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The burden of breast cancer is imposing a huge global problem. Drug discovery research

and novel approaches to treat breast cancer have been carried out extensively over the

last decades. Although immune checkpoint inhibitors are showing promising preclinical

and clinical results in treating breast cancer, they are facing multiple limitations. From

an immunological perspective, a recent report highlighted breast cancer as an “inflamed

tumor” with an immunosuppressive microenvironment. Consequently, researchers have

been focusing on identifying novel immunological targets that can tune up the tumor

immune microenvironment. In this context, several novel non-classical immune targets

have been targeted to determine their ability to uncouple immunoregulatory pathways

at play in the tumor microenvironment. This article will highlight strategies designed to

increase the immunogenicity of the breast tumor microenvironment. It also addresses the

latest studies on targets which can enhance immune responses to breast cancer and

discusses examples of preclinical and clinical trial landscapes that utilize these targets.
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INTRODUCTION

The Global Cancer Statistics (GLOBOCAN 2018) report of 2018 flags breast cancer as the
second most diagnosed cancer, with a prevalence of ∼11.6% of all cancer cases (1). Breast
cancer is the first diagnosed cancer and the leading cause of death among women, with
over 450,000 mortalities annually (2). Based on the status of the tumor receptors, three types
of breast cancers have been reported: estrogen/progesterone receptor-positive (ER+), human
epidermal growth factor receptor 2-positive (HER2+), and triple-negative (TNBC) breast cancer
(3). ER+ breast cancer is the most diagnosed breast cancer, with an incidence rate of ∼80%
(4, 5). Recently, the reactivation of the immune system has emerged as a strategy for cancer
treatment other than traditional methods (6). Due to the immunological quiescent nature
of breast tumors, immunotherapy has not been considered as a strategy for breast cancer
treatment. However, this strategy has been reconsidered following the identification of tumor
immune infiltrates. Since tumor-infiltrating lymphocytes (TILs: CD8+ cytotoxic T cells and
helper CD4+ cells, regulatory T cells, B cells, NK cells), tumor-associated macrophages and
myeloid-derived suppressor cells (MDSCs) are observed in some breast tumors (7, 8). Hence,
the alteration and manipulation of the immune responses are now the focus of breast cancer
therapeutic strategies (9). The discovery of inhibitory immune checkpoints has revolutionized
cancer treatment (10). Understanding their role in promoting immunosuppression in the
tumor microenvironment (TME) has resulted in the use of checkpoint inhibitors (generally
monoclonal antibodies), which can reactivate immune cells (11, 12). Checkpoint inhibitors
that target PD-1 or CTLA-4 have been used for treating metastatic breast cancer (13).
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However, the response rates were lower than other types of
cancers; the overall response rate to anti-PD-1 (Pembrolizumab)
was only 18.5% when used as monotherapy for patients with
advanced triple-negative breast cancer (TNBC) (14). However,
the KEYNOTE 355 study was initiated in 2016 to compare
the effectiveness of using pembrolizumab in combination with
chemotherapy with placebo plus chemotherapy for treating
patients with unresectable locally advanced or metastatic PD-
L1-positive TNBC (ClinicalTrials.gov Identifier: NCT02819518).
Reports from this study indicated that pembrolizumab
combined with several chemotherapy agents showed a
statistically significant and clinically meaningful improvement
in progression-free survival with 9.7 months vs. only 5.6 months
with using chemotherapy alone in these patients. Pembrolizumab
combined with chemotherapy showed adverse event rates 68%
while 67% with chemotherapy. This combination was generally
well-tolerated, with no safety concerns (15, 16). Based on the
results of this trial, the FDA approved the use of pembrolizumab
(anti-PD1) in combination with chemotherapy for the treatment
of unresectable locally advanced or metastatic PD-L1-positive
TNBC, in November 2020.

Nevertheless, identifying novel targets and developing new
therapeutic agents are needed for breast cancer treatment.
Other therapeutic targets that can modulate immune responses
against breast tumors are currently under investigation.
Co-stimulatory receptors are promising targets, which
can improve anti-tumor immunity in breast cancer (13).
Purinergic ectoenzymes attenuate the immune response
by increasing the level of extracellular adenosine, which
has immunosuppressive properties (17, 18). Inhibiting
purinergic ectoenzymes will increase the anti-tumor immune
responses (19). Similarly, targeting the immunosuppressive
enzyme arginase 1 (ARG1), could also improve anti-tumor
immune responses (20, 21). Studies have shown that various
cytokines, chemokines, growth factors, and their receptors
such as vascular endothelial growth factor (VEGF), VEGF
Receptor (22), CXC receptor 1(CXCR1), CCL2 receptor
(CCR2) (23), colony-stimulating factor-1 (CSF-1) (24) and
toll-like receptors (TLRs) (25) are essential for breast tumor
proliferation and metastasis. Furthermore, studies on targeting
tryptophan catabolism enzymes, such as indoleamine-2,3-
dioxygenase (IDO1/IDO2), and tryptophan-2,3-dioxygenase
(TDO/TDO2), which are expressed by many immune cells
and solid tumors, including breast cancer are underway (26).
Moreover, the development of agents, which can modulate
the COX2/PGE2 (27) and STING (28) signaling pathways,
are ongoing.

The effects of blocking different immune checkpoints in
breast cancer have been recently reviewed by Swoboda A, and
Nanda R (29). Furthermore, the effectiveness of combining
PD1/PD-L1 blockade with chemotherapy, targeted therapies
and radiotherapy for the treatment of metastatic breast cancer
has been reviewed by Page et al. (30). In this review, we
will discuss the pathways that modulate immune responses
to breast cancer (Figure 1). We will also discuss novel
therapies and clinical trials designed to target these pathways
(Table 1).

STIMULATORY CHECKPOINTS

A major characteristic of tumors is the paucity of, or ability
to downregulate the expression of co-stimulatory molecules
and upregulate co-inhibitory receptor expression (31, 32). The
ligation of co-stimulatory molecules expressed by antigen-
presenting cells (APCs) with their receptors on T cells
provides the second signal necessary for T cell activation and
differentiation. Hence, the use of co-stimulatorymolecule agonist
antibodies, is a strategy which may enhance T cell function in the
TME (31, 32) (Figure 2A). Targeting co-stimulatory molecules
that belong to the tumor necrosis factor receptor (TNFR) family
such as OX40, ICOS, GITR, CD40L, and 4-1BB with agonist
antibodies have been found to improve T cell function, with
favorable outcomes in some cancer patients [reviewed in Moran
et al. (33)].

OX40 (i.e., CD134) is expressed by TILs in various types of
cancers, including breast cancer (34), while its receptor OX40L,
is upregulated on monocytes, neutrophils, macrophages and
dendritic cells. Studies have shown that OX40–OX40L signaling
reduces immunosuppression mediated by regulatory T cells
(Tregs) and enhances the expansion and proliferation of T
cells (34). A study to assess the safety and tolerability of the
OX40 agonist (PF-04518600) alone, or in combination with
the 4-1BB agonist, PF-05082566, in patients with metastatic
carcinoma, including TNBC was concluded in December 2020
(ClinicalTrials.gov Identifier: NCT02315066), (35). However, a
clinical study that had planned to test the agonistic anti-OX40
antibody, MEDI6469, in combination with immune checkpoint
inhibitors in patients diagnosed with advanced solid tumors,
was terminated (32, 35, 36). Another phase I/II study, which
investigated the use of MEDI6469 in combination with radiation
for the treatment of metastatic breast cancer has been completed
(ClinicalTrials.gov Identifier: NCT01862900). An additional
phase I study has been initiated to investigate the effectiveness
of using a CD40 agonist, ABBV-927 plus OX40 agonist ABBV-
368 in combination or without the PD1 inhibitor, budigalimab
in patients with advanced solid tumors, including TNBC
(ClinicalTrials.gov Identifier: NCT03893955). Observations from
a recent study indicated that OX40 agonists enhanced the
production of IL-2 by conventional TILs, which increases the
proliferation of both tumor-infiltrating Tregs and conventional
T cells. Hence, in contrast to what has been postulated
by previous studies, Tregs retain their immunosuppressive
abilities in response to OX40 agonist treatment. However,
results from this study also indicate that Tregs acquire a Th1
phenotype (IFN-g and granzyme B production) in response
to OX40 agonist treatment (37). These observations imply
that OX40 agonist treatment may be more suitable for
combination therapies for cancer treatment. The importance
of investigating the sequence of administering monoclonal
antibodies in combination treatments that include anti-PD1 and
OX40 agonists has been highlighted by Messenheimer et al.
(38). They showed that using a preclinical model of oncogene-
driven mammary cancer that concurrent administration of
anti-PD1 antibody and an OX40 agonist compromised tumor
regression. In contrast, sequential administration of the OX40
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FIGURE 1 | Immune targets in breast cancer immunotherapy.
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TABLE 1 | Examples of clinical trials of Immune targets in breast cancer immunotherapy.

Target Drugs Company With combination Phase Clinicaltrials.gov

identifier (selected

trials)

Anti-(PD-1) Pembrolizumab Merck +Nab-paclitaxel/Paclitaxel/

Gemcitabine/Carboplatin

III NCT02819518

Anti-(PD-L1) Atezolizumab Genentech/Roche – I NCT01375842

+ Nab-paclitaxel III NCT02425891

Avelumab Merck – III NCT02926196

Anti-(CTLA-4) tremelimumab AstraZeneca +Exemestane/ durvalumab II NCT02997995

+ Durvalumab I/II NCT01975831

NCT02536794

Ipilimumab Bristol-Myers Squibb

(BMS)

+ Nivolumab/ cobimetinib I/ II NCT01928394

+ Enoblituzumab I NCT02381314

Anti-(LAG-3) IMP321/Eftilagimod alpha Immutep +Paclitaxel II NCT02614833

Anti-(TIM-3) MBG453 Novartis + Spartalizumab I/II NCT02608268

OX40 agonists

GSK3174998 GlaxoSmithKline Alone/ with Pembrolizumab I NCT02528357

MEDI-0562 MedImmune – I NCT02318394

MEDI-6383 (OX40L-Fc) MedImmune Alone/with MEDI-4736 I NCT02221960

PF-04518600 Pfizer Alone/with PF-05082566 I NCT02315066

MEDI-6469 MedImmune +Radiation I NCT01862900

BMS-986178 Bristol-Myers Squibb Alone/ with nivolumab ±

ipilimumab

I/II NCT02737475

ABBV-368 Idera Pharmaceuticals +ABBV-927 ± budigalimab I NCT03893955

GITR agonist

INCAGN01876 Incyte Nivolumab and/ or ipilimumab I/II NCT03126110

INCAGN01876 Incyte Pembrolizumab and/ or

epacadostat

I/II NCT03277352

TRX518 Leap Therapeutics + Cyclophosphamide +/or

Avelumab

I/II NCT03861403

4-1BB agonist PF-05082566

(Utolimumab)

Pfizer + Trastuzumab – Emtansine I NCT03364348

PRS-343 Pieris Pharmaceuticals,

Inc. (PIRS)

+Atezolizumab Ib NCT03650348

CD40 agonist CDX-1140 Celldex Therapeutics Alone or with Pembrolizumab I NCT03329950

ICOS agonist JTX-2011 Jounce Therapeutics Nivolumab/Ipilimumab/

Pembrolizumab

I/II NCT02904226

IDO1 inhibitor

Indoximod NewLink Genetics - I NCT00739609

+Docetaxel/paclitaxel II NCT01792050

Epacadostat Incyte Corporation + INCMGA00012 and

Epacadostat

I/II NCT03328026

+/or Itacitinib with INCB050465 I NCT02559492

Targeting Arginase-1 Arginase-1 peptide

vaccine

IO Biotech ApS. I NCT03689192

CXCR4 antagonist balixafortide Polyphor +Eribulin III NCT03786094

CCR5 antagonist Leronlimab CytoDyn, Inc. - - NCT04313075

CD73 antagonists ±Oleclumab (MEDI9447) IMFINZI® + Carboplatin + Paclitaxel

+Durvalumab

I/II NCT03616886

CPI-006 Corvus Pharmaceuticals Alone/ with Ciforadenant

+Pembrolizumab

I NCT03454451

A2AR antagonist CPI-444 Ciforadenant Corvus Pharmaceuticals Alone/ with Combination+

Atezolizumab

I NCT02655822

(Continued)
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TABLE 1 | Continued

Target Drugs Company With combination Phase Clinicaltrials.gov

identifier (selected

trials)

PGEP4R blocker AAT-007 Applied Therapeutics - II NCT02538432

CSF1R blocker LY3022855 Imclone Llc Alone/ with Durvalumab or

Tremelimumab

I NCT02718911

Pexidartinib (PLX-3397) Daiichi Sankyo + Eribulin I/II NCT01596751

Emactuzumab (RG7155) Roche +Atezolizumab NCT02323191

+RG7876 I NCT02760797

VEGFR blocker Ramucirumab Eli Lilly and Company +Docetaxel III NCT00703326

Lucitanib Clovis Oncology, Inc. – II NCT02202746

TLR7 agonist 852A Pfizer – II NCT00319748

Imiquimod NYU Langone Health – II NCT00899574

STING agonist ADU-S100 (MIW815) Novartis Pharmaceuticals +Spartalizumab I NCT03172936

E7766 Eisai Inc. - I NCT04144140

FIGURE 2 | Schematic illustrations depicting the effects of different immune targets on breast cancer (A) Immune checkpoints (B) Tryptophan metabolism (C)

Chemokines (D) Arginase enzyme.

agonist and anti-PD1 facilitated tumor elimination, which
was dependent on CD4+ and CD8+ T cell responses (38).
These results indicate that sequential, rather than simultaneous

administration of OX40 agonists and anti–PD-1 can revert PD-
1 resistance and improve responses to combination therapy.
Consequently, one of the approaches in a Bristol-Myers Squibb
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(BMS) clinical study (39) involves exploring the effectiveness
of sequentially administering an OX40 agonist, BMS-986178,
anti-PD1 (Nivolumab), an allogeneic autophagosome-enriched
vaccine, DPV-001 and cyclophosphamide in TNBC patients
(ClinicalTrials.gov Identifier: NCT02737475).

Another co-stimulatory molecule, the inducible co-stimulator
(ICOS), is mainly expressed by activated CD4+ and CD8+ T
cells and constitutively by Tregs. ICOS binds to its ligand, ICOS-L
(B7RP1), expressed by APCs, epithelial cells, endothelial cells and
tumor cells (40). ICOS-mediated co-stimulation does not induce
IL-2 production, hence it is regarded as less potent relative to co-
stimulation elicited by CD28 (41, 42). However, various clinical
studies have shown that high expression of ICOS by T cells in
patients treated with PD-1 and CTLA-4 checkpoint inhibitors
correlates with positive treatment responses (43, 44). Hence,
current immunotherapy strategies include the administration of
ICOS or ICOS-L agonists with CTLA-4 checkpoint inhibitors
(43, 45). A Phase 1/2 first in-human clinical trial has been set up
to evaluate JTX-2011, an agonist monoclonal antibody that binds
to ICOS, alone or in combination with checkpoint inhibitors
for the treatment of advanced solid tumors, including TNBC
breast cancer (46). A recently completed phase 1 clinical trial,
which involved the use of another ICOS agonist, GSK3359609,
in combination with anti-PD-1 shows promising anti-tumor
activity in anti-PD-1/L1 naive patients with head and neck
squamous cell carcinoma (HNSCC) (32, 36). Furthermore, the
findings from this study indicate that GSK3359609 is also suitable
for monotherapy of HNSCC in patients with anti-PD-1/L1 -
experienced HNSCC (GSK Press Release September 28, 2019).

The glucocorticoid-induced TNFR related protein (GITR) is
preferentially expressed on NK cells and T cells, particularly
Tregs. GITR interaction with its ligand, GITRL, on dendritic
cells, boosts effector T cell differentiation and IL-2 production
(11, 13). Importantly, GITR has been detected on lymphocytes
and carcinoma cells from a subset of breast cancer tumor
specimens (47). Furthermore, observations from a study by
Krausz et al. indicated that Tregs from tumor-positive lymph
nodes from advanced breast cancer patients express increased
levels of GITR, compared to tumor-negative lymph nodes (48).
The potential for GITR-mediated co-stimulation to promote high
effector CD8+ T cell to Treg ratios, is now harnessed as an
immunotherapy strategy (49, 50). In fact, the first in-human
phase 1 trial of GITR agonism with the anti-GITR antibody
TRX518, has been initiated and a report indicates reduction
in circulating and intratumoral Tregs at similar levels (51).
However, a combination of GITR agonism with PD-1 blockade
has been postponed due to sub-optimal clinical responses
induced by TRX518 (51, 52). A clinical trial using another
anti-GITR agonistic mAb, INCAGN01876, in combination with
pembrolizumab and epacadostat for the treatment of advanced
or metastatic malignancies is underway (ClinicalTrials.gov
Identifier: NCT03277352).

CD40 is upregulated on the surface of activated APCs and
its interaction with its ligand (CD40-L), expressed on activated
B cells and T cells, leads to the initiation and progression
of cellular and humoral adaptive immunity (53, 54). CD40 is
also expressed in breast and lung carcinomas and carcinomas

of the urinary bladder, nasopharynx, and colon, in contrast
to normal non-proliferating tissues, which are CD40-negative
(55, 56). Observations from a study approximately two decades
ago by Tong et al., indicated that the interaction of soluble
recombinant CD40L with CD40+ human breast cancer cell lines
directly inhibits breast cancer cell growth. By examining primary
tumor biopsies, they also found that infiltrating ductal, lobular
carcinomas and carcinomas expressed CD40 while benign
epithelial tissues of these biopsies exhibited weaker expression
of CD40 (57). Interestingly, tumor infiltrating lymphocytes from
most of the breast cancers examined expressed very low levels
of CD40L (57). Other studies have suggested that CD40 may
induce apoptosis in breast carcinoma cells by upregulating Fas
expression induced by CD40 ligation (58).

A clinical study of CDX-1140, a CD40 agonist, for use as
a monotherapy or in combination with the anti-PD-1 mAB,
pembrolizumab, has been initiated in patients with advanced
malignancies, including breast cancer (ClinicalTrials.gov
Identifier: NCT03329950). Furthermore, results from a recent
orthotopic breast cancer study suggest that combination
treatment using anti-PD-1 and a CD40 agonist promote tumor
immunogenicity (59).

4-1BB (CD137) is another member of the TNFR family of co-
stimulatory molecules. It is expressed on many hematopoietic
cells, including T cells and NK cells. Its ligand, 4-1BBL (CD137L),
is predominantly expressed on APCs. 4-1BB:4-1BBL ligation
potentiates CTL responses, induces antibody-dependent cell-
mediated cytotoxicity in NK cells and modulates the activity of
CD4+ T cells, B cells, DCs, monocytes and macrophages (60).
For instance, CD8+ TILs from TNBC tumors were successfully
propagated with a 4-1BB agonistic antibody (urelumab) (61).
Based on these properties, harnessing the 4-1BB signaling
pathway through the use of agonistic monoclonal antibodies can
serve as a cancer immunotherapy strategy.

Significant breast tumor reduction in xenograft models has
been achieved by targeting 4-1BB, combined with trastuzumab
(anti-HER2) and rituximab (anti-CD20) treatment (32, 62, 63).
In 2017, a clinical trial to investigate the optimal dosage and
side effects of the 4-1BB agonist, utomilumab with trastuzumab
emtansine or trastuzumab in patients with metastatic HER2-
positive breast cancer was initiated (ClinicalTrials.gov Identifier:
NCT03364348). However, a dependency of 4-1BB agonists on
the Fcγ receptor–mediated hyperclustering and liver toxicity in
patients, have been reported (64). Consequently, strategies that
will restrict 4-1BB agonism to the TME, thereby minimizing
off-target toxicities, have been proposed. A recent study has
adopted a protein engineering approach to develop proteins
that simultaneously target 4-1BB and tumor stroma or tumor
antigens (65).

AMINO ACID CATABOLISM

Amino acid metabolism is an immune regulatory mechanism
(52). The breakdown of amino acids, particularly tryptophan and
arginine by immunoregulatory myeloid cells, is one mechanism
whereby T cell proliferation and activation are suppressed
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(29). Furthermore, these catabolic pathways are harnessed by
solid tumors to induce the development of immunosuppressive
tumor microenvironments and poor anti-tumor T cell responses.
Hence, the use of inhibitors of arginase-1 and indolamine-
2, 3- dioxygenase-1 enzymes, which catabolise L-arginine and
tryptophan, respectively, are now exploited as new cancer
immunotherapy strategies.

Catabolism of Tryptophan
Tryptophan is the rarest essential amino acid found in food.
It is a precursor to the synthesis of niacin (vitamin B3),
neurotransmitter serotonin, and the hormone melatonin.
Tryptophan metabolism is associated with immune regulation
and tumor progression (66). Tryptophan catabolism occurs
through the kynurenine pathway with the aid of two enzymes,
indoleamine-2,3-dioxygenase (IDO1) and tryptophan-2,3-
dioxygenase (TDO), which catalyze the first rate-limiting step
by facilitating the oxidative breakdown of the tryptophan indole
group. The generation of kynurenine (Kyn) and the concomitant
release of kynurenine metabolites by myeloid cells, suppresses
T cell and NK cell activity. The activities of IDO and TDO
have been investigated due to their link with various diseases,
including diabetes, mental disorders, inflammatory, and cancer
(67, 68) (Figure 2B).

Indoleamine-Pyrrole 2,3-Dioxygenase (IDO1)
The upregulation and sustained expression of IDO by tumor cells
is a well-characterized immunosuppressive strategy, orchestrated
in conjunction with MDSCs and Tregs (69). IDO1 and
TDO, through their catalytic activity, function as tryptophan
sinks, leading to the suppression of T cell proliferation,
apoptosis and Tregs differentiation. Indeed, T cell activation
and function are highly dependent on the levels of tryptophan
in their microenvironment, as the zeta chain of TCR complex
is downregulated upon tryptophan withdrawal. IDO1 also
suppresses anti-tumor responses through the generation of L-
kynurenine, an endogenous agonist of the arylhydrocarbon
receptor (AhR). AhR activation promotes the differentiation of
Tregs and the concomitant upregulation of IDO1 by DCs (70).
Furthermore, long-term expression of IDO1 by DCs is facilitated
when IDO functions as a signal-transducing molecule (70).

The expression of IDO has been observed in breast
carcinomas, particularly among triple negative (TNBC) basal-
like breast cancers (71, 72). In a study by Dill et al., the authors
assessed 281 primary andmetastatic breast cancers and identified
a correlation between IDO1 and PD-L1 expression, particularly
in high-grade TNBC (73). Their observations imply that IDO1
expression contributes to the resistance of breast cancer to anti-
PD-1/PD-L1 treatment.

A positive correlation between the high expression of PD-1
by T cells and high levels of kynurenine in the plasma and the
TME of breast cancer patients has also been reported (74). IFN-γ
produced by CD8+ T cells induces the production of IDO and
kynurenine by CD45 negative tumor cells. Kynurenine promotes
the translocation of AhR from cytosol to the nucleus of in vitro-
treated and tumor-infiltrating CD8+ T cells and subsequently
upregulates PD-1 (60).

IDO1 also induces cancer progression in a non-immune
manner by regulating angiogenesis (59). The expression of IDO
and levels of CD105+ micro vessel density by breast cancer
specimens were found to be associated with metastasis and
poor prognosis (75). Furthermore, MCF-7 cells which produce
high levels of IDO significantly induced the proliferation of
human umbilical vein endothelial (HUVEC) cells (75). Thus,
the pharmacological modulation of IDO1 and other enzymes
that target amino acids have been included in cancer therapy
strategies (20). Preclinical and clinical studies to test the efficacy
of IDO inhibitors for cancer treatment are discussed extensively
in a recent review (76).

A number of studies in which IDO1 is targeted alone or
in combination with immune checkpoint inhibitors have been
proposed. In 2017, a phase II clinical study investigated the effect
of the combined use of chemotherapy and the IDO1 inhibitor,
1-Methyl-D-tryptophan (Indoximod) in metastatic breast cancer
patients (ClinicalTrials.gov Identifier: NCT01792050). Results
from the phase I study indicated no drug-drug interactions
and partial responses in breast cancer and patients with other
metastatic tumors (77). Four of the breast cancer patients
achieved a reduction in tumor burden; a patient that had
hitherto only received only adjuvant endocrine therapy achieved
the best response (77). Results from another phase I study on
the use of a small molecule inhibitor of IDO1 (Navoximod)
alone, or in combination with a PD-L1 inhibitor (Atezolizumab)
to treat TNBC and other solid tumors indicated tolerability,
partial responses and complete responses in some patients (78).
However, there were no clear benefits associated with the use
of atezolizumab with navoximod (78). Results from another
phase I/II study of another IDO inhibitor, Epacadostat, used in
combination with anti-PD-1 (pembrolizumab) for the treatment
of TNBC and ovarian cancer indicated tolerability, safety and
anti-tumor activity (79). However, in another study, there was
no difference in progression-free or overall survival in patients
with unresectable stage III or IV melanoma administered with
Epacadostat in combination with anti-PD1 (pembrolizumab),
compared to placebo plus pembrolizumab (80). Hence, the
usefulness of IDO1 inhibition as a strategy to enhance anti-PD-1
therapy activity in cancer yet to be clarified.

Other approaches which utilized nanodelivery systems
designed to use Indoximod in conjunction with a-PD-L1 or
the induction of immunogenic cell death using doxorubicin
for breast cancer treatment, have also been investigated (81).
Taken together, the outcomes of these studies suggest that IDO1
inhibitors can be used as standard-of-care treatment for breast
cancer and other solid tumors, alone or in combination with
other cancer therapeutic strategies.

Tryptophan-2,3-Dioxygenase (TDO)
Unlike IDO1, which is induced in immune cells such as
DCs, TDO is constitutively expressed in the liver, where it
regulates tryptophan homoeostasis in the blood (82–84). Similar
to IDO1, TDO suppresses T cell activation by tryptophan
depletion and is also overexpressed in the microenvironment
of various tumors, including breast cancer (26). Preclinical
studies have demonstrated that TDO expression by breast cancer
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cells is associated with increased cancer cell migration and
invasion (66, 85). In a study by Greene et al., the authors
demonstrated that triple-negative breast cancer (TNBC) cells use
TDO to suppress CD8+ T-cell viability (86). Furthermore, in
an earlier preclinical study, D’Amato et al., showed that NF-kB-
dependent upregulation of TDO and AhR is linked to anchorage-
independent cell survival and anoikis resistance of TNBC cells
(85). These observations imply that the overexpression of TDO
by tumors such as TNBC is associated with disease metastatic.

Results from preclinical studies investigating the impact of
TDO inhibition using knockout mice or compounds have shown
that deletion of the TDO gene (TDO2) in mice results in
tryptophan accumulation in the blood and neurologic changes,
which may be associated with serotonin production (84)
Consequently, the utilization of TDO inhibitors may have safety
implications with respect to liver and CNS complications. Dose-
dependent reduction of the 4T1 breast or CT26 colon tumor
growth was achieved by dual inhibition of IDO and TDO using a
lead compound, CB548, in a mouse preclinical model (87). Also,
the administration of CMG017, another dual inhibitor of IDO
and TDO, to tumor-bearing mice resulted in reduced kynurenine
concentration, differential expression of immune-related genes
and the infiltration of effector CD8+ T cells in the TME (87).
Furthermore, co-administration of CMG017 with checkpoint
inhibitors (a-PDL1 and a-CTLA-4) to tumor-challenged mice
resulted in tumor regression and the establishment of memory
CD8+ T cell responses (87).

In 2017, a phase I study was initiated to investigate the
safety, pharmacokinetics, pharmacodynamics and efficacy of
HTI-1090, a small molecule dual inhibitor of IDO1 and TDO,
in patients with advanced solid tumors (ClinicalTrials.gov
Identifier: NCT03208959). Although this study was completed in
2019, the outcomes are yet to be disclosed. The utilization of other
TDO and IDO1 inhibitors such as 680C9, LM101 are still under
preclinical investigation.

Catabolism of Arginine
Arginase
L-arginine is a non-essential amino acid that plays a vital
role in cellular activity such as metabolic programming and
maintenance of T cell fitness (88, 89). The administration of
L-arginine to breast tumor-bearing BALB/c mice suppressed
tumor growth significantly and prolonged the survival time
of treated mice. L-arginine supplementation also enhanced the
levels of IL-10, TNF-α, IFN-γ; macrophage and T cell numbers
and suppressed the activity of MDSCs. The activity of arginase
enzymes (ARG1 and ARG2), which catalyze L-arginine into
ornithine and urea, is increased in the TME of multiple cancers
including breast cancer. Arginase enzymes facilitate localized
immune suppression mediated by cancer-associated fibroblasts
(ARG2), MDSCs, DCs, tumor-associated macrophages (TAMs)
and tumor-infiltrating macrophages (ARG1) (90, 91). These cells
in turn, produce ARG1 in response to a milieu of tumor cues,
such as HIF-1α, M-CSF, GM-CSF, IL-4, IL-13 and IL-6 (89).
Another key enzyme associated with L-arginine metabolism,
nitric oxide synthase (NOS), produces nitric oxide (NO) from L-
arginine and oxygen. In low L-arginine conditions, characteristic

of tumor sites, NOS can induce the production of superoxide
anion, which can combine with NO to generate various reactive
nitrogen species that can also hamper T cell activity at tumor
sites (89).

The reduction of extracellular arginine by ARG1 leads to
suppression of T cell function (Figure 2D) by the activation of
GCN2 kinase, which blocks the expression of several cell cycle
genes such as cdk4, cyclin D3, and CD3 (21). High levels of
ARG1 have been identified in the serum of preoperative breast
cancer patients compared to healthy controls (92). In addition,
elevated ARG1 is expressed by MDSCs from patients diagnosed
with early-stage breast cancer, which is reduced upon surgical
tumor resection (2).

A number of preclinical strategies that target ARG1 have
been implemented with promising results. The cell viability
and arginase activity of a TNBC cell line with high levels of
arginase (MDA-MB-468), were decreased in response to L-
lysine induced arginase inhibition, in comparison to a cell line
with less arginase levels (MDA-MB-231) (93). The treatment
of tumor bearing mice (CT26, 4T1, B16, and LLC) with CB-
1158, a small molecule inhibitor of ARG1, elicited increased
cytotoxic T cell infiltration and decreased myeloid cell numbers
(71). This correlated with increased activation markers, cytokine
production and expression of interferon genes. Furthermore, CB-
1158 efficacy was enhanced when combined with checkpoint
blockade, chemotherapy and adoptive cell therapy (94).

Treatment with the arginase inhibitor (INCB001158)
alone inhibited plasma arginase activity with concomitant
increase in the plasma arginine in a colorectal carcinoma
patient cohort. INCB001158 used in combination with a-PD-1
(pembrolizumab) for the treatment of advanced/metastatic
solid tumors. INCB001158-pembrolizumab combination
treatment elicited increased frequencies of intratumoural CD8+
T cells and a 7% partial response (ClinicalTrials.gov Identifier:
NCT02903914). A clinical study has been initiated to evaluate
the safety, toxicity and immune correlates of administering
an Arginase-1 peptide vaccine (ARG1-18,19,20) to patients
with breast cancer and other solid tumors (ClinicalTrials.gov
Identifier: NCT03689192).

CHEMOKINES AND CHEMOKINE
RECEPTORS

Chemokines and their receptors play a pivotal role in
various biological and pathological processes, including chronic
inflammation, tissue development, hematopoiesis, and immune
modulation (95). Many studies revealed chemokines’ role as
essential mediators of immunity, angiogenesis (96), metastasis
(97), drug resistance (98), breast cancer occurrence and
progression (Figure 2C) (23, 99, 100). Chemokines have been
classified into four main groups, CXC, CC, XC, and CX3C.
The CXC family consists of 17 subfamily members (CXCL1-
CXCL16), while CC family is the largest subgroup (CCL1-
CCL28). The XC family has two subgroups (XCL1 and XCL2),
while there is only one CX3C chemokine (CX3CL1) (95, 101).
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Tumor cell migration and the ensuing invasion into specific
organs occur in response to receptor-ligand interactions,
the rearrangement of the actin cytoskeleton and multiple
environmental cues which favor trafficking. Mueller et al., in
investigating the role of chemokine receptors in promoting
breast cancer metastasis almost two decades ago, found that
breast cancer cells express CXCR4 and CCR7 (90). Consequently,
targeting chemokines and their receptors has been evaluated
in preclinical and clinical cancer immunotherapy studies.
The detailed roles of chemokines in cancer biology have
been reviewed elsewhere (23, 95, 102). We will highlight a
few examples of the roles of chemokine–chemokine receptor
interactions in the breast cancer microenvironment.

CXCR Family
CXCL8 (IL-8) is a chemokine whose physiological effects are
mediated by two receptors, namely CXCR1 and CXCR2 (103).
CXCR2 (IL-8 receptor) is expressed on MDSCs, neutrophils,
lymphocytes, and breast cancer cells. CXCR2 and CXCL8
regulate breast cancer progression in the TME by modulating
several related pathological processes, including promoting
breast cancer growth, angiogenesis, invasion, metastasis, and
reducing cancer cell sensitivity to chemotherapy (99, 104, 105).
CXCR2 modulates the trafficking of neutrophils from the bone
marrow to breast cancer sites, leading to increased tumor growth
(106). CXCR2 also induces the migration of MDSCs, thus,
promoting local immunosuppression (107). Studies show that
cancer patients with high levels of CXCR2 have low overall
survival and poor prognosis (108). The CXCL8-CXCR2 axis
can also stimulate the transcription of VEGF and activate its
receptor,VEGFR2, in endothelial cells by the NF-κB pathway
(109). Like CXCR2, CXCR1 is expressed significantly in breast
cancer stem cells, which increases the growth of breast cancer
when stimulated by inflammation or tissue damage (110).
Consequently, targeting the CXCL8-CXCR1/CXCR2 axis has
been adopted as a breast cancer therapy strategy (111). The
utilization of reparixin, a small molecular weight antagonist
of CXCR1/2 as a breast cancer therapeutic agent has been
investigated in preclinical and clinical studies (99, 112). Results
from a phase Ib trial on the co-administration of reparixin and
paclitaxel to patients with HER-2- negative metastatic breast
cancer yielded a 30% response rate (88). In another study
on the treatment of women with HER-2- negative operative
breast cancer with reparixin only, the frequency of cancer
stem cells, indicated by aldehyde dehydrogenase, CD44+/CD24-
expression, was reduced (113).

Several studies have assessed the impact of CXCR4 in breast
cancer cell survival, proliferation, angiogenesis, migration, and
metastasis (114, 115). CXCR4 induces breast cancer metastases
by binding to its ligand stromal cell-derived factor-1α (SDF-
1), which is overexpressed in the bone marrow, liver, lung, and
breast tumors sites (100, 116). CXCR4 promotes cancer cell
proliferation by activating several signaling pathways, including
Src/ERK1-2, PI3K/AKT, STAT3, and NF-κB. The cross-link
between CXCR4 and other pathways such as Notch, Wnt, and
SHH is also associated with increased breast cancer growth (117).
Injecting immunocompromised mice subcutaneously with a

CXCR4-low-expressing breast cancer cell line (MCF-7), resulted
in reduced tumor growth compared to mice inoculated with the
MDA-MB-231 cell line, which expresses high levels of CXCR4
(118). Also, results from a human study in which surgically
resected ductal carcinomas were evaluated, indicate that high
CXCR4 expression correlates with extensive nodal metastasis
(119). Preclinical studies of CXCR4 inhibitors have demonstrated
its ability to attenuate the proliferation and metastasis of breast
tumors; AMD3100 is a CXCR4 antagonist that decreases lung
metastases in breast cancer (120). However, Lefort et al., have
shown that AMD3100 and TN14003, another CXCR4 inhibitor,
impair only the growth and metastasis of HER2 breast cancers,
but not TNBC (121).

In contrast to the preclinical outcomes, the efficacy of
CXCR4 blockade in clinical trials has not shown clear success
with respect to dosage and the manifestation of undesirable
side effects. In a clinical study by Pernas et al., the safety,
tolerability, pharmacokinetics, and preliminary phase 1 dose-
escalation activity of the CXCR4 antagonist, balixafortide, in
combination with eribulin (antineoplastic) chemotherapy, was
assessed in patients with relapsed metastatic breast cancer who
had hitherto received chemotherapy (96). Partial responses were
observed and serious side effects occurred in 30 and 38% of
the study patients, respectively. Furthermore, two patients died
from septic shock and pneumonia, respectively (96). Based on the
observations of the Phase 1 trial, a phase 3 study has been set up
to investigate the safety, efficacy and tolerability of intravenous
balixafortide administered with eribulin compared to eribulin
monotherapy for the treatment of HER2 negative, locally
recurrent or metastatic breast cancer patients (ClinicalTrials.gov
Identifier: NCT03786094).

The CCR Family
CCL2 is overexpressed in tumor cells, including breast, ovarian,
and lung cancer. CCL2 stimulates the migration of macrophages
that express the chemokine CCL2 receptor (CCR2), into the
TME. It also induces cancer proliferation and invasion (122).
CCL2 can induce the migration of various breast cancer cell
lines, including T47D, MCF-7, and ZR-75-1 (123). Studies using
breast tumor xenografts show that blocking CCL2-CCR2 axis
suppresses the recruitment process of inflammatory monocytes,
increases tumor growth, and promotes metastasis and invasion
(124). These studies suggest that CCL2-CCR2 signaling promotes
breast cancer progression, and targeting this pathway might be
adopted as a breast cancer therapy strategy.

CCL5/CCR5 pathway also plays a critical role in promoting
breast cancer progression. CCL5 ligand is overexpressed in breast
cancer cells, mesenchymal stem cells (MSCs), and infiltrating
leukocytes. Results from a clinical study indicate that levels of
CCL5 in breast cancer patients are higher than that of healthy
controls (125). CCL5 can maintain the immunosuppressive
activity of human MDSCs (126). The CCL5 receptor (CCR5) is
also upregulated on breast cancer cells (127). A study conducted
on breast cancer patients showed that 50% of breast tumors
express CCR5, with >95% TNBC tumors being CCR5+ (128).
The blockade of CCR5 suppresses breast cancer proliferation,
migration, colony formation, and metastasis (129). Therefore,
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targeting CCR5 could be promising strategy for metastatic
breast cancer. Met-CCL5, a competitive CCR5 inhibitor, reduces
breast cancer proliferation and infiltrating macrophages in
animal preclinical models (130). Treatment with maraviroc,
CCR5 antagonist, significantly suppresses bone metastasis in
a xenograft rat model implanted with breast cancer cells
(MDA-MB-231) (131). Leronlimab (PRO 140) is another CCR5
antagonist under investigation in breast cancer clinical trials
(129, 132, 133).

PURINERGIC SIGNALING

Purinergic signaling plays a prominent role in inflammation and
cancer. It modulates cell growth, migration, and cell death (134).
In this pathway, two potent molecules (ATP and Adenosine)
involved in the immune response are released into the TME
(Figure 3A) (135). Intracellular ATP levels are sustained at
millimolar concentrations under physiological conditions, while
extracellular levels are regulated in nanomolar concentrations.
However, in the TME, ATP concentrations arise due to release
from necrotic or apoptotic cells (136). Adenosine concentrations

in solid tumors are also higher than that of healthy tissues
(137, 138). It is well-reported that ATP and Adenosine have
opposite effects. ATP is immunostimulatory as it enhances
the activation of dendritic cells (DC), macrophages, IL-1β
secretion, and cytotoxicity of CD8+ T cells. Hence, ATP
activity can mediate the suppression of proliferating cancer
cells. Adenosine, on the other hand, has immunosuppressive
properties. It inhibits immune effector cells, DC maturation,
cytokine production and stabilizes immunosuppressive Tregs
(139). Purinergic cell surfaces ectoenzymes (P2Xs, P2Ys, CD73,
CD39, and CD38), mediate the biological activities of ATP and
Adenosine, and adenosine receptors (A1R, A2AR, A2BR, A3R),
are overexpressed by breast cancer cells and tumor-infiltrating
immune cells (19). Several therapeutic agents are developed to
target these receptors to enhance anti-tumor immune responses
against breast cancer.

The P2 Family
The pyrogenic receptors P2Xs (ion channel receptors) and
P2Ys (G protein-coupled receptors) are overexpressed on several
immune cells within the TME (140). Among the pyrogenic
receptors, P2X7 receptor (P2X7R) has been studied extensively

FIGURE 3 | Schematic illustrations depicting the effects of different immune targets on breast cancer (A) ATP and Adenosine signaling (B) COX2/PGE2 pathways (C)

CSF-1/CSF-1R (D) VEGF(R).
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due to its contrasting effects (134). In some studies the role of
P2X7 in inducing antitumor immune responses by activating
NK cells, CD4+, and CD8+ effector T cells, and promoting
Treg apoptosis, has been shown (141, 142). Two P2X7 receptor
agonists ATPγS and BzATP, reduce tumor growth and metastasis
(143, 144). Other pieces of evidence propose the P2X7 receptor
as promoters of tumor progression, mediated by inducing tumor
growth, metastasis, and survival (145). P2X7R is upregulated
in various tumors, including malignant breast cancers, and its
expression is higher in tumors compared to the healthy tissue.
This indicates that P2X7 can be used as an effective early cancer
biomarker (40, 146). Many inhibitors that target P2X7R have
been developed, such as Anthraquinone Emodin, which can
potently suppress invasive breast cancer cells in vitro (147).
AZ10606120 is another P2X7R antagonist reported to be a potent
inhibitor of tumor growth (91).

CD39 and CD73
ATP and ADP are converted into AMP by the catalytic activity
of CD39, while AMP is irreversibly converted to adenosine by
CD37 (148). CD39 andCD73 are expressed significantly by breast
cancer and various immune cells, including T cells, NK cells,
B cells, MDSC, macrophages, and neutrophils (17). The high
expression of CD39 and CD73 results in increasing adenosine
levels in the TME, which in turn stimulates the adenosine A2A
and A2B receptors. The adenosine A2A and A2B receptors
promote tumor progression by triggering angiogenesis, tumor
cell survival, and metastasis (149–151). They also increase the
immunosuppressive efficacy of Tregs, macrophages, MDSCs and
development of effector T cells. Breast cancer patients with
positive clinical outcomes exhibited low expression of CD39
and CD73 compared to patients with poorer clinical outcomes,
which indicates that CD39 and CD73 can serve as biomarkers
of patients’ progress (152–154). Blocking CD73 and CD39
promoted anti-tumor responses; anti-CD73 mAbs, enhances the
cytotoxicity of CD8+ T cells and inhibits the activity of Tregs and
MDSCs (155). Small molecules against CD73 such as LaSOM 63
and APCP, inhibit tumor progression and increase the efficacy of
effector T cells (150, 156). Preclinical studies indicate that anti-
CD73 mAbs can hinder metastasis in human breast cancer (157).
Three CD73 antagonists (MEDI9447, BMS-986179, CPI-006),
which target TNBC are currently under clinical investigation
(158). Similarly, preclinical studies of anti-CD39 monoclonal
antibodies, BY40 and BA54G, have demonstrated anti-tumor
efficacy (159). Therapeutic agents that target CD39 are still in the
developmental stage (160).

Adenosine A2A Receptor (A2AR) and
Adenosine A2B Receptor (A2BR)
Extracellular adenosine stimulates the immunosuppressive
pathway through engagement with specific G-protein-coupled
adenosine receptors such as (A2a and A2b) (160). A2aR (high
affinity receptor) is upregulated on a variety of immune cell
subsets, including monocytes, macrophages, DCs, T cells, and
natural killer T (NKT) cells. Adenosine signaling pathway
through the A2aR suppresses T cell proliferation by increasing
the expression of anti-inflammatory cytokines (IL-10, TGF-β)
and reducing the expression of pro-inflammatory cytokines

(IFN-γ, IL-2) (161). It also triggers increased expression of
immune checkpoints such as LAG-3, PD-1, and CTLA-4
(162, 163). A2aR is overexpressed in many cancer cells, including
breast cancer cells. Activation of A2aR leads to an increase in the
proliferation of MCF-7 breast cancer cells (164). A2aR promotes
proliferation and metastasis by stimulating various signaling
pathways, including PLC/PKC, ERK-MAPK, PI3K/AKT/mTOR
(165). CPI-444, an A2AR antagonist, is used as monotherapy
or combined with anti-PD-L1 (Atezolizumab) to treat TNBC
(166). A2bR, on the other hand, is a low-affinity receptor which
needs more Adenosine to be activated. A2bR is overexpressed
by macrophages, DCs, and multiple tumors such as breast
tumors (167, 168). Its upregulation is associated with poor
survival and worse prognosis in human TNBC (169). In vitro
activation of A2bR, increases the growth and migration of breast
cancer (MDA-MB-231) cells (170). Results from an in vivo study
indicate that blocking A2bR reduces the metastasis of TNBC and
enhances the activities of chemotherapy and immune checkpoint
inhibitors (169). Several studies indicate that stimulating A2bR
promotes tumor growth and metastasis through the activation of
the ERK1/2 and angiogenesis pathways; blocking this receptor
reverses these effects (19, 171, 172). A selective A2bR blocker
(ATL801) promotes the inhibition of bladder and breast cancer
growth when injected intratumorally (173).

TARGETING THE COX2/PGE2 PATHWAYS

Increased levels of COX2 enzymes have been reported in nearly
half of breast cancer patients (174), with other studies reporting a
range of 17 to 84% (175, 176). The silencing of COX-2 expressed
by the human breast cancer cell line, MDA-MB-231, inhibits
cell migration in vitro and metastasis in vivo (177). PGE2, an
enzymatic product of COX2, functions by signaling through one
of the four G-protein coupled receptors (EP1, EP2, EP3, and
EP4) (Figure 3B). The COX2/PGE2 axis promotes breast cancer
progression by increasing cancer migration, metastasis, and
angiogenesis (178–180). In addition, PGE2 regulates different
immune cells- it suppresses the proliferation of CD4+ T cells
by reducing intracellular calcium release and suppressing the
activity of the p59 protein tyrosine kinase (181, 182). PGE2
decreases the production of effector cytokines, such as IL-
2 and IFN-γ, and it can also inhibit NK cell function and
B cell proliferation (183–185). PGE2 elevates cAMP by the
stimulation of its receptors, EP2 and EP4 (186). COX2/PGE2
and its receptors are potential target(s) for breast cancer
therapy. Preclinical studies indicate that celecoxib, a selective
COX-2 inhibitor, reduces breast cancer metastasis (176, 187).
The daily intake of COX-2 inhibitors such as non-steroidal
anti-inflammatory drugs (NSAIDs) reduce the risk of breast
cancer occurrence significantly (188). The PGEP4 receptor
blocker (AAT-007) is currently in phase 2 for the treatment
of patients with solid tumors, including breast cancer (179). A
newer version of the PGEP4 receptor antagonist called (AAT-
008) has shown significant bioavailability and pharmacological
profiles in preclinical investigations (189). The PGE2 EP1
antagonist (ONO-8711) suppresses breast cancer progression in
rats (190). Using different breast cancer cell lines in vitro, the
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PGEP3 receptor antagonist (L798,106), demonstrated potency in
reducing breast cancer proliferation and migrations (191).

CSF-1/CSF-1R

Activated macrophages are divided, for simplicity, into anti-
tumor (M1)macrophages and pro-tumor (M2)macrophages.M1
macrophages are activated by GM-CSF, IFN-γ, LPS, and other
cytokines. M1 macrophages, referred to as “fight” macrophages,
play a significant role in producing pro-inflammatory cytokines
and inducing anti-tumor immune responses (192, 193). The
growth factor, GM-CSF, regulates the differentiation of DCs and
macrophages (194, 195). Results from in vivo studies indicate
that GM-CSF suppresses breast cancer growth and metastasis
(196). In contrast, M2 macrophages induce tumor proliferation,
therapy resistance, tumor invasion, angiogenesis, and metastasis.
M2 macrophages are polarized by colony-stimulating factor
1 (CSF1), IL-13, IL-10, IL-4, TGF-β, and prostaglandin E2
(197, 198). The upregulation of CSF-1 signaling correlates with
increased breast cancer progression (Figure 3C) (199). CSF1R
is expressed by both M1/M2 TAMs, MDSCs, neutrophils, and
DCs (200). CSF1/CSF1R signaling increases angiogenesis, cancer
growth, metastases, invasion, CD8+ T cell suppression, tumor
macrophage recruitment, and resistance to therapy (201, 202).
CSF1 can also stimulate VEGF production (196). Blocking CSF1
in breast cancer-bearingmice reversed these effects and increased
mouse survival rate (203). There are currently many therapeutic
agents that target CSF1 and its receptor CSF1R, in preclinical
or clinical development stages. For example, LY3022855, a
CSF1R blocker used as a single agent or in combination with
Durvalumab (anti-PDL1 mAb) or Tremelimumab (anti-CTLA4
mAb) for patients with a solid tumors, including breast cancers
(24). Pexidartinib is another inhibitor of CSF1R that is used in
combination with a microtubule inhibitor (Eribulin) for breast
cancer patients (24). Anti- CSF1R (Emactuzumab) combined
with Atezolizumab (anti-PDL1 mAb) are used to treat TNBC
(24, 204).

VASCULAR ENDOTHELIAL GROWTH
FACTOR A (VEGF-A)

VEGF binding to its receptors promotes the progression,
proliferation, and metastasis of breast cancer (Figure 3D) (22,
205, 206). Among the five identified VEGF subfamilies (VEGF-
A, VEGF-B, VEGF-C, VEGF-D, VEGF-E), VEGFA, also called
VEGF, is the dominant andmost researched isoform (207). VEGF
isoforms bind with varying affinities to VEGFR1, VEGFR2, and
VEGFR3, which mediates VEGF downstream signaling (208).
VEGFA is overexpressed in several types of cancer, including
breast cancer (209), and plays a vital role in angiogenesis
(210). VEGF halts the differentiation and activation of DCs and
promotes the exhaustion of CD8+ T cells by increasing the
expression of inhibitory receptors, such as PD-1, TIM-3, LAG-
3, and CTLA-4 (211). High VEGF plasma levels in breast cancer
patients is associated with a significant reduction of DCs in the
peripheral blood of cancer patients. The appearance of immature

DCs in the blood correlates with the duration and disease stage;
surgical removal of tumors showed a partial reversal of the noted
effects (212). On the other hand, inhibiting VEGF increases
tumor-infiltrating effector T-cells and reduces the recruitment of
Tregs and MDSCs to the TME (213). Blocking VEGF stops the
growth of tumor blood vessels in murine models and promotes
cancer cell death and tumor-shrinkage (214). Therefore, targeting
VEGF and its receptor VEGFR are key therapeutic targets
for breast cancer treatment. Many angiogenesis inhibitors have
been approved by the FDA, however, only a few have been
tested in breast cancer patients such as bevacizumab, which
binds to VEGFA and blocks its efficacy (215). Bevacizumab
was the first FDA approved antiangiogenic agent (216, 217).
In 2008, it was approved to be used in combination with
chemotherapy to treat metastatic HER2-negative breast cancer
(218). However, it showed several adverse side effects and poor
overall survival, which led the FDA to revoke its approval
in 2011 (219, 220). An example of a VEGFR inhibitor is
DC101, a monoclonal antibody which binds to VEGFR2, and
exhibits potential antiangiogenic efficacy against breast tumors
in xenograft models. In another in vivo study, DC101 enhanced
tumor-specific CD8+ T cells and accelerated tumor regression.
Combining DC101 with neu-specific vaccination also suppressed
tumor progression and increased the activity of CD8+ T cells
(221). Ramucirumab, a VEGFR2 blocker, has shown preclinical
and clinical promise in targeting breast cancer angiogenesis,
growth, and metastasis (222). Axitinib is a small molecule
that binds selectively to VEGFR-1,−2, and−3, and blocks their
activities (223); murine studies indicate its potency in inhibiting
breast cancer growth (224). However, clinical studies have only
demonstrated its activity in combination with chemotherapy
(paclitaxel). Sorafenib is another small molecule VEGFR blocker;
reports indicate encouraging clinical trial results from the
treatment of breast cancer patients. However, the utilization of
sunitinib, a VEGFR inhibitor, has not shown any clinical benefit
in breast cancer patients (225).

Overall, the preclinical results obtained from the use of
anti-VEGF agents showed a significant decrease in tumor
angiogenesis. However, the outcome of clinical trials exhibited an
average response (22, 226).

TOLL-LIKE RECEPTOR (TLR)

TLRs are expressed by both cancer and immune cells (227,
228). Among the thirteen TLRs (TLR1-13) that have been
characterized, ten (TLR1-10) were identified in humans, six of
which are expressed on the cell surface TLR (1, 2, 4, 5, 6, and 10)
and four on endosomal membranes (229).

Several TLRs are upregulated in human breast tumors. TLR4
is the most expressed among the TLR family, on breast cancer
cells (MDA-MB-231 cells). Deletion of the TLR4 gene resulted
in an increase in cell death and suppression of IL-6 and IL-8
expression (230). The overexpression of TLR9 in human breast
cancer enhances tumor cell invasion, which is mechanistically
linked to the induction of MMP13 and COX-2 secretion (231).
Various studies have reported positive correlations between
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FIGURE 4 | Schematic illustrations depicting the effects of different immune targets on breast cancer (A) Toll-like receptor(s) (B) Stimulator of interferon genes protein.

TLR expression and the activation of the immune system. TLR
stimulates DCs and macrophages and promotes the secretion of
pro-inflammatory cytokines and the facilitation of anti-tumor
immune responses (232, 233). The role of TLRs as pro-tumor
agents has also been investigated (234). The function of TLRs in
cancer can be described as a “double-edged sword” (Figure 4).
On the one hand, agonists that bind to TLR(s) on tumor cells
can promote cancer progression by promoting immune escape
and cancer cell proliferation and survival. The engagement of
TLR4 expressed by human breast cancer cells results in increased
production immunosuppressive factors such as NO, VEGF, and
MMPs, thereby promoting the tumor invasion (230, 235, 236).

On the other hand, activating TLR5 in the breast cancer
mouse model resulted in anti-proliferative efficacy through
the promotion of necrosis, increased neutrophil infiltration
and down-regulation of cyclin B1, cyclin D1, and cyclin E2
(237). TLR3 expressed by human and mouse breast cancer
cells promotes apoptosis by inducing type I IFN signaling
(238). Preclinical studies have demonstrated that TLR agonists,
combined with other therapeutic agents, can potentially reduce
and suppress tumor progression (239, 240). The different roles of
TLRs are linked to the proximal signaling pathways stimulated
in cancer cells and immune cells. For example, even though
TLR5 is overexpressed in both gastric and breast cancers, it
has opposite effects as it suppresses the proliferation of breast
cancer and induces the growth of gastric cancer cells (237,
241). Many TLR agonists have been investigated for clinical
use. The TLR5 agonist, flagellin, suppresses breast cancer by
induction of caspase-1 activation-dependent pyroptosis. It also
enhances the expression of granzyme B, TNF-α, and IFN-
γ in CD8+ T cells (242, 243). The TLR3 ligand, poly-AU,
increases the survival rate in patients with TLR3-positive breast
cancer (244). Imiquimod is a well-tolerated TLR7 agonist
that can promote the rejection of immune-mediated skin
metastasis in breast cancer patients (245) 852A is another
TLR7 agonist used for the treatment of metastatic breast cancer
patients (240).

STIMULATOR OF INTERFERON GENES
PROTEIN (STING)

Various studies have suggested that STING (stimulator of
interferon (IFN) genes) expression is not only confined to
innate and adaptive immune cells (246–248), but is also
expressed in various tumors, including breast cancer (249).
STING stimulators have shown great potential for activating
immune cells, enhancing anti-tumor immunity by inducing a
variety of pro-inflammatory cytokines and chemokines (246, 247,
250), priming and activation of T cells (251), enhancement of
antigen presentation, promotion of cancer cell death, inducing
the recognition and apoptosis of cancer cells by T cells (249,
252, 253). A previous study has revealed the role of STING in
promoting death in 4T1 breast cancer cells by increasing the
caspase-3 pathway cascade (249). Similarly, the overexpression
of STING in two breast cancer cell lines, T47D or MCF-
7 has been shown to increase caspase 3 and/or 7 activity
(252). The deletion of STING expressed by melanoma cell lines
results in the suppression of cytokines (IFN-γ) and chemokines
(CCL5 and CXCL10) production (254). Furthermore, STING
knockout mice exhibit reduced NK cell responses by mediating
the downregulation of perforin, granzyme B, and IFN-γ (253,
254). Numerous STING stimulators are now under clinical
investigation for the treatment of various types of cancers.
The utilization of ADU-S100 (MIW815), a STING agonist,
is currently being tested in combination with anti-PD-1
(spartalizumab) for the treatment of patients with solid tumors,
including PD-1-naïve TNBC (255).

CONCLUSIONS

Following several years of preclinical and clinical research,
our understanding of how the immune system responds
to cancer has increased. The limited success of immune
checkpoints, like CTLA-4 or PD-1, in clinical trials for breast
cancer patients, has prompted research to find alternative
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targets. Many new emerging data reported novel pathways that
stimulate immune responses against breast tumors. These newly
discovered pathways are likely to be the future targets of breast
cancer immunotherapy.
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