
Frontiers in Oncology | www.frontiersin.org

Edited by:
Min Wu,

Sichuan University, China

Reviewed by:
Bingsheng Huang,

Shenzhen University, China
Hai-Feng Li,

Capital Medical University, China

*Correspondence:
Zunfu Ke

kezunfu@mail.sysu.edu.cn
Shiting Feng

fengsht@mail.sysu.edu.cn
Huiyu Feng

fenghuiy@mail.sysu.edu.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 21 November 2020
Accepted: 13 April 2021
Published: 05 May 2021

Citation:
Liu Z, Zhu Y, Yuan Y, Yang L,

Wang K, Wang M, Yang X, Wu X,
Tian X, Zhang R, Shen B, Luo H,
Feng H, Feng S and Ke Z (2021)

3D DenseNet Deep Learning
Based Preoperative Computed

Tomography for Detecting Myasthenia
Gravis in Patients With Thymoma.

Front. Oncol. 11:631964.
doi: 10.3389/fonc.2021.631964

ORIGINAL RESEARCH
published: 05 May 2021

doi: 10.3389/fonc.2021.631964
3D DenseNet Deep Learning Based
Preoperative Computed Tomography
for Detecting Myasthenia Gravis in
Patients With Thymoma
Zhenguo Liu1†, Ying Zhu2,3†, Yujie Yuan4†, Lei Yang1, Kefeng Wang5, Minghui Wang5,
Xiaoyu Yang2, Xi Wu2, Xi Tian6, Rongguo Zhang6, Bingqi Shen2, Honghe Luo1,
Huiyu Feng7*, Shiting Feng2* and Zunfu Ke3,8*

1 Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 2 Department of
Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 3 Institution of Precision Medicine, The
First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 4 Center of Gastrointestinal Surgery, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, China, 5 Department of Thoracic Surgery, The Sun Yat-sen Memorial
Hospital of Sun Yat-sen University, Guangzhou, China, 6 Advanced Institute, Infervision, Beijing, China, 7 Department of
Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 8 Department of Pathology, The First
Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

Background:Myasthenia gravis (MG) is the most common paraneoplastic syndromes of
thymoma and closely related to thymus abnormalities. Timely detecting of the risk of MG
would benefit clinical management and treatment decision for patients with thymoma.
Herein, we developed a 3D DenseNet deep learning (DL) model based on preoperative
computed tomography (CT) as a non-invasive method to detect MG in thymoma patients.

Methods: A large cohort of 230 thymoma patients in a hospital affiliated with a medical
school were enrolled. 182 thymoma patients (81 with MG, 101 without MG) were used for
training and model building. 48 cases from another hospital were used for external
validation. A 3D-DenseNet-DL model and five radiomic models were performed to detect
MG in thymoma patients. A comprehensive analysis by integrating machine learning and
semantic CT image features, named 3D-DenseNet-DL-based multi-model, was also
performed to establish a more effective prediction model.

Findings: By elaborately comparing the prediction efficacy, the 3D-DenseNet-DL
effectively identified MG patients and was superior to other five radiomic models, with a
mean area under ROC curve (AUC), accuracy, sensitivity, and specificity of 0.734, 0.724,
0.787, and 0.672, respectively. The effectiveness of the 3D-DenseNet-DL-based multi-
model was further improved as evidenced by the following metrics: AUC 0.766, accuracy
0.790, sensitivity 0.739, and specificity 0.801. External verification results confirmed the
feasibility of this DL-based multi-model with metrics: AUC 0.730, accuracy 0.732,
sensitivity 0.700, and specificity 0.690, respectively.
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Interpretation: Our 3D-DenseNet-DL model can effectively detect MG in patients with
thymoma based on preoperative CT imaging. This model may serve as a supplement to
the conventional diagnostic criteria for identifying thymoma associated MG.
Keywords: thymoma, myasthenia gravis, deep learning—artificial neural network, computed tomography, imaging—
computed tomography
INTRODUCTION

Thymoma is the most common neoplasm of the anterior
mediastinum in adults and known for their frequent
association with myasthenia gravis (MG) (1). MG, the most
common syndrome of paraneoplastic syndromes (2), is an
autoimmune disease, involving antibodies against the
postsynaptic nicotinic acetylcholine receptors (AChRs) at
neuromuscular junctions, resulting in variable weakness of the
voluntary muscle (3). Patients with MG can experience severe
cardiopulmonary complications (4, 5). One of the most severe
complications of MG is myasthenic crisis after thymoma
resection, which can rapidly worsen, leading to respiratory
failure and even death (6–9). According to NCCN clinical
guidelines for thymomas, all patients suspected of having
thymomas (even those without symptoms) should be carefully
evaluated for the presence of MG before surgical procedure in
order to avoid respiratory failure during the operation (2, 10, 11).
However, some MG symptoms are atypical or asymptomatic,
leading to missed or delayed diagnosis of MG in patients
experiencing mild weakness or in individuals with weakness
restricted to only a few muscles (12). In addition, the current
criteria for diagnosing MG (including immunological,
electrophysiological, and pharmacological approaches) are
usually complex and time-consuming (13). In the real world, a
majority of thymoma patients did not receive careful evaluation
of MG by a neurologist before surgery. Therefore, a simple, non-
invasive and feasible screening method for detecting MG in
thymoma patients prior to operation is necessary to ensure
proper clinical management, especially for developing surgical
strategies and reducing perioperative complications.

In recent years, deep learning (DL) and radiomics in the
medical imaging field have been studied intensively to explore
the potential of utilizing various medical images as diagnostic,
predictive, or prognostic information of human diseases,
including the possibility of identifying tumor pathological
subtypes, tumor phenotypes, and the gene–protein signatures
(14, 15). MG syndrome is closely related to the histopathological
abnormalities of thymus, such as thymoma (16). Thymomas are
usually stratified into six entities [types A, AB, B1, B2, B3, and
TC (carcinoma)] on the basis of the morphology of epithelial
cells and the lymphocyte-to-epithelial cell ratio (17). Thymoma
acetylcholine receptors; AI, artificial
CNN, convolutional neural network;
, densely connected convolutional
sthenia gravis; PNS, paraneoplastic
sensitivity; SP, specificity; TC, thymic
regression.
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associated MG is more common in type B (B1, B2, and B3) than
type A and AB thymomas and absent in TC (16, 18). Recently,
Xiaowei Han et al. reported that some CT imaging characteristics
were significantly related to histological classification of
thymoma and MG status (19). Therefore, it is possible to
identify the presence of MG in thymoma patients using deep
learning model or radiomics based on preoperative routine CT
scan of thymoma.

Here, we designed this study to explore the effectiveness of
3D-DenseNet-DL model and five radiomics as predictive
methods for MG using preoperative chest CT image. The final
optimal model, named as 3D-DenseNet-DL based multi-model
integrating with semantic CT image features, was ultimately
established to detect MG in thymoma patients.
MATERIALS AND METHODS

Patients
For this study, 182 patients diagnosed with thymoma who had
undergone thymectomy at the First Affiliated Hospital of Sun
Yat-sen University from Jan 1st, 2011 to Jun 31st, 2018 were
included for analysis and model building (SYSUFH dataset,
Table 1). Another 48 thymoma patients admitted to the Sun
Yat-sen Memorial Hospital of Sun Yat-sen University from Jan
1st, 2017 to Mar 31st, 2019 were used as the external validation
cohort (SYSUMH dataset, Table 1). All cases had undergone
enhanced preoperative CT examination and had been clearly
staged based on pathological examination and clinical
manifestation. All patients in our study were evaluated by
neurologists to determine the status of myasthenia gravis (MG)
syndrome or other autoimmune diseases before operation and
were followed up to 2 years after surgery. The diagnostic criteria
of MG in this study includes: (1) typical clinical manifestations;
(2) two or more of the following: (a) positive neostigmine test,
(b) decline of >10% on electromyographic low-frequency
repetitive nerve stimulation or increased jitter on single-fiber
electromyography, (c) positive serum AChR-Ab or MuSK-Ab or
LRP4-Ab. This project was approved by the Ethics Committee
and Institutional Review Board of Sun Yat-sen University.
Informed consent was waived due to the retrospective nature
of this study.

CT Imaging Characteristics and Scan
Protocol
Enhanced chest CT images were acquired within one week prior
to operation. Imaging features were carefully evaluated through
PACS reading workstation by two experienced radiologists
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specializing in chest CT imaging that were blinded to the MG
statuses of the patients. CT Imaging characteristics that were
evaluated included (Table 2): maximum diameter (3-D
Maximum diameter); degree of enhancement (increment of
enhanced CT value, HU); enhancement (homogeneous or
heterogeneous); necrosis/cystic component (divided into 0–
25%, 26–50%, 51–75%, 75–100% according to its volume
percentage); shape (round or oval, lobulated, irregular);
contours (smooth or irregular); presence of calcification,
adjacent organ invasion, effusion (pleural/pericardial), and
lymphadenopathy. All preoperative enhanced chest CT images
were obtained with a 64-rowmultidetector CT scanner (Aquilion
64; Toshiba Medical, Tokyo, Japan). Scan parameters: x-ray tube
voltage of 120 kVp; maximum of 500 mA with automatic tube
current modulation. Axial thin-section CT images of the whole
lung were reconstructed with a section thickness and spacing of
1.0 mm. Iopromide at 80–100 ml/per patient (300 mg I/m1,
Schering Pharmaceutical Ltd) was injected at 3–4 ml/s flow rate
and applied to contrast enhanced scanning protocol.

Machine Learning
Datasets
Thymoma on CT images were segmented manually using the
annotation tool “ITK-SNAP” (www.itksnap.org) (20). “ITK-
SNAP”, as a free software, is widely used for medical image
annotation and labeling. In this work, ITK-SNAP was applied for
thymoma lesion segmentation. The output from ITK-SNAP is
NIFTI files containing mask information of the thymoma for
each sequence of CT images. We then used the mask information
Frontiers in Oncology | www.frontiersin.org 3
to extract the area of thymoma, namely the regions of interests
(ROI) (Figure S1). For feature extraction in radiomic analysis,
the segmented thymoma was used directly. For deep learning
modeling, a further preprocessing step was designed to prepare
the segmented data for the convolutional neural network.

Radiomic Analysis
Radiomic Analysis Procedure
Radiomic analysis involved several steps: feature extraction,
feature selection and machine learning. First, feature extraction
was performed to convert raw images to structural data with
radiomic information that could be processed by machine
learning algorithms. Then, several methods were applied to
further select high-quality features based on variance or
regression. Finally, the data with selected features are used as
inputs for several mainstream machine learning algorithms to
train and test the model.

Radiomic Features
The radiomic features were extracted using open source
PyRadiomics software (http://pyradiomics.readthedocs.io) (21).
The categories of features include: shape descriptors (2D and
3D), First Order Statistics, Gray Level Matrices (GLM) based:
Gray Level Cooccurrence Matrix (GLCM), Gray Level Run
Length Matrix (GLRLM), Gray Level Size Zone Matrix
(GLSZM) and Gray Level Dependence Matrix (GMDM). These
features were extracted not only from original images, but also
from derived images filtered using Laplacians of Gaussians
(LoG), Wavelet Decompositions, Square, Square Root,
TABLE 1 | Baseline characteristic of the 230 patients with thymoma from two medical centers.

Variables SYSUFH Dataset (n = 182) SYSUMH Dataset (n = 48)

Number without MG (n = 101) with MG (n = 81) P-value* Number without MG (n = 34) with MG (n = 14) P-value*

Sex 0.500 0.230
Male 115(63.2%) 66 49 27(56.3%) 21 6
Female 67(36.8%) 35 32 21(43.7%) 13 8
Age (year, mean ± SD) NA 51.5 ± 13.1 47.5 ± 12.1 0.035† NA 51.6 ± 13.8 50.4 ± 15.1 0.791†

WHO histologic classification <0.001 0.227
A 22(12.1%) 19 3 8(16.7%) 7 1
AB 37(20.3%) 22 15 13(27.1%) 11 2
B1 21(11.5%) 15 6 5(10.4%) 4 1
B2 72(39.6%) 26 46 19(39.6%) 10 9
B3 21(11.5%) 10 11 3(6.25%) 2 1
C 9(4.95%) 9 0 0 0 0
Masaoka staging 0.006 0.151
I 84(46.2%) 43 41 41(85.4%) 28 13
IIA 40(22.0%) 24 16 1(2.08%) 0 1
IIB 16(8.79%) 5 11 0 0 0
IIIA 20(10.9%) 13 7 5(10.4%) 5 0
IIIB 13(7.14%) 7 6 1(2.08%) 1 0
IV 9(4.94%) 9 0 0 0 0
Smoking history 0.215 0.835
No 161(88.5%) 92 69 35(72.9%) 24 11
Yes 21(11.5%) 9 12 13(27.1%) 10 3
Surgical approach# <0.001 0.051
Thymoma resection 31(17.0%) 30 1 4(8.33%) 4 0
Thymectomy 30(16.5%) 29 1 30(62.5%) 23 7
Extended thymectomy 111(61.0%) 34 77 14(29.2%) 7 7
May 2021
 | Volume 11 | Artic
*Chi-square test or Fisher’s exact test; †;Student’s t test; #Some patients’ data were missing; NA, Not Applicable; SYSUFH, the First Affiliated Hospital of Sun Yat-sen University; SYSUMH,
Sun Yat-sen Memorial Hospital of Sun Yat-sen University.
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Logarithm and Exponential filters. In total, 1,390 radiomic
features were extracted, covering the popular features used
in research.

Radiomic Feature Selection
Feature selection was conducted to select a subset of features
from all extracted features for use in model building. The aims of
this step were to reduce the dimensions of features, simplify the
model and enhance generalization by reducing overfitting. A
multi-level selection approach was adopted, which involved three
algorithms in the order of: variance threshold method, k-best
method, and the least absolute shrinkage selection operator
(LASSO). Variance based method was adopted at first to select
features with variance larger than a threshold (threshold = 0.1 in
this study, data were normalized to a range of −1 to 1). Then, top
k (k = 300 in this paper) features were further selected based on
top ANOVA F-value between feature and the label. Finally,
LASSO with five-fold cross-validation was adopted to
automatically select the more effective features (Figure S2).

Radiomic Model Building
The performance of radiomic analysis was evaluated using five
popular machine learning algorithms: Random Forest, XGBoost,
Frontiers in Oncology | www.frontiersin.org 4
Multilayer Perceptron, Logistic Regression and Support
Vector Machine.

Deep Learning
Data Preprocessing
For deep learning, images with fixed dimension 160 × 160 × 64
(pixels) were used as input of the model. The images were
constructed with equal width and length of 160 pixels and
channels of 64 pixels. The size of the input image was
determined by statistical analysis of the region of all the
thymomas in this dataset.

3D-DenseNet
DenseNet (22) is a type of convolutional neural network (CNN).
DenseNet composes of four dense blocks, as shown in the
schematic diagram. Dense connections between layers within
dense blocks are present in DenseNet. We chose DenseNet as the
base model in this study due to its various advantages. First,
DenseNet can be used to reduce over-fitting. Second, DenseNet
is computationally efficient as it requires less than half of the
parameters of ResNet. Although DenseNet was first designed for
two-dimensional images, our study targeted 3D CT sequences.
As most medical images are three-dimensional, we designed a
3D-DenseNet where the kernel of each convolutional and
pooling layer was modified to 3D versions. In the proposed 3D
DenseNet model, rectified linear unit (ReLu) was used as
activation function in each layer, and softmax function was
applied in the last layer of our network to obtain the
probability for each sample (Figure 1 and Table S1). Batch
normalization was applied before activation layer. The loss
function of our model was due to binary cross-entropy, which
was optimized using Adam with mini-batch size of 16.

Training Process Optimization
Two kinds of data augmentation were applied during the
training stage of deep learning to avoid overfitting. First,
random cropping (Figure S3) was implemented by randomly
placing the segmented thymoma image in the fixed cube with
shape. Second, a fixed window center (WC) and window width
(WW) of 300 were applied for input images with original CT
values. A random change was applied for the training data with
WW value ranging from −10 to 10 and WC value from −5 to 5.
Transfer learning was also applied to obtain benefit such as
acceleration of the training stage from the pretrained model,
which boosted the training speed significantly compared with the
other initialization methods (such as Xavier).

Evaluation Metrics of Machine Learning
Five radiomic models (RF, XGBoost, SVM, MLP, LR) and one
deep learning model (3D-DenseNet-DL model) were evaluated
in the training and validation cohort using stratified five-fold
cross-validation, and the parameter alpha was chosen with Mean
Square Error (MSE) at minimum value. In this study, all the
consecutively enrolled patients in SYSUFH dataset were
randomly split into 80% for training and the remaining 20%
for internal-validation. The metrics Area Under ROC Curve
(AUC), ACC (accuracy), Sensitivity (SN) and Specificity (SP)
were used to compare the performance of these models.
TABLE 2 | Image characteristics of patients with thymoma.

Variables Number With MG P-value

No (n = 101) Yes (n = 81)

Maximum diameter† NA 6.13 ± 2.93 4.91 ± 2.27 0.065
Degree of
enhancement (HU)†

NA 32.56 ± 22.17 30.86 ± 20.06 0.972

Enhancement 0.074
Homogeneous 81(44.5%) 39 42
Heterogeneous 101(55.5%) 62 39

Necrosis/cystic
component

0.029

0–25% 71(39.0%) 36 35
26–50% 78(42.9%) 39 39
51–75% 16(8.79%) 12 4
75–100% 17(9.34%) 14 3

Shape 0.027
Round or oval 91(50.0%) 50 41
Lobulated 37(20.3%) 27 10
Irregular 54(29.7%) 24 30

Contours 0.030
Smooth 163(89.6%) 86 77
Irregular 19(10.4%) 15 4

Calcification 0.827
No 147(80.8%) 81 66
Yes 35(19.2%) 20 15

Adjacent organ
invasion

<0.001

No 157(86.3%) 79 78
Yes 25(13.7%) 22 3

Effusion (Pleural/
Pericardial)

0.028

No 169(92.9%) 90 79
Yes 13(7.14%) 11 2

Lymphadenopathy 0.030
No 166(91.2%) 88 78
Yes 16(8.79%) 13 3
†Data are mean ± standard deviation; NA, Not Applicable.
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The deep learning model was implemented using MXNet
(version 1.2.0, Apache Software Foundation, Forest Hill, MD,
USA) library (22), and the model was trained using four NVIDIA
GeForce GTX 1080 GPUs (NVIDIA, Beijing, China).

Statistical Analyses
Statistical analyses were performed using SPSS 22.0 (IBM, USA).
Variables were grouped based on the presence of MG.
Categorical variables were compared using the Chisq test.
Continuous variables were compared using the T-test
or Mann–Whitney U test for variable with abnormal
distribution. Multivariate logistic regression analysis was used
to explore independent predictors of MG. Variables included
in this analysis included age, gender, enhancement
heterogeneity, necrosis/cystic component rate, contours, shape,
adjacent organ invasion, pleural/pericardial effusion, and
lymphadenopathy. p<0.05 was considered as statistically
significant. The area under the ROC curve (AUC), accuracy,
sensitivity, and specificity were measured in order to evaluate the
accuracy of models.
RESULTS

Clinical Characteristics of Patients
230 patients were included in this study; 182 (SYSUFH dataset)
were used for training and model building, and an independent
cohort of 48 cases (SYSUMH dataset) was used for external
validation. The baseline characteristics of all patients from two
medical centers were summarized in Table 1. In the SYSUFH
cohort, a significant different ratio of histologic classification was
Frontiers in Oncology | www.frontiersin.org 5
found between the two groups (P < 0.001): MG patients with a
lower A + AB ratio (22.2 vs. 40.6%) and higher B1 +B2 +B3 ratio
(77.8 vs. 50.5%), compared to patients without MG. MG was not
found in thymic carcinoma (TC), which is consistent with
previous reports (18). In addition, MG patients showed
significant association with younger age (47.5 ± 12.1 vs. 51.5 ±
13.1 years, P = 0.035) and relatively earlier thymoma Masaoka
staging (P = 0.006). There were no significant differences
between the two groups in terms of gender and smoking history.

Associations Between Semantic CT Image
Characteristics and Status of MG
Ten common variables were used to describe the CT imaging
features of thymomas included in this study (Table 2). The
statistical differences between two groups were found in necrosis/
cystic component rate (P = 0.029), contours (smooth/irregular,
P = 0.030), shape (P = 0.027), adjacent organ invasion
(P < 0.001), pleural/pericardial effusion (P = 0.028), and
lymphadenopathy (P = 0.030). In general, thymoma patients
with MG tend to have less enhancement heterogeneity, less
lobulated shape, and lower rate of adjacent organ invasion.

Detection of MG by Radiomic Analysis and
3D DenseNet DL Model
For the radiomic analysis and deep learning (DL) analysis, a total
of 1,390 radiomic features were extracted from the Routine
contrast enhanced chest CT image data. After applying
Variance Threshold, K-best and LASSO methods, the
remaining features after application of each method were 499,
300, and 16, respectively. The 16 features finally selected were
listed in Table S2. To decipher the relationship between features,
May 2021 | Volume 11 | Article 631964
FIGURE 1 | An illustration of the architecture of our 3D DenseNet deep learning model. Images with dimension 160 × 160 × 64 pixels are fed into the network,
followed by multiple convolution and pooling operations, resulting in probability prediction for MG. In dense block, features with different levels are concatenated
using skip connections. The dimension is halved after each transition layer.
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correlation analysis using the Pearson method was applied, and a
heatmap was constructed for visualization (Figure S4).

Five radiomic models (RF, XGBoost, SVM, MLP, LR) and 3D-
DenseNet-DLmodel were established to detect the status of TAMG,
Frontiers in Oncology | www.frontiersin.org 6
and the values of each metric were shown in Figure 2. Compared
with the other five radiomic models, the DLmodel showed the most
favorable results with AUC 0.734, accuracy (ACC) 0.724, sensitivity
(SN) 0.787 and specificity (SP) 0.672, respectively.
A B

DC

E

FIGURE 2 | Results of Radiomic analysis and 3D DenseNet deep learning model for detecting MG in a cohort of 182 thymoma patients. The performance of five
radiomic models and 3D-DenseNet-DL model was compared using Area Under ROC Curve (AUC) (A), accuracy (B), sensitivity (C), and specificity (D). 3D DenseNet
deep learning model for detecting MG showed similar results in AUC and specificity, but relatively better results in accuracy and sensitivity compared to five radiomic
analysis models (E). “RF”, “LR”, and “DL” refer to “Random Forest”, “Logistic Regression”, and “Deep Learning” respectively; “AUC”, “ACC”, “SN”, and “SP” refer to
the metrics Area Under ROC Curve, Accuracy, Sensitivity, and Specificity, respectively.
May 2021 | Volume 11 | Article 631964
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Building of the 3D-DenseNet-DL Based
Multi-Model for MG Detection
With the multivariable logistic regression analysis, only the shape
of thymoma (P = 0.031), the invasion rate of adjacent organ (P =
0.001), and DL score (P< 0.001) qualified as independent
predictable factors (Table 3). To optimize the effectiveness of
TAMG-detecting model, we further built 3D-DenseNet-DL
based multi-model (DL plus two semantic CT features). With
ROC curve analysis, the AUC of DL model, semantic CT feature
model (the shape and the invasion rate of adjacent organ), and
3D-DenseNet-DL based multi-model were 0.734, 0.677, and
0.766, respectively (Figures 3A, B), suggesting that the 3D-
DenseNet-DL based multi-model demonstrated better
performance for detecting MG in thymoma patients.
Frontiers in Oncology | www.frontiersin.org 7
The External Validation of 3D-DenseNet-
DL Based Multi-Model
We further evaluated the 3D-DenseNet-DL model and the 3D-
DenseNet-DL based multi-model in an external validation set
composed of 48 thymoma patients from another medical center
(SYSUMH). The results showed a comparable agreement in both
datasets for the detection of TAMG, with an AUC of 0.730, ACC of
0.732, SNof 0.700, and SPof 0.690 for 3D-DenseNet-DLbasedmulti-
model; andAUCof 0.704, ACCof 0.690, SN of 0.760, and SP of 0.710
for3D-DenseNet-DLmodel (Figure3C).This favorable result further
confirmed the reliability and efficacy of our 3D-DenseNet-DL based
multi-model in screening TAMG in patients with thymoma.
DISCUSSION

In this study, we proposed and validated a non-invasive method
based on preoperative routine CT imaging of thymoma, referred
to as “3D DenseNet deep learning (DL) based multi-model”, to
detect MG before operation. With this model, we successfully
filtered out most of MG patients in the internal validation set
(AUC of 0.766), and further verified its reliability and efficacy in
an external validation set (AUC of 0.730). We also established
five radiomic models (RF, XGBoost, SVM, MLP, LR) to detect
MG and compared the effectiveness in detecting disease with the
DL model. Our results suggest our 3D-DenseNet-DL based
TABLE 3 | Significant correlations of MG with semantic CT imaging features and
DL score using Logistic Regression Forward Stepwise (Likelihood Ratio) method.

Characteristic P & P # OR # (95% CI)

Shape 0.031 0.032 1.59 (1.04–2.43)
Adjacent organ invasion 0.001 0.007 0.11 (0.02–0.54)
DL score 0.000 0.000 147.84 (9.15–1238.51)
OR, odd ratio; CI, confidence interval; DL, deep learning; #, The P value was calculated by
multivariable logistic regression analysis adjusted for age and gender; &, Unadjusted P
value; P < 0.05 was considered as statistically significant.
A B

C

FIGURE 3 | The prediction metrics of 3D-DenseNet-DL and DL based multi-model. The metrics Area Under ROC Curve (AUC), ACC (accuracy), SN (sensitivity), and
SP (specificity) were used to compare the performance of these models. (A) The prediction metrics of the deep learning results from training and five-fold cross-
validation, a mean AUC of 0.734 ± 0.066 was presented. (B) The comparison of three models of semantic CT signs model, 3D-DenseNet-DL model, and the
comprehensive model (3D-DenseNet-DL based multi-model), with a mean AUC of 0.677, 0.734, and 0.766, respectively. (C) Values of 3D-DenseNet-DL model and
3D-DenseNet-DL based multi-model in external validation, with AUC 0.704, ACC 0.690, SN 0.760, and SP 0.710 for DL model, and AUC 0.730, ACC 0.732, SN
0.700, and SP 0.690 for our final 3D-DenseNet-DL based multi-model.
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multi-model is an effective and non-invasive method for
detecting MG in patients with thymoma. To our knowledge,
this is the first study about the diagnosis of MG in thymoma
patients by using machine learning based on CT imaging data.

Currently, a large number of diagnostic tests are available for
MG diagnosis, including clinical, electrophysiological, and
laboratory antibody tests (23). However, results from these
tests can be negative in some patients, and diagnosing pure
ocular MG can be a challenge (23). The anti-AChR antibody
assay by radioimmunoassay kits is considered as the most
reliable approach to diagnose MG (24, 25). However, these kits
are expensive and not routinely available for most diagnostic
laboratories . In China, commercia l enzyme-l inked
immunosorbent assay (ELISA) kits are more widely used for
anti-AChR test, which are inferior to radioimmunoassay in
terms of both sensitivity and specificity (26). Therefore,
although AChR antibody is found in nearly all of thymoma
associated MG patients, the false positive rate was also high (16).
Repetitive nerve stimulation (RNS) (27) and single-fiber
e lectromyography (SFEMG) (28) are a lso used in
electrophysiological confirmation for MG. However, SFEMG
may not provide confirmation of the presence of MG unless
weak muscles are tested, and the reliability of results is highly
dependent on the experience of the technician (13). More
importantly, as a relatively rare autoimmune disease, the
diagnosis system of MG is mainly concentrated in large
hospitals or medical centers, and a large number of patients
with thymoma cannot be effectively screened for MG before
surgery. Considering the limitations or unavailability of these
classical diagnostic methods, a simple, easily available method
with good efficacy is important in clinical practice for the
preoperative detecting of MG in thymoma patients. CT
examination, as a routine preoperative examination for
patients with thymoma, is very popular. Therefore, our MG
detecting DL model based on preoperative CT has great
application prospects and clinical significance.

Nowadays, an increasing number of studies are performed to
evaluate the potential relationship between CT imaging and
biological features of solid tumors (29), such as glioblastoma
(30), rectal and lung adenocarcimoma (31, 32). As the most
common primary neoplasms of the mediastinum, the prediction
of thymoma histology and stage by radiographic criteria has been
mentioned in several previous reports. CT findings, such as
smooth contours (33), calcification (33, 34), heterogeneous
attenuation (34, 35), were interpreted as being of value in
differentiating the various histologic subtypes of thymomas.
Recently, Angelo lannarelli and colleagues (36) found a
relationship between radiomic parameters, histology, and
grading of thymic tumors. More importantly, their study also
demonstrated that MG syndrome was significantly associated
with some parameters in quantitative texture analysis (QTA)
(36). Although their study only included 16 patients (seven
patients with MG), it represented an incentive for further
evaluation of the value of radiographic analysis in detection of
MG syndrome in thymoma patients. Based on these findings, we
therefore proposed a machine learning model based on
Frontiers in Oncology | www.frontiersin.org 8
preoperative CT imaging for screening MG in large cohort of
thymoma patients and achieved the expected results. Moreover,
our results further confirmed the superior reliability and efficacy
of this developed 3D-DenseNet-DL model compared to the other
five radiomic-based methods. These results also highlight the
importance of radiographic analysis as diagnostic tools from the
accurate characterization of the lesion itself to the detection of
the paraneoplastic syndromes, which is a great stride in the
application of AI in the medical field.

However, despite its satisfactory outcomes, this study has
some limitations. First, given the retrospective nature of this
analysis, a selection bias was unavoidable. Second, patients were
not stratified into more detailed clinical status categories due to
limited sample size. Third, the status of serum AChR binding
antibodies was important for thymoma associated MG diagnosis,
but the absence of such information in certain cases restrained
further analysis. In addition, our deep learning model was built
and validated only based on pathologically diagnosed thymoma,
which limits the application scope of this model to some extent.
Therefore, a perspective, multi-center clinical trial with larger
cohort would be indispensable to further confirm and optimize
the screening model for MG patients.

In conclusion, with a large sample data for modeling and an
independent cohort for external validation, we firstly developed a
3D-DenseNet-DL based multi-model for MG screening in
thymoma patients based on preoperative CT imaging and
achieved favorable results.
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