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Purpose/Objectives(s): Salivary gland tumors are a rare, histologically heterogeneous
group of tumors. The distinction between malignant and benign tumors of the parotid
gland is clinically important. This study aims to develop and evaluate a deep-learning
network for diagnosing parotid gland tumors via the deep learning of MR images.

Materials/Methods: Two hundred thirty-three patients with parotid gland tumors were
enrolled in this study. Histology results were available for all tumors. All patients underwent
MRI scans, including T1-weighted, CE-T1-weighted and T2-weighted imaging series. The
parotid glands and tumors were segmented on all three MR image series by a radiologist
with 10 years of clinical experience. A total of 3791 parotid gland region images were
cropped from the MR images. A label (pleomorphic adenoma and Warthin tumor,
malignant tumor or free of tumor), which was based on histology results, was assigned
to each image. To train the deep-learning model, these data were randomly divided into a
training dataset (90%, comprising 3035 MR images from 212 patients: 714 pleomorphic
adenoma images, 558 Warthin tumor images, 861 malignant tumor images, and 902
images free of tumor) and a validation dataset (10%, comprising 275 images from 21
patients: 57 pleomorphic adenoma images, 36 Warthin tumor images, 93 malignant
tumor images, and 89 images free of tumor). A modified ResNet model was developed to
classify these images. The input images were resized to 224x224 pixels, including four
channels (T1-weighted tumor images only, T2-weighted tumor images only, CE-T1-
weighted tumor images only and parotid gland images). Random image flipping and
contrast adjustment were used for data enhancement. The model was trained for 1200
epochs with a learning rate of 1e-6, and the Adam optimizer was implemented. It took
approximately 2 hours to complete the whole training procedure. The whole program was
developed with PyTorch (version 1.2).

Results: The model accuracy with the training dataset was 92.94% (95% CI [0.91, 0.93]).
The micro-AUC was 0.98. The experimental results showed that the accuracy of the final
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cytology; T1W, T1-weighted; CE-T1W, c
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algorithm in the diagnosis and staging of parotid cancer was 82.18% (95% CI [0.77,
0.86]). The micro-AUC was 0.93.

Conclusion: The proposed model may be used to assist clinicians in the diagnosis of
parotid tumors. However, future larger-scale multicenter studies are required for full
validation.
Keywords: MR image, parotid gland tumor, deep learning, classification, image processing
INTRODUCTION

Parotid gland tumors are rare tumors, accounting for
approximate ly 5% of head and neck tumors , and
approximately 75% of them are benign. The most common
types of parotid gland benign tumors are pleomorphic
adenomas and Warthin tumors (1, 2).

The preoperative diagnosis of benign and malignant tumors
of the parotid gland is of great clinical significance and can have
an important impact on surgical planning. The choice of surgical
procedure depends on the histological type of the tumor.
Approximately 5% to 10% of pleomorphic adenomas have a
risk of malignant transformation and a high risk of recurrence,
and radical surgery is usually used to treat them. The malignant
transformation of Warthin tumors is extremely rare, occurring
for only 0.3% of patients. Tumor removal or conservative
observation is recommended in clinical practice to avoid the
risk of facial nerve injury due to surgery (3). Malignant tumors of
the parotid gland request extensive resection (4).

It is difficult to diagnose malignant tumors of the parotid
gland via clinical manifestations (5). Fine-needle aspiration
cytology (FNAC) is often used for the preoperative diagnosis
of parotid gland tumors, in which the accuracy in discriminating
benign and malignant diseases is 87.8%-97% (6, 7). However, due
to the difficulty of sampling and the heterogeneity of the tumor,
fine-needle aspiration cytology is sometimes uncertain and not
representative of the true nature of the tumor. It may also lead to
the spread of tumor cells, increasing the possibility of local
recurrence and sometimes increasing the risk of infection (8).
Therefore, preoperative imaging plays an important role in
evaluating the location and nature of the tumor for the surgical
plan (9–11). Ultrasound and CT are common imaging methods
for diagnosing parotid gland tumor (12). However, an
inflammatory lump is not easily distinguishable from a tumor
on the ultrasound image, and when the difference between the
density of the tumor and the density of the parotid tissue was
small, the clear boundary could not be obtained by general CT
(12–14). MRI is also an important method for the diagnosis of
benign and malignant tumors of the parotid gland due to the
high resolution of soft tissues. The sensitivity of MRI for parotid
gland tumors is 86%, and the specificity is 90% (15). However,
because parotid gland tumors are relatively rare and the tumors
gnosis; FNAC, Fine-needle aspiration
ontrast-enhanced T1-weighted; T2W,
ho Time.
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are heterogeneous, there are obvious differences in the judgment
of benign and malignant parotid gland tumors.

In recent years, with the development of artificial intelligence,
the application of deep learning in the medical field has made
rapid progress. Deep learning uses simple neurons to form a
complex neural network (15). For medical image diagnostic
assistance, deep-learning methods can outperform many
traditional machine learning methods. Antropova et al. (16)
extracted mammograms, ultrasound and MRI features and
used them for deep-learning training combined with
traditional computer-aid diagnosis (CAD) methods to develop
systems that are superior to the traditional CAD analysis of
single images. Wang et al. (17) used pretraining and transfer
learning methods to fine-tune the network model for other
classification tasks in predicting benign and malignant prostate
cancer (PCa) on MR images. Yang et al. used multiparameter
magnetic resonance imaging (mp-MRI) to diagnose and detect
prostate cancer through a CNN and SVM cotrained model (18).
These studies demonstrate that deep learning, especially of
convolutional neural networks (CNNs), is superior to non–
deep-learning methods.

In terms of practical application, many studies have shown
that the performance of artificial intelligence or deep learning
can reach or exceed that of physicians (19–23). Several studies
have shown that deep-learning techniques are comparable to
radiologists’ detection and segmentation tasks in MRI
examinations (24). In a recent report, Zhao et al. (25)
developed a deep-learning autoLNDS (lymph node detection
and segmentation) model based on mp-MRI. The model can
detect and segment LNs (lymph nodes) quickly, yield good
clinical efficiency and reduce the difference among physicians
with different levels of experience. However, the application of
deep learning in medical image diagnosis is limited (26). Wang
et al.’s (27) research shows that incorporating diagnostic features
into neural networks is a promising direction for future study.
Ma et al. (28) used complementary patch-based CNNs to extract
low-level and high-level features and fused the feature maps to
performing classification. This kind of operation may yield
information from important feature domains, but networks
based on single imaging series still have limitations. Therefore,
this study aims to propose a multiseries-input CNN to boost the
performance of MR image classification tasks.

At present, there is no relevant research based on neural
networks to predict the type of parotid gland tumor (15). This is
mainly due to the rarity of parotid gland tumors, as the incidence
of common cancers is higher than that of parotid gland cancer
June 2021 | Volume 11 | Article 632104
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(29), which therefore lack sufficient data. On the other hand, due
to the rarity of and limited clinical experience with parotid gland
tumors, the significance of their auxiliary diagnosis will be
substantial. The distinction between malignant and benign
tumors of the parotid gland is clinically important.

This study aims to develop a system to act as an intelligent
assistant in medical image diagnosis based on deep-learning
technology and to design a model for predicting parotid
gland tumors.
METHODS AND MATERIALS

Workflow Introduction
Figure 1 shows the whole workflow of our research. The MR
images of 233 patients were collected. The tumor and parotid
gland were segmented manually by physicians. A modified
ResNet18 model was used to discriminate different
parotid lesions.

Patients and MR Image Acquisition
Two hundred thirty-three patients were enrolled in our study
(Table 1). All patients were treated from 2014-2018 at Fudan
University Shanghai Cancer Center. There were 159 males and 74
females with an average age of 52.4 (range, 21-93 years). The
histopathology results were acquired by the operation, and each
tumor have only one histology result from patient’s pathology
report. Patient pathology information was collected from the
EMR system.

This study focuses on two types of benign tumors
(pleomorphic adenoma and Warthin tumor) and one type of
malignant tumors (adenocarcinoma). The MRI scan parameters
were based on our parotid gland MR scanning protocol and fine-
tuned during scanning by the MRI operator. The details of the
imaging parameters are shown in Table 2. All patients were
scanned with at least three series (T1-weighted, T2-weighted and
contrast-enhanced T1-weighted).
Frontiers in Oncology | www.frontiersin.org 3
As a reference, 215 patients’ contralateral normal parotid glands
(991 slice images in total) Were selected as negative samples.

Parotid Gland and ROI Delineation
The parotid gland tumors were segmented by a radiologist with
10 years of clinical experience based on the MR series. The
delineation tasks were performed on MIM (version 6.8.10,
Cleveland, US). These contours were double-checked by a
physicist. To improve the performance of the deep-learning
model, the entire parotid gland was also segmented. Figure 2
shows an example of this delineation.

Dataset and MR Image Preprocessing
After tumor and parotid gland segmentation, 3791 parotid gland
region images were cropped from the MR images. A label
(pleomorphic adenoma, Warthin tumor, malignant tumor or
free of tumor), which was based on histological results, was
assigned to each image.

To train the deep-learning model, these data were randomly
divided into training and test sets at a ratio of 9:1, with 212
patients in the training set and 21 patients in the test set. The
training set included 73 adenocarcinoma, 83 pleomorphic
adenoma and 58 Warthin tumor patients, 2133 total slices with
lesions (861 adenocarcinoma slices, 714 pleomorphic adenoma
slices, and 558 Warthin tumor slices), and 902 total slices
FIGURE 1 | The workflow of our proposed deep-learning framework for the differentiation of benign from malignant parotid lesions. The first part shows multimodal
MR images and tumor segmentation. The second part shows the preprocessing stage for the MR images. The third part shows the training network prediction
model and tumor type classification. The final part comprehensively shows that predictions are made for all slices to determine the tumor type.
TABLE 1 | Patient characters.

Characteristics

Age 52.4 (21~93) years
Sex Male 159 (68%)

Female 74 (32%)
Pathology Type Warthin tumor 63 (27.0%)

Pleomorphic adenoma 90 (38.6%)
Adenocarcinoma 80 (34.3%)

Site Left 101 (43.3%)
Right 114 (48.9%)
Both 18 (7.7%)
June 2021 | Volume 1
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without lesions. The test set included 8 adenocarcinoma, 8
pleomorphic adenoma and 5 Warthin tumor patients, 186 total
slices with lesions (93 adenocarcinoma, 57 pleomorphic
adenoma, and 36 Warthin tumor slices), and 89 slices without
lesions. Details on the processing workflow for the MR images
are shown in Figure 3. A four-channel image was generated as
the model input; the first three channels consisted of T1-
weighted, CE-T1-weighted, and T2-weighted MR images, and
the fourth channel included images of the parotid glands, which
were contoured by a radiotherapist. A total of 991 parotid gland
images without lesions were used as negative samples.

Deep-Learning Network Structure
Thedetailedpredictionnetwork structure is shown inFigure 4. The
network architecture is based on ResNet18. The input images were
resized to 224*224 pixels. Random image flipping, contrast
adjustment, color jitter, and affine transform were used for data
augmentation.All image pixel valueswere normalized to [0, 1]. The
Frontiers in Oncology | www.frontiersin.org 4
batch size of training set and test set was 32. To avoid overfitting, we
reduced the number of network layers (30) (i.e., the number of
residual blocks were reduced to 2) and adjusted the number of
network layers appropriately. The cross-entropy loss function (31)
and the Adamoptimizer (32) were used. Themodel was trained for
1200 epochs; the learning rate was 1e-6 for the first 600 epochs and
was thenmultiplied by a factor of 0.8 every 100 epochs. An Intel I7-
8700KCPU andNvidiaGeForce 1080TiGPUwere used formodel
training. It took approximately 2 hours to complete the whole
training procedure. The program was developed with PyTorch
(version 1.2).

Performance Evaluation
The model performance was reported as its accuracy, which for
binary classification was computed by:

Accuracy =
TP + TN
Total
TABLE 2 | MR scan parameters.

Signa HDxt (GE) Verio (SIEMENS) Skyra (SIEMENS)

Patients 166 (71.2%) 34 (14.6%) 33 (14.1%)
T1-weighted TR (Repetition Time) 280~540 ms 450~620 ms 250~1560 ms

TE (Echo Time) 8.5~10.4 ms 12~16 ms 2.5 ~12 ms
T2-weighted TR (Repetition Time) 2740~3600 ms 2500~5240 ms 2500~5790 ms

TE (Echo Time) 84~88 ms 78~91 ms 78~83 ms
contrast-enhanced T1-weighted TR (Repetition Time) 175~280 ms 4.1~6.0 ms 3.7~6.0 ms

TE (Echo Time) 1.8~3.4 ms 1.5~2.5 ms 1.4~2.4 ms
Contrast Agent Gadopentetic acid Gadopentetic acid Gadopentetic acid

Slice Thickness 5~7 mm 4.5~7.2 mm 4.0~6.0 mm
Pixel size 0.4~0.6 mm 0.65~0.97 mm 0.4~0.85 mm
June 2021 | Volume
A
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FIGURE 2 | All parotid gland and tumor ROIs from a single patient’s lesion on MR images. (A) shows T1-weighted MR images. (B) shows CE-T1-weighted MR
images. (C) shows T2-weighted MR images. The blue region is the parotid gland, and the green region is the tumor.
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where TP denotes the number of true positives, TN denotes the
number of true negatives, and Total represents the number of
total samples. For multiclassification, the calculation of accuracy
was computed by:

Accuracy =
TP
Total
Frontiers in Oncology | www.frontiersin.org 5
Total = TP +o
i

n=1
FPi

where FPi represents the number of false negatives of the ith-class
negative sample.

The Impact of Different Image Series
To investigate the impact of different image series on the
prediction accuracy, we filtered the input to the model using
FIGURE 3 | An example of the four-channel input. All parotid glands and tumors were cropped from segmented MR images, and then the three series of tumor
images and the T1-weighted parotid gland image were input into different channels of one image.
FIGURE 4 | Network structure for predicting different types of parotid gland tumors based on ResNet. The network has 2 residual blocks. Conv, convolutional layer;
Batch norm, batch normalization; Maxpool, max-pooling layer; GlobaloAvgpool, global average pooling layer; Linear, linear layer.
June 2021 | Volume 11 | Article 632104
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only a specific sequence of input models. Each dataset was
trained separately until the accuracy of the model converged.

Automatic Patient Diagnosis
The slice probability was acquired by model prediction. To obtain
patient diagnoses, a decision-making process was developed
(Figure 5). The decision-making process was as follows: 1.
Patients with more than two malignant slices were diagnosed as
having a malignant tumor, and patients with no more than two
malignant slices were diagnosed as having a benign tumor; 2. For
patients with benign tumors, the tumor type was decided by slice
Frontiers in Oncology | www.frontiersin.org 6
number comparison. If the number of pleomorphic adenoma
slices was greater than the number of Warthin tumor slices, the
patient was diagnosed with pleomorphic adenoma, and vice versa.
RESULTS

The accuracy of slice classification was 92.94% for the training set
and 82.18% for the test set. Figure 6 shows that the area under
the micro-average ROC curve (micro-AUC) was 0.98 for the
training set and 0.93 for the test set. Table 3 shows results of
FIGURE 5 | Workflow integrating all slices to predict the final diagnosis.
FIGURE 6 | The ROC curves for predicting different classes of tumors using our proposed method.
June 2021 | Volume 11 | Article 632104
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different training strategy for the single MR slice. For (a-c), the
model was trained with single-modality image series. Pairs of MR
series were integrated into the different image channels for
training the model in (d-f), and all three MR series were used
for the image channels in (g). The accuracy of the model when
trained using single-modality image series in the channels was
0.706 (T1-weighted), 0.739 (CE-T1-weighted), and 0.707 (T2-
weighted). Using pairs of image series boost the accuracy
(Table 3). The use of all three image series (T1-weighted, CE-
T1-weighted, T2-weighted) and the parotid gland contour
images in the channels yields the best performance.

Details of the results for the single MR slice prediction are
shown in Table 4. Our model has good performance in
distinguishing images that did and did not contain lesions and
achieves an accuracy of 0.882 in identifying benign from
malignant tumors. The accuracy in distinguishing pleomorphic
adenoma and Warthin tumors among benign tumors was 63.4%.

Figure 7 shows the confusion matrix of our proposed
prediction model for individual slices. Each element (x, y) in
the confusion matrix represents the number of samples with true
class x that was classified as being in class y. The overall accuracy
was 81.45%. The accuracy for the first class was perfect, as all 89
cases were correctly classified. In identifying benign tumor cases,
sixteen cases (28%) and eighteen cases (50%) of pleomorphic
adenomas and Warthin tumors, respectively, were misclassified.
The accuracy in predicting malignant tumors was 81.72%.

Table 5 shows the results from diagnosing twenty-one
patients in the test set (8 with pleomorphic adenomas, 5 with
Warthin tumors, and 8 with malignant tumors) by using the
decision tree method (Figure 5). Six (75%) and three patients
(60%) were correctly classified as pleomorphic adenoma and
Warthin tumor, respectively. Only one patient in the benign
tumor class was misidentified, and all eight patients with
malignant tumors were correctly predicted.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION
In this study, we developed a model to predict the type of parotid
gland tumor. The results show that our model can identify the type
of parotid gland tumor at the slice level. Experiments show that
using multichannel images as the input can improve the model’s
ability to identify tumor features. The model can thus assist doctors
in quickly determining tumor classifications in clinical practice.
Using artificial intelligence modeling methods, the accuracy in
predicting benign and malignant parotid tumors can be further
improved, the prognosis can be evaluated, and a reasonable
diagnosis and treatment plan can be formulated for patients.

Pathological analysis takes time and is expensive, resulting in a
heavy financial and psychological burden for the patient (33). The
main advantage of adopting deep learning into the prediction of
the type of parotid gland tumor is that the deep-learning method
can inform the physicist which patient may have a tumor or
cancer faster than pathological analysis (34). With the use of
deep-learning models, the patient’s condition could be narrowed
and locked into benign or malignant type. This method may be
useful for improving the efficiency of routine clinical practice and
saving time in patient treatment.

In MR image preprocessing, due to the limited size of the
image itself, we compared the performance between the
multichannel images and single-channel images as the network
input. Each dataset was trained with the same strategy, and the
final average accuracy was 71.7% for single-channel input and
75.8% for double-channel input, which were 10.5% and 6.4%
lower, respectively, than our proposed method. The neural
network can extract features from different MR series, so we
hypothesize that the use of multiple channels may boost model
performance in diagnosing the type of parotid gland tumor; the
obtained experimental results show that the performance of the
model is effective. From Table 3, as the number of channels and
integrated MR series increases, the accuracy of the model also
gradually increases.

In training the model, we chose the current prevalent
ResNet18 network as the backbone. The residual blocks
prevent disappearance of the gradient to minimize the effects
of the degradation problem after many iterations (35, 36). In our
practice, we made some modifications to ResNet18 to adapt it to
our classification task.

It should be noted that the segmentation of the tumor and
parotid gland had to be performed manually by a physician, and
the last prediction step involved a simple decision tree. In the
future, these steps could also be performed by the deep learning-
based model (autosegmentation of the tumor and parotid gland
ROIs and integration of all patient slices to predict the tumor
type by using a neural network).
TABLE 3 | Comparison of the accuracy for different channel compositions in
asingle MR slice.

Input image modality accuracy

(a) T1-weighted 0.706
(b) CE-T1-weighted 0.739
(c) T2-weighted 0.707
(d) T1-weighted, CE-T1-weighted 0.702
(e) T1-weighted, T2-weighted 0.798
(f) CE-T1-weighted, T2-weighted 0.776
(g) T1-weighted, CE-T1-weighted, T2-weighted

(proposed)
0.822
(a), (b), and (c) use only a single series to train the model; (d), (e), and (f) use two types of
MRI series for training; finally, the model (g) was trained by the proposed method using all
three MRI series in the image channels.
TABLE 4 | Parotid gland tumor classification results for different types of tumors in a single MR slice.

Types of tumor Accuracy [95% CI] Sensitivity [95% CI] Specificity [95% CI]

Benign vs malignant 0.882 [0.827, 0.921] 0.946 [0.873, 0.980] 0.817 [0.721,0.887]
Pleomorphic vs Warthin tumor 0.634 [0.533, 0.725] 0.695 [0.560,0.805] 0.529 [0.354,0.698]
Without lesion vs with lesion 1 [0.986, 1] 1 [0.948,1] 1 [0.975,1]
June 2021 | Volum
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The final model showed good performance in predicting
pleomorphic adenoma and Warthin tumors. The prediction result
forWarthin tumors seemed to be worse than that of the other classes,
as fourteen cases (77.8%) of Warthin tumors were misidentified as
being pleomorphic adenomas.We consider two reasons for this. First,
our dataset was uneven, as the number of Warthin tumors was too
low; therefore, themodel performance in distinguishing pleomorphic
adenomas and Warthin tumors was worse than that in identifying
benign from malignant tumors. Second, benign tumors may share
certain features that makes it difficult to distinguish the two types. In
the future, a specificmodel for predictingdifferent benign tumor types
will be generated that may outperform the current model.
Consequently, here we proposed a script that could can accurately
distinguish between benign and malignant tumors.

There were some limitations in this study. First, we did not
validate our model with an external dataset, which could have
Frontiers in Oncology | www.frontiersin.org 8
been valuable in demonstrating the reliable performance of the
model. Second,we combined three typesofMRI series (T1W,T2W,
CE-T1W). During routine diagnostics, some series may not be
acquired. Third,weproved the feasibility of usingmultiple channels
to predict the type of tumor; however, the performance between
benign tumors was not sufficiently precise. Furthermore, our data
did not include examples of three other classes of parotid gland
tumors. Given the lack of data on these other three classes of tumor,
this study merely explored the feasibility of the above methods for
the three classes with sufficient data.

In the future, larger-scale, multicenter studies are required for
full validation of the model. We will enroll more patients in our
study to train the model for diagnosing all six classes of parotid
gland cancer.
CONCLUSION

In this study, we proposed a novel method combining clinical
experience and a deep-learning method to diagnose parotid
gland tumors. We proved the feasibility of the method, trained
the model for predicting tumor types, and developed a script to
analyze the final prediction. We propose that the results of this
study will help physicians diagnose tumor types in patients
faster. It can improve the effectiveness of routine clinical
practice for these tumors. In the future, this model could be
FIGURE 7 | The confusion matrix for the four classifications: free (no tumor), pleomorphic adenoma, Warthin tumor, and malignant tumor.
TABLE 5 | Accuracy of the decision-tree script in performing integrated
prediction with the test set.

Tumor type Number of patients Number of correctly
predicted patients

Pleomorphic adenoma 8 6
Warthin tumor 5 3
Benign tumor 13 12
Malignant tumor 8 8
June 2021 | Volume 11 | Article 632104
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used to assist young doctors in preventing misdiagnoses and
other mistakes that could be made from working long hours.
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