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Pancreatic cancer (PC) is a malignant tumor with high invasiveness, easy metastatic
ability, and chemoresistance. Patients with PC have an extremely low survival rate due to
the difficulty in early diagnosis. It is estimated that nearly 90% of PC cases are caused by
environmental risk factors. Approximately 50% of PC cases are induced by an unhealthy
diet, which can be avoided. Given this large attribution to diet, numerous studies have
assessed the relationship between various dietary factors and PC. This article reviews
three beneficial diets: a ketogenic diet (KD), a Mediterranean diet (MD), and a low-sugar
diet. Their composition and impact mechanism are summarized and discussed. The
associations between these three diets and PC were analyzed, and we aimed to provide
more help and new insights for the prevention and treatment of PC.

Keywords: diet, ketogenic diet, low-sugar diet, Mediterranean diet, pancreatic cancer
INTRODUCTION

Pancreatic cancer (PC) is known for its insidious onset, invasive fast-growing nature, and poor
prognosis (1). Although radical resection is currently the primary therapeutic option, most patients
miss the appropriate time due to its unspecific early clinical manifestation. Although great progress
has been made in radiotherapy (RT), chemotherapy, and immunotherapy in recent years, the
desired results have not yet been achieved (2). Avoiding high-risk factors is the first and most crucial
step to change its incidence. Current evidence suggests that up to one-third of cancer deaths can be
prevented by reducing risk factors, and an unhealthy diet is one of the most crucial factors (3).
Dietary composition affects tumor growth and progression and creates potential synergies or
antagonisms between new or existing therapeutics (4). Diet can affect tumor growth through various
mechanisms that alter cancer cell metabolism (Figure 1). The components within the diet could
even improve the prognosis by affecting drug efficacy and resistance (5). Research on the
relationship between dietary composition and cancer risk is becoming increasingly crucial. This
review stresses several different kinds of typical diets, and the effects of some components within the
diet are analyzed in PC treatment. The aim is to deepen the knowledge about the role of diets in PC
and the underlying mechanisms, which provides evidence for further developing PC prevention
strategies. Second, it is hoped that this study can fill the gaps in the treatment methods of PC and
improve the treatment effect and patient survival rate. Finally, we aim to promote multidisciplinary
prospective research to advance the field.
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THE KETOGENIC DIET (KD)

There is no precise definition of the KD. Thus, many studies have
defined it as any diet that leads to an increase in blood ketones
(6), for example, diets in which more than 50% of total calories
are from fat (7). However, the KD is generally accepted to be
characterized by high fat, moderate protein, and very low
carbohydrate composition. The classical KD contains four
parts fat, one part carbohydrate, and one part protein (4:1:1)
(8). It delivers 90% of its calories from fat, 8% from protein, and
only 2% from carbohydrates. However, the KD used in the
clinical setting has a ratio of fat to carbohydrate and fat to
protein of at least 2:1 and 3:1 (9). The development of the KD has
been relatively completed thus far. All-liquid and parenteral KDs
have been studied (10), thus, the diet is often started on an
outpatient basis (11).

The KD is regarded as a metabolic therapy widely used in the
treatment of epilepsy (12). Recent studies have confirmed the
therapeutic potential of the KD in many pathological conditions
over the last decade, including diabetes, polycystic ovary syndrome,
acne, neurological diseases, malignant tumors, and the amelioration
of respiratory and cardiovascular disease risk factors (13, 14). A
growing number of preclinical studies suggest that the KD as a
dietary intervention is a potent anticancer therapy (15).

Various investigators have used the term “therapeutic
ketosis”, which implies the achievement of plasma ketone body
levels in the 2-7 mmol/L range, comparable to concentrations
found in subjects maintained on various KDs (16). The KD leads
to an increase in ketone bodies without restricting energy intake,
a clear advantage in the cancer setting (17). The KD suppresses
the Warburg effect by inducing tumor starvation, which is
generally considered its anticancer mechanism (18). The
Warburg effect is characterized as mainly adopting glycolysis
as an energy source to maintain tumor cell growth and
biosynthesis in cancers (19). Glucose dependency and lactate
production are recognized as two key features related to the
aggressive capacity and invasive potential of cancer cells (20).
Normal cells readily use ketones as an alternate energy source
and induce a shift in cellular energy supply from glucose to fatty
acids and ketones to protect against hypoglycemia when ketone
body levels rise (21). Cancer cells are incapable of ketone body
metabolism due to their acquired metabolic inflexibility (22). As
a result, ketone bodies cannot be consumed, and tumor
development is inhibited (23). Many studies have confirmed
that the KD has a positive effect on various types of cancer and
could retard the progression of gastric cancer, prostate cancer,
and brain cancer in mouse models (24, 25). In addition, the KD
was found to eliminate tumor growth by inhibiting angiogenesis
and reducing tumor volume in preclinical trials (26). This ability
was linked to the reduction in glucose availability, insulin, and
circulating insulin-like growth factor (IGF)-1 levels (27, 28).
Ketosis has been confirmed to be inversely associated with serum
insulin levels and correlated with stable disease or partial
remission (29).

Husain et al. (30) confirmed that the KD could decrease the
activation of natural killer cells, improve the numbers of myeloid-
Frontiers in Oncology | www.frontiersin.org 2
derived suppressor cells (MDSCs) in a PC mouse model, and
enhance the host immune response to tumor cells. This suggested
that several mechanisms could support the effectiveness of the KD
in cancer treatment, far beyond the originally proposed inhibition of
glucose/insulin signaling, including oxidative stress, mitochondrial
metabolism, and inflammation (31). The increased oxidative stress
and reactive oxygen species (ROS) production are attributable to
mitochondrial damage (32). In addition, chronic inflammation
from sustained hyperglycemia also represents a major source of
ROS production in tumors (33). Stafford et al. (34) reported that the
KD reduced the rate of tumor growth and prolonged survival with
reduced ROS production in cancer cells. Ketosis protects against
oxidative stress in healthy tissues by simultaneously enhancing
endogenous antioxidant capacity and decreasing ROS production
(35). Moreover, cancer cells are inefficient in metabolizing toxic
substances (28). These factors allowed the KD to selectively inhibit
metabolism in cancer cells but not in normal cells.

Surgery remains the primary treatment for PC, and radical
tumor resection can considerably reduce the risk of cancer
recurrence and increase the 5-year survival rate (36). However,
patients who undergo pancreatectomy are more susceptible to
malnourishment and weight loss due to complications, such as
pancreatic fistula and delayed gastric emptying (37). It has been
suggested that the KD improves meal compliance, satisfaction,
and the energy intake rate in post-pancreatectomy patients
without increasing complications of the digestive system. It is a
safe way to increase energy and nutrient intake in pancreato-
biliary cancer patients after surgery (38, 39). Unfortunately, only
20-30% of PC patients are candidates for surgical resection, as
most are diagnosed with locally advanced PC or metastatic PC
(40). As a result, chemotherapy must be conferred as a survival
advantage for those patients. Recent guidelines recommend
gemcitabine monotherapy or gemcitabine-based combination
therapies; however, even the FOLFIRINOX (5-fluorouracil,
folinic acid [leucovorin], irinotecan, and oxaliplatin) regimen is
considered as an option for some patients (41, 42). RT,
chemotherapy, and current nonsurgical standard therapies for
cancer therapies share a common mechanism, which is to kill
cancer cells by enhancing the production of ROS (43). Therefore,
the application of a KD during treatment would selectively
enhance tumor cell versus normal cell sensitivity to RT and
chemotherapy by inducing oxidative stress (44).

Metabolically supported chemotherapy (MSCT) is a novel
approach targeting the dysregulated energy mechanism of tumor
cells and has been generally combined with KD, hyperthermia
(HT), and hyperbaric oxygen therapy (HBOT) in advanced PC
patients (45, 46). The effects of MSCT (either gemcitabine based or
FOLFIRINOX regimen administered concomitantly with induced
hypoglycemia) plus the KD, HT, and HBOT combination have
been investigated in a clinical trial. A total of 25 metastatic
pancreatic ductal adenocarcinoma (PDAC) patients were enrolled,
and past data were compared. The results showed that the overall
median survival rate of patients receiving gemcitabine therapy alone
was approximately 6.8 months, and that of the FOLFIRINOX group
was 11.1 months. Encouragingly, the combination of the KD with
MSCT achieved an overall median survival rate of 15.8 months and
May 2021 | Volume 11 | Article 630972

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Beneficial Diet and Pancreatic Cancer
a progression-free survival rate of 12.9 months (Figure 2) (47). Talib
et al. (48) demonstrated that a combination of the KD with
melatonin could successfully inhibit cisplatin- and vincristine-
resistant breast cancer, which indicates that the KD may improve
the treatment effect of drug-resistant patients. In addition, there was
evidence of increased survival in mice grafted with high-grade
glioma, lung, or PC cells when mice received a KD in association
with RT (49, 50). A phase I clinical trial of the KD and PC patients
was also conducted, but it was terminated due to suboptimal oral
KD compliance and poor tolerance (51). Another trial enrolled 70
cancer patients, half of whom received a KD during RT. The results
revealed that the KD improves patient tolerance by improving
muscle mass against cachexia (52). This indicated that the KD
might be of unexpected value for PC patients at high risk of weight
loss and receiving RT and chemotherapy.

As reported in most preclinical studies, the process of cancer-
induced cachexia can be reversed by a KD (53, 54). The incidence of
cachexia in PC is 80%, characterized as a complex metabolic
syndrome associated with the advanced disease stages (55).
Surendra et al. (56) demonstrated that reversal of the metabolic
Frontiers in Oncology | www.frontiersin.org 3
syndrome induced by ketone bodies might be related to the levels of
c-Myc in PC. The ketone body-reduced c-Myc expression suggests
that the KD is beneficial to PC. Greene et al. (57) found that a KD
decreased body mass without adverse effects on skeletal muscle and
muscle strength. In addition, Andrew et al. (58) demonstrated that
R/S1,3‐butanediol acetoacetate diester, a novel synthetic ketone
diester, attenuates tumor burden indices by diminishing anorexia,
altering systemic metabolism, and mitigating catabolism in a
cancer‐independent multifactorial inflammation-induced atrophy
environment. This indicated that ketone bodies participate in
anticatabolic effects by eliminating multifactorial atrophy.
Nakamura et al. (59) postulated that elevated blood ketone levels
might have antitumor effects by promoting the maintenance of
body weight and muscle mass, leading to a reduction in
inflammation. KD treatment of cachexia aims to maintain skeletal
muscle mass and physical performance, avoid interruption of
scheduled anticancer treatments, and improve quality of life (60).

The KD might indirectly affect the efficacy of immunotherapy
by affecting the metabolism of the host. Flint et al. (61)
indicated that the metabolism of calorie-deficient mice would
FIGURE 1 | The molecular mechanism between a beneficial diet and pancreatic cancer.
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be altered to develop hypoketonemia, which triggered a marked
rise in glucocorticoid levels, affecting the effectiveness of
immunotherapy in PDAC. They conducted further studies on
this view and found that the increased level of ketone bodies in
PDAC mice inhibited the systemic metabolic stress response,
reducing the suppression of immunotherapy (62). Another study
found that glucose-dependent CD8+ tumor-infiltrating
lymphocytes (TILs) could undergo a competitive disadvantage
for nutrients that might negatively affect their immune function.
However, the KD significantly reduces the expression of the
inhibitory ligand PD-1 (PD-L1) on CD8+ T cells (63).
Additionally, mice fed a KD presented lower expression of PD-
L1 in tumor cells that notoriously inhibited CD8+ T cell activity
(64). These results suggested that the KD may alter tumor-
mediated T cell suppression by reducing the number of cells
susceptible to the PD-1 inhibitory pathway. A recent study
demonstrated that the enhancement of lipid catabolism in
CD8+ T cells increases the efficacy of immunotherapy within a
tumor microenvironment low in carbohydrates (65). Mounting
evidence has highlighted that nutrient modulation also improves
cancer immune surveillance so that severe immunosuppression
could be avoided or even that the immune response or immune-
based cancer therapies could be potentiated through patient
microbiota remodeling (66). The convergence of host
metabolism and antitumor immunity may offer a platform for
investigations of new combination therapies.

Most experiments have shown that the KD is safe (37–39).
The side effects caused by the KD, including constipation,
Frontiers in Oncology | www.frontiersin.org 4
fatigue, leg cramps, vomiting, lack of energy, and hunger, are
reversible (67, 68). In addition, the KD should be low in proteins
(mainly vegetable proteins) and carbohydrates (non-starchy
vegetables) and high in lipids [mainly unprocessed vegetable
oils rich in polyunsaturated fatty acids (PUFAs)] (16, 21, 69). It is
worth noting that the classic artificial KD may be deficient in
vitamins and minerals (70). Adequate supplementation of these
micronutrients is essential and should be planned and monitored
by physicians and qualified dieticians (71). The paleolithic
ketogenic diet (PKD) is based on animal fat, meat, and offal
with a fat: protein ratio of about 2:1 (72). The PKD differs from
the classical KD in that it excludes food components that are not
available in preagricultural times, and it supplies optimal
amounts of micronutrients (73). Tóth et al. have proven that
the PKD has a considerable effect on soft palate cancer, rectal
cancer, glioblastoma multiforme, and cervical intraepithelial
neoplasia (72–75). The researchers assume that this diet is
evolutionarily advantageous for humans and has superior
effectiveness compared to the KD in cancer management (72,
73). Thus, the PKD provides hopes for refractory cancer therapy
and we do believe that further studies should be conducted to
explore the possible mechanisms of PKD in the treatment of
cancer and other chronic diseases.

In most preclinical models, the overall beneficial effects of the
KD were suggested (17, 24, 25). However, most of the data took
advantage of the mouse model, limiting the translation to
preclinical studies (53, 54). Many clinical trials have involved
only a few patients, and in some cases, a control group was not
FIGURE 2 | The study compared several treatment modalities, including earlier traditional care and chemotherapy. The patient’s survival time was significantly
prolonged when combined chemotherapy with metabolic support and the KD (MSCT).
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included (23, 29). A high level of heterogeneity among studies
prevents the formulation of conclusions. In addition, apart from
the earliest study on two pediatric oncology patients, other
studies on KD were limited in follow-up duration (23). There
is no clear evidence available demonstrating long-term benefits
of KD, as regards hard clinical endpoints, such as survival or
mortality. However, due to the special biological characteristics
of PC, many therapies were not very effective. Therefore, it is
currently impractical to discuss whether KD can affect the
survival or mortality of PC. Researchers should focus on the
effects of combining KD with other therapies, such as
chemotherapy or neoadjuvant therapy. We are eager to know
whether the combination could decrease the tumor stage, reduce
the distant metastasis, or even relieve the side effects of such
kinds of treatments. Furthermore, high-quality randomized
controlled trials should be taken into account to gain more
evidence for bringing KD into clinical practice.
THE MEDITERRANEAN DIET (MD)

The Composition of the MD
The MD originates in the food cultures of ancient civilizations
that developed around the Mediterranean Basin, and this term is
used today to describe the traditional dietary habits of countries
Frontiers in Oncology | www.frontiersin.org 5
neighboring the Mediterranean Sea, mainly Greece and southern
Italy (76, 77). Its detailed components contain fruits, vegetables,
and whole grains in every meal. Olive oil, tree nuts, and seeds are
consumed every day. The aim is to eat fish, seafood, and legume
products at least twice a week. Meat and eggs are consumed
infrequently and in small quantities, and processed meat and
sweets are practically nonexistent (Figure 3) (78, 79). This diet
contains 40% to 50% carbohydrates (approximately 80% coming
from complex carbohydrates such as whole grain bread), 10% to
20% protein (particularly fish), and 30% to 40% fat (mainly from
polyunsaturated w-3 FAs) (80, 81). Higher adherence to the MD
can extend lifespan and seems to have an inverse association with
the risk of gastrointestinal cancers, including PC, by affecting gut
microbes, hormone receptors, fat, obesity, and other aspects (82–
84). However, some limitations could be found in these studies.
First, the distinction between different food groups is imprecise
and overlapping. For instance, the vegetable group includes
beans, and the legume group contains peanuts that are often
covered by the nut group. Second, many foods are not associated
with the same category, although similar biologically active
substances are present. It is difficult to classify them according
to their specific effects (85). Therefore, we will discuss the
bioactive compounds that have greater impacts on PC in
the natural products in the MD rather than categorize them by
the types or species.
FIGURE 3 | The Mediterranean diet.
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w-3 FAs and PC
Many epidemiological studies have accumulated evidence
regarding the effect of w-3 PUFAs, namely, a-linolenic acid,
eicosapentaenoic acid (EPA), and docosahexaenoic acid, in
cardiovascular disease, metabolic syndrome, cancer, and
immune system disorders (86, 87). It is estimated that the
minimum human requirements are 0.2% of daily energy intake
for w-3 PUFAs (88). The typical MD recommends consuming
marine fish that provide w-3 FAs and eating vegetables, nuts, and
virgin olive oil to complement derived w-3 FAs (89). Recent
studies have shown that w-3 PUFAs inhibit cancer cell growth in
colorectal cancer (CRC) and cholangiocarcinoma (90, 91). Song
et al. (92) found that w-3 PUFAs inhibited PC growth by
reducing the b-catenin expression and T cell factor/lymphoid-
enhancing factor reporter activity. A study found that a 5% fish
oil (FO)-supplemented diet rich in w-3 FAs significantly
suppressed tumor growth by inducing ROS accumulation and
caspase-8-dependent cell death (93). In addition, the
accumulated EPA in the pancreas was shown to concomitantly
promote autophagy and diminish its ability to induce apoptotic
cell death (94). The combination of EPA with an autophagy
inhibitor may be a useful strategy in increasing the therapeutic
effectiveness in PC. w-3 FAs also manifest synergistically with
chemotherapeutic agents and enhance tumor radiosensitivity
(95). Two clinical trials found that gemcitabine plus an w-3-
rich lipid emulsion improved the response rate and disease
control rate (96) and improved PC patient prognosis (97, 98).
Another study investigated whether the application of w-3 FAs
significantly prolonged the median survival time (MST) of
patients (99). Hering et al. (100) demonstrated that w-3 FAs
plus gemcitabine inhibited gemcitabine-induced NF-kB
activation, restored apoptosis, and reduced mortality due to
gemcitabine chemoresistance. Similar to the KD, w-3 FAs can
also improve the skeletal muscle mass of PC patients against
cachexia and simultaneously reduce the side effects caused by
chemotherapy (101). The mucositis induced by chemotherapy-
induced peripheral neuropathy and intestinal microbial dysbiosis
manifests as inflammation from the mouth to the anus and
neuropathic pain, respectively (102, 103). These side effects may
cause weight loss, generalized infection, and longer
hospitalization times (104, 105). Barber et al. (106)
demonstrated that taking FO-enriched nutritional supplements
could stabilize the appetite and weight of PC patients. The
evidence to date demonstrates that w-3 FAs may decrease
cancer risk by affecting genetic variants of inflammatory
pathways, oxidative stress, and tumor apoptosis and are also a
high potential strategy for the treatment of PC (107, 108).
According to the recommendations from the Dietary
Guidelines Advisory Committee in 2015, no upper limit was
given for dietary fat intake, and saturated fatty acids should be
replaced by PUFAs (109). Therefore, sticking to the MD is the
right choice to consume adequate PUFAs in a daily diet.

Micronutrients and PC
Water-soluble vitamins, including folic acid and vitamin C, are
well represented in the MD. Vitamin C, also known as ascorbic
Frontiers in Oncology | www.frontiersin.org 6
acid, acts as an antioxidant and is found mainly in citrus fruits,
broccoli, spinach, cauliflower, and sweet and white potatoes
(110). The combination of hydrogen peroxide and ascorbate in
the extracellular fluid has been shown to result in the formation
of ROS, which selectively kill tumor cells (111). A study showed
that combinations of gemcitabine and vitamin C could inhibit
PC tumor growth and demonstrated a gemcitabine dose-sparing
effect, even with PC that was unresponsive to gemcitabine (112).
Espey (113) and Monti (114) et al. revealed that PDAC patients
tolerated the treatment well and showed a decrease in the size of
tumors when the intravenous infusion of vitamin C was
combined with gemcitabine. It is worth noting that the
mechanisms of high-dose intravenous vitamin C are distinct
from orally administered vitamin C. Intravenous vitamin C in
pharmacologic doses can produce peak plasma concentrations
that are several hundredfold higher than those from maximal
oral doses (115). A high intake of dietary vitamin C mitigates the
risk of PDAC from meat-derived mutagen exposure (116).
Another water-soluble vitamin, folic acid, also known as
vitamin B9, has a closer relationship with PC compared with
other B vitamins. Chittiboyina et al. (117) found that the mean
levels of folate in red blood cells were significantly lower in PC
patients. Marley et al. (118) demonstrated that dietary folate
intake was associated with a reduced PC risk.

Lipid-soluble vitamins are complemented by abundant
provitamin A (a- and b-carotene, b-cryptoxanthin) found in
yellow-orange-red fruits and vegetables (119). Several meta-
analyses have investigated whether dietary vitamin A has an
inverse association with PC risk (120, 121). However, the single
prospective study showed no association between vitamin A
intake and the risk of PC (122). Another lipid-soluble vitamin,
vitamin D, is found in oily fish (123). It participates in antitumor
effects through the AMPK and PI3K/Akt pathways in PC and
inhibits the expression of the cell cycle-related proteins
CDKN1A (p21) and CDK1 (124, 125). Altieri et al. (126)
found that the immunomodulatory and endocrine regulatory
effects of vitamin D are related to the development of diabetes
and PC. Camara et al. (127) believed that a lack of sunlight
caused vitamin D deficiency, which improved the mortality of
PC. Moreover, higher concentrations of vitamin D are suggested
to increase the risk of PC (128).

Vitamin E is a group of naturally occurring and potent
antioxidants that includes 4 tocopherols and 4 tocotrienols (a-,
b-, d-, and g-) (129). It has been discovered to inhibit breast
cancer, colon cancer, lung cancer, and hepatocellular carcinomas
(130, 131). The main sources are vegetable oils and nuts that are
frequently consumed in the MD (119). Husain et al. (132) found
that tocotrienols inhibit PC by eliminating NF-kB activity. In
addition, taking 200 to 1600 mg/day vitamin E d-tocotrienol
before surgery can significantly induce apoptosis in neoplastic
cells (133).

Selenium (Se) intake from aquatic and dairy products is
seriously insufficient in almost all regions (134). However,
large amounts of whole grains, which are good sources of Se,
including whole meal pasta and wheat, sourdough bread,
stoneground wheat bread, and brown rice, are recommended
May 2021 | Volume 11 | Article 630972
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by the MD (135). Higher levels of Se appeared protective for both
mutated and KRAS wild-type PDAC (136). Amaral et al. (137)
found that high concentrations of Se were inversely associated
with the risk of exocrine PC. Two studies have shown that
supplementing Se during cisplatin therapy reduces
myelosuppression and nephrotoxicity, suggesting that optimal
levels of Se could aid in the toxicity profile related to
chemotherapy (138, 139).

Current research on the relationship between these
micronutrients and PC does not show a strong association.
Hence, a more meaningful approach would be to incorporate
certain trace elements into a risk stratification scheme for the
selection and surveillance control examination to complement
existing PC screening and diagnostic procedures and improve
the overall design of future micronutrient clinical trials for PC.

Polyphenols and PC
Dietary antioxidants counteract oxidation processes and prevent
chronic diseases related to oxidative stress (140). Natural
antioxidants from plants, including vitamins and phenolic
compounds, were suggested to suppress PC, breast cancer, and
prostate cancer (141, 142). The phenolic compounds that are
closely related to PC include curcumin, resveratrol (RV), and
sulforaphane (SFN) (143). Some studies suggest that adding
more plant-based condiments, such as curcumin, to the diet
could reduce sodium intake (144). Dhillon et al. (145) found that
peripheral mononuclear cells isolated from curcumin-treated
patients showed reduced activation of NF-kB and that
tolerance to gemcitabine and erlotinib was increased. Another
clinical trial showed that curcumin improved the MST of
gemcitabine-resistant patients and overall survival (146). Li
et al. (147) found that SFN could regulate the self-renewal of
PC stem cells through the modulation of the Hedgehog pathway.
Naumann et al. (148) observed that, when combined with RT, it
exerts more distinct DNA damage and pancreatic tumor growth
inhibition. In addition, the most striking observation was the
ability of SFN to potentiate the activity of several classes of
anticancer agents, including paclitaxel, docetaxel, and
gemcitabine, through additive and synergistic effects (149).
SFN has been explored as a plant-derived histone deacetylase
inhibitor in the treatment of PC (150). It is hoped that the novel
approach circumvents herculean cancer chemoresistance and
alleviates toxicity, the main drawback of monotherapy (151).

RV has been detected in more than 70 plant species, including
red grapes, peanuts, and berries (152). It has been shown to
target various signaling pathways in PC, such as Hedgehog,
leukotriene A4 hydrolase, macrophage inhibitory cytokine-1,
and STAT3 (153). Cui et al. (154) demonstrated that RV
inhibited the proliferation of PC cells by inducing apoptotic
cell death and enhanced the sensitivity to gemcitabine (155).
Furthermore, the special effect of RV improves the DNA-
damaging effect of paclitaxel in epididymal sperm. This
discovery can benefit male cancer patients (156). Verdura et al.
(157) demonstrated that the ability of RV to directly target PD-
L1 interferes with its stability and trafficking, ultimately
impeding its targeting to the cancer cell plasma membrane.
However, it did not appear to interfere with blood cell count
Frontiers in Oncology | www.frontiersin.org 7
or splenocyte or macrophage function (158). Available evidence
suggests that RV combined with anti-PD-1/PD-L1 blockade
treatment can improve the effectiveness of breast cancer
immunotherapy (159). This unforeseen immunomodulatory
mechanism of RV might illuminate new approaches to restore
T-cell function by targeting the PD-1/PD-L1 immunologic
checkpoint with natural polyphenols and provide a new
perspective for PC immunotherapy.

Red Meat and PC
Meat intake was considered as a risk factor for PC, but more
epidemiological studies should be further explored (160). Some
studies believe that its carcinogenicity comes from animal
carcinogens, such as heterocyclic amines (HCAs) and benzo(a)
pyrene (BaP) (161). However, other studies believe that advanced
glycation end products (AGEs) are the main carcinogens. AGEs
are a heterogeneous group of compounds present in uncooked
foods as well as in food cooked at high temperatures (162). AGEs
are associated with insulin resistance, oxidative stress, PC, and
chronic inflammation in patients with diabetes (163). AGEs
markedly accelerated tumor development in a mouse model of
Kras-driven PDAC (164). Jiao et al. (165) observed that higher
consumption of red meat increased the risk of PC. Larsson et al.
(166) suggested that substituting poultry for red meat might
reduce the risk of PC. In addition, some studies refuted the red
meat-cancer causality and believed that highly processed meat
has a higher risk of causing cancer (167). Thus, future
prospective studies should also assess cooking practices and
processing methods concerning the risk of PC, not just the
type of meat. The serious issue with MD studies is that most
research focuses on the prevention rather than the treatment of
PC (168). Future studies should shift from using the MD for the
prevention of PC to the treatment of PC patients. A recent study
proposed a D. I. E. T project to identify the best diet for
immunotherapy enhancement against tumors and discussed
the dietary patterns affecting immune function. This project
proposed adhering to a healthy diet such as the MD,
vegetarian, or KD. The proposed supplements are suitable for
application in immunotherapy, including w-3 FAs and
polyphenols, which means there is potential for diet in
immunotherapy (169).
THE LOW-SUGAR DIET

Increasing epidemiological evidence has indicated the
association between diabetes and pancreatic malignancy, but
the mechanism is still unclear (170). Emerging molecular
studies suggest that hyperglycemia, obesity-associated
hyperinsulinemia, and chronic inflammation in diabetes might
be involved in PC proliferation and metastasis (171). The
hallmark characteristic of type 2 diabetes (T2D) is
hyperglycemia, but hyperglycemia can also occur at a pre-T2D
level with a higher-than-normal blood sugar (BG) level and not
reach the threshold for diagnosing T2D (172). Hyperglycemic
episodes increase the risk of adverse events and outcomes for
cancer patients with or without T2D (173). Several studies have
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shown that high glucose activates epidermal growth factor
receptor (EGFR), which participates in PC progression
(174–176).

The glycemic index (GI) and the glycemic load (GL) were
proposed as measurements of carbohydrate quality and quantity
(177). A low-GI and an energy-restricted diet containing
moderate amounts of carbohydrates may reduce body weight
and control glucose and insulin metabolism (178). Those
following the low-sugar and low-GI diet should consume large
amounts of vegetables rich in fiber and phytonutrients (179),
avoid the intake of carbohydrate-rich foods, such as bread,
noodles, pasta, and starchy vegetables, as in the Western diet
(180, 181), and cakes, candy, biscuits, and sugar-sweetened
beverages are forbidden (182). Turati et al. (183) found that
high-GL diets may have an adverse effect on blood glucose levels,
insulin, and IGFs, resulting in an increased risk of PC. Hu et al.
(184) believed that the consumption of sugar, candy, honey, and
Frontiers in Oncology | www.frontiersin.org 8
jam was positively associated with PC. Larsson et al. (185) found
that the consumption of added sugar, soft drinks, and sweetened
fruit soups or stewed fruit was positively associated with the risk
of PC. Other studies have shown that diets high in fructose and
sucrose increase the risk of PC, especially for women with a high
body mass index or low levels of physical activity (186, 187).

Approximately more than 50% of all patients with PDAC
develop diabetes before their cancer diagnosis (188). Diabetes or
impaired glucose tolerance is present in more than two-thirds of PC
patients (189). The relationship between hyperglycemia, diabetes,
and PC is getting closer. Hyperglycemia has been demonstrated to
promote the perineural invasion of PC and liver metastasis in vivo
(190, 191). Kesh et al. (192) observed that microbial dysbiosis
caused by hyperglycemia was associated with increased resistance
to chemotherapeutic compounds in a T2D animal model.
Furthermore, high glucose may promote immune escape under a
hyperglycemic tumor microenvironment in PC (193). A high-sugar
TABLE 1 | Follow-up studies and clinical trials on beneficial diets.

Diet Country Year Tumor types Combine
therapeutics

Phase
of trail

Estimated
patient

enrolment

Primary outcome

KD USA 2012 Advanced
Cancer

/ I 10 Patients with stable disease or partial remission had three times higher dietary
ketosis than those with continued progressive disease. Preliminary data
demonstrated that KD was safe and feasible in selected patients with advanced
cancer.

Korea 2018 PC Post- pancre
atectomy

II 19 Post-pancreatectomy cancer patients who consumed KD had a higher energy
intake and body cell mass. That suggested the potential use of KD as an adjuvant
anti-cancer therapy.

Korea 2019 PC Post- pancre
atectomy

II 30 Postoperative KD might beneficially modulated PC-related metabolites in patients
with pancreatobiliary cancer. KD might partially provided beneficial effects against
PC.

Turkey 2020 Gastric Cancer MSCT II 24 22 patients complete response was achieved. Mean overall survival and mean
progression-free survival were prolonged.MSCT appears to be promising in the
treatment of advanced GC.

Turkey 2020 PDAC MSCT II 25 Median overall survival and median progression-free survival were prolonged. MSCT
was a viable option with the potential to improve survival outcomes of patients
diagnosed with metastatic PDAC.

MD Croatia 2003 PC / III 100000 The MD could have a protective effect against GC and PC.The standardized
incidence rates of PC in areas that adhere to the MD were significantly lower than
the average level in other areas.

Sweden 2012 PC / III 77151 Adherence to the MD was inversely proportional to PC mortality. The MD may be
associated with chronic disease prevention and better overall health status.

Italy 2015 PC / III 978 This research found that 11.9% of PC were attributable to a low adherence to
MD.These results indicated that an appreciable proportion of PC could be avoided
by intervening in lifestyle.

Italy 2016 PC / III 2892 Adherence to the MD was negatively related to the risk of PC. These correlations
were consistent across strata of age, sex, education, body mass index, alcohol
drinking, tobacco smoking and diabetes.

Low-
Sugar
Diet

USA 2002 PC / III 88 802 Abnormal glucose metabolism played an important role in pancreatic
carcinogenesis. A diet high in glycemic load might increased the risk of PC in
women who already have an underlying degree of insulin resistance.

Sweden 2006 PC / III 77797 Frequent consumption of sugar and high-sugar foods might increased the risk of
PC by inducing frequent postprandial hyperglycemia, increasing insulin demand and
decreasing insulin sensitivity.

USA 2007 PC / III 162150 High fructose and sucrose intakes might play a role in PC etiology. It was more
closely related to the risk of PC in people with obesity and insulin resistance.

Italy 2010 PC / III 978 Consumption of sugar, candy, honey, and jam was positively associated with PC.
Sweets or refined carbohydrates might increased the risk of PC.

Italy 2015 Gastrointestinal
Cancer et al.

/ III 147090 High-GI and high-GL diets were related to moderately increased risk of cancer at
several common sites. Relative risks comparing the highest versus the lowest GI
and GL intake were 1.10 and 1.01 for PC.
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diet brings adverse effects and leads to a poor prognosis. However,
some researchers have suggested that a high sugar intake will not
increase the risk of PC, with the limitation that patients without
diabetes were enrolled in this study (194). Therefore, future studies
should explore the relationship between diabetes, abnormal BG, and
PC. Meanwhile, a low-sugar diet is more specific and standardized
and plays a more targeted role in diabetic patients and people with
abnormal BG.
CONCLUSION

The existing studies on diet and PC are encouraging, but research
is still in its infancy (Table 1). Research comparing these three
diets was even rarer. However, these three diets have a lot in
common. The low-sugar diet recommends rejecting refined
carbohydrates and excessive sugar intake, which also includes
overprocessed meat (180–182). In addition, a low-sugar diet is a
low-GI diet, and some researchers believe that the MD is also a
low-GI diet (78). In terms of the effect of hyperglycemia on
tumors, the mechanism was consistent across these three diets.
The mechanism of the KD involves increased oxidative stress
and ROS production, which are all related to the hyperglycemic
state of the tumor, similar to a low-sugar diet (31–33, 193).
Furthermore, views about the types of fatty acids in all three diets
were basically the same (15, 16, 21, 80, 81). There have even been
studies combining the KD with w-3 FAs (54).

Although diet has been used to improve immunotherapy and
enhance the efficacy of chemotherapy or RT, it is still regarded as
a nutritional supplement. Tóth et al. (72–75) have pointed out
Frontiers in Oncology | www.frontiersin.org 9
that nonsurgical therapies might hinder the effects of metabolic
therapies and might even lead to the tumor progression in several
studies. Therefore, the consideration of using diet therapy as a
stand-alone treatment may bring unexpected results. The depth
of knowledge about the relationship between diet and cancer is
far from sufficient. How these diets bring changes at the cellular
level or whether these diets can reduce the risk of PC in the entire
family by reducing the risk of the first-generation population and
then through genetic variation is still obscure. More clinical trials
and more detailed multi-sample studies are needed to better
explain the dietary patterns in tumor prevention and treatment.
Future research should focus on combining diets with treatment
and better popularizing beneficial diets.
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