.org 14
autophagic activity in dormant cells might be attributed to
mitophagy and non-selective autophagic degradation of cellular
components, including long-lived proteins. So far, the role of
selective autophagy in cancer dormancy is not well studied, and
there are only a few reported examples.

A dormancy-related direct target of autophagy was identified
using the D2.0R model of breast cancer dormancy. In this study,
Pfkfb3 (6-phosphofructo-2-kinase/fructose 2,6-biphosphatase 3)
was identified as a gene that was highly expressed in metastatic
cells but downregulated in dormant cancer cells (148). Pfkfb3 is a
key regulator of glycolysis rate in cells, and its expressionwas shown
to promote metastatic tumor growth. An inverse correlation
between dormancy-related autophagic activity and Pfkfb3 levels
was observed. So, the role of autophagy in the degradation of Pfkfb3
proteinwas studied in dormant cancer cells. Indeed, Pfkfb3 protein
accumulatedwhen autophagic degradationwas inhibited using CQ
or autophagy gene knockdown. The protein was polyubiquitylated,
and in this state, it directly interacted with the ubiquitin-associated
domain (UBA) of the p62 protein. Strikingly, Pfkfb3
downregulation in metastatic D2.A1 breast cancer cells prevented
their growth and delayed establishment of metastatic lesions.
Conversely, autophagy inhibition and Pfkfb3 upregulation
correlated with reactivation of dormant of D2.0R cells. The study
showed that, although proteasomal degradation also contributes to
the determination of protein’s half-life, selective degradation by
autophagy is important in the control of Pfkfb3 protein levels in
dormant cells. Hence, the study provides an example where tumor
dormancyandrecurrence relyonautophagic clearanceofmetabolic
regulators (148).

Another autophagy targetwas identifiedamong factors regulating
EMT-MET (epithelial-mesenchymal and mesenchymal- epithelial
transitions) duringmetastasis. SYK is a non-receptor tyrosine kinase
mediating signaling events downstream to several transmembrane
receptors, including the B-cell receptor (BCR). Decreased expression
of SYK mRNA correlated with decreased survival in breast cancer
patients (226). P-bodies are cytoplasmic foci containing mRNA,
miRNA and mRNA-binding proteins, and they are involved in the
regulation ofmRNAhalf-life and translation control. During TGFb-
induced EMT, accumulation of P-bodies was observed. SYK
concentrated in P-bodies, and SYK activity and autophagy was
necessary for controlled clearance of P-bodies during MET and
metastasis (208, 227). Hence in this system, SYK promoted
removal of P-bodies through autophagy and supported activation
dormant cancer cells, allowing initiation of cancer metastatic
outgrowth (208).

There are possibly other direct or indirect targets of
autophagy that are involved in dormancy maintenance and a
dormant-to-proliferative switch. Further studies will reveal the
identity of these key factors that are degraded by dormancy-
associated autophagic activity.

Treatment Responses, Dormancy,
and Autophagy
Current cancer treatment approaches are usually unable to result
in the total elimination of disseminated cancer cells and
micrometastases. They even seem to create a selective pressure
on cancer cells promoting their escape from cell death by
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entering to a dormant state. Since dormant cells are not actively
proliferating, they are in general resistant to chemotherapy and
radiotherapy approaches that mainly result in DNA damage and
block cell division. A body of literature provide evidence about
the role of autophagy in the treatment resistance of growing
primary tumors and overt metastases (228–231). Since
autophagic activity is increased in dormant cells, autophagy
might be a contributing factor in the observed robustness of
dormant cells when faced with anticancer insults.

A number of studies tested the contribution of autophagy to
treatment resistance that is observed in dormant cells. First
observation is some drugs that were utilized in order to create
models of dormancy, they themselves induced autophagy
upregulation in cells. For example, treatment of cancer cells with
imatinib (198), farnesyltransferase inhibitors (212), AKT inhibitor
(204), and adriamycin (207), resulted in the upregulation of
autophagic activity. Usage of antimalarial lysomorphic inhibitors of
autolysosomal activity, such asChloroquine,Hydroxychloroquine or
quinacrine, as a combination treatment along with chemotherapy
agents blocked autophagy under these conditions and generally
resulted in the death of dormant cells and even elimination of
tumors (125, 180, 202, 207). Combination of chemotherapy with
genetic approaches gave similar results as well (125, 202, 207). So,
capacity to activate sustained autophagy in response to cancer
therapies might be one of the critical factors favoring the selection
of dormant cells. This “autophagy addiction”might be exploited for
the elimination of disseminated dormant cells in patients. On the
otherhand, considering indicationsabout the roleof autophagy in the
dormant-to-proliferative switch, inhibition of autophagy might
promote reactivation of dormant cancer cells, leading them to
reenter an active proliferative state that renders them again
susceptible to antiproliferative cancer treatments. On the other
hand, crizotinib, an ALK inhibitor was shown to further activate
autophagy and trigger apoptosis of dormant ovarian cancer cells
(232). Eitherway, all these studies underline the therapeutic potential
of autophagy manipulation in the context of dormancy.
CONCLUSION

Drug resistance and cancer dormancy are the two important causes
of incurable metastatic disease that results in the loss of millions of
lives from cancer-related deaths every year. Autophagy emerges as
an integral part of the dormancy phenomenon. Autophagy
activation was observed in dormant cells originating from
different types of cancers, in cancer cellular models and animal
models, as well as in patient-derived cells and tissues.

Autophagic activity was shown to confer survival advantage,
treatment resistance and resilience to dormant cells. An
important contribution of autophagy to dormant cell survival
was related to the limitation of ROS accumulation. Autophagy is
an important mechanism for the elimination of depolarized
mitochondria, damaged peroxisomes and other organelles, as
well as cytosolic long-lived proteins that are prone to aggregate
and accumulate in the cytosol when exposed to excessive
oxidative damage. Protection and preservation of the genetic
Frontiers in Oncology | www.frontiersin.org 15
material from ROS damage during long-lasting non-proliferative
periods that may last for months or years, such as those observed
during dormancy, is also an important challenge. For cells to
preserve the reactivation capacity, dormant cells should be able
to limit the number and extent of mutations they accumulate
during periods of cell cycle arrest. Potency and efficacy of DNA
repair pathways in dormant cells is not clear and further studies
are required (233–235). At this point, studies in normal stem cell
quiescence might give indications about the faith of DNA in cells
that reside in long-term dormant periods. These studies
indicated that in quiescent cells, DNA damage burden may
even be higher in older cells than younger ones, and that
repair process only begins following entry to cell cycle (236).
Hence, these data underline the fact that, limitation of ROS
accumulation by the autophagic activity contributes significantly
to the survival of dormant cells.

Autophagy seems to play a critical role in the maintenance of
dormant phenotype. Autophagy-deficient cells were not able to
enter or stay in a dormant state compared to controls.
Mechanisms through which autophagy controls the dormant
phenotype are not clear. So far, only a few dormancy-related
targets of autophagy were described. Pfkfb3 protein was
identified as a target of selective autophagy in dormant cells. In
fact, in addition to being a regulator of glycolysis, Pfkfb3 was
shown to translocate to nuclei and its product fructose 2,6-
biphosphate was shown to inhibit cell cycle inhibitor p27Kip and
activate cyclin D3, resulting in progression from the G1 phase to
the S phase (237). Moreover, Pfkfb3 was also involved in the
upregulation of CDK1 and Cdc25 expression promoting entry to
mitosis (237). Therefore, selective targeting of key proteins
involved in cell cycle by autophagy, such as Pfkfb3, may be an
important function of autophagy in the entry to and
maintenance of the dormant phenotype.

P-bodies were also reported as selective targets of autophagy
in a dormancy context. Whether autophagic degradation control
a general downregulation of P-bodies or whether it is selectively
and deliberately targeting a cell cycle- and dormancy-relevant
subset of mRNAs, miRNAs and/or proteins is not clear.

Characterization of a full list of selective autophagy targets
during dormancy will allow a better understanding of the role
and contribution of autophagic degradation to the
dormant phenotype.

Mechanistic aspects of autophagy signaling during dormancy
are being better understood. In fact, AKT and related growth
factor pathways seem to emerge as an important regulators of
autophagy activation in dormant cells. Downstream to AKT,
mTOR pathway components are inhibited, resulting in the
activation of autophagy proteins, including ULK1. A decline in
ATP levels in dormant cells may activate the energy sensor
systems LKB1 and AMPK and further inhibit the mTOR
pathway through TSC2 phosphorylation and activate
autophagy by phosphorylating ULK1. Deficiency of nutrients,
such as amino acids, possibly contribute to inhibition of mTOR
on the lysosomes (238). mTOR inhibition allows activation of
factors FoxO3a and TFEB, that transcriptionally upregulate
autophagy-related genes.
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Although most components of the canonical autophagy
pathways were reported to be involved in dormancy-related
autophagy, some studies questioned the contribution of key
proteins, such as BECN1. Others placed BECN1 containing
complexes at the center of autophagy regulation in dormant
cells. ATG5 and ATG7 were reported to be important as well.
p62/SQSTM1 was degraded in several independent models of
dormancy, indicating that it may be an important mediator of
selective autophagy under these conditions. Whether other
autophagy receptors contribute to the autophagy pathway in
dormant cells need further investigation.

Inhibition of autophagy by drugs or genetic methods was
reported to impede dormancy, affect cell survival, or lead cells to
enter into a proliferative phase, in which cancer cells are more
susceptible to be eliminated by common cancer therapeutic
strategies. Hence, approaches involving promotion of dormancy
or reactivation of dormant cells should both necessitate study and
manipulation of autophagy. A detailed understanding of
mechanisms, regulatory pathways and specific targets of
Frontiers in Oncology | www.frontiersin.org 16
autophagy in the context of dormancy will certainly contribute
to a better management of metastatic and recurrent disease, and
maybe allow one day total elimination of disseminated cells and
micrometastases in all cancer patients.
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