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Glioblastoma (GBM) is a group of intracranial neoplasms with intra-tumoral heterogeneity.
RNA N6-methyladenosine (m6A) methylation modification reportedly plays roles in
immune response. The relationship between the m6A modification pattern and immune
cell infiltration in GBM remains unknown. Utilizing expression data of GBM patients, we
thoroughly explored the potential m6A modification pattern and m6A-related signatures
based on 21 regulators. Thereafter, the m6A methylation modification-based prognostic
assessment pipeline (MPAP) was constructed to quantitatively assess GBM patients’
clinical prognosis combining the Robustness and LASSO regression. Single-sample
gene-set enrichment analysis (ssGSEA) was used to estimate the specific immune cell
infiltration level. We identified two diverse clusters with diverse m6A modification
characteristics. Based on differentially expressed genes (DEGs) within two clusters,
m6A-related signatures were identified to establish the MPAP, which can be used to
quantitatively forecast the prognosis of GBM patients. In addition, the relationship
between 21 m6A regulators and specific immune cell infiltration was demonstrated in
our study and the m6A regulator ELAVL1 was determined to play an important role in the
anticancer response to PD-L1 therapy. Our findings indicated the relationship between
m6A methylation modification patterns and tumor microenvironment immune cell
infiltration, through which we could comprehensively understand resistance to multiple
therapies in GBM, as well as accomplish precise risk stratification according to m6A-
related signatures.

Keywords: glioblastoma, m6A, immune infiltration, immunotherapy, prognosis
INTRODUCTION

Glioblastoma (GBM) is the most common lethal neoplasm of the central nervous system,
accounting for approximately half of primary brain tumors and almost 60% of all types of
gliomas (1). Even after complete surgical removal combined with adjuvant therapy, for example
radiotherapy, chemotherapy, and targeted therapy, its prognosis remains notably poor with an
extremely low 5-year survival rate of approximately 5% (1–3). In addition, GBM patients and
families suffer a heavy burden due to progressive neurological deficits and decreasing quality of life
February 2021 | Volume 11 | Article 6329341
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(4). Despite the killing effect of systemic therapy after complete
resection, infiltrating cancer cells can often escape, resulting in
tumor recurrence, progression, and even death (5). Recent
advances in precision oncology, immunology, and other
disciplines have uncovered multiple experimental therapies,
such as immunotherapy, gene therapy, and novel drug-delivery
technologies, which are emerging as powerful tools to solve the
complicated GBM treatment difficulties, including low
permeability of the blood-brain barrier, complex tumor
signaling pathways, and the absence of specific biomarkers (6).
Since multimodality therapy heralds promise in achieving
durable and broad anticancer responses, it is urgent to
establish a reliable tumor classification and prognosis model
for cancer treatment strategy planning.

Represented by immune checkpoint inhibitors (ICIs),
Chimeric Antigen Receptor T-Cell immunotherapy (CAR-T),
cancer vaccines, and oncolytic viruses, immunotherapy produces
sustained killing of cancer cells by activating the patients’ own
immune system. Since these immunotherapies reportedly
produce durable effects on several cancers, these methods have
also been applied to primary intracranial malignancies, including
newly diagnosed and recurrent glioblastoma (7, 8). The existence
of the blood-brain barrier (BBB) and tumor microenvironment
(TME) prevents the immune system’s continuous and effective
response on intraparenchymal lesions, which limits the
application on CNS tumors, resulting in only a specific
subgroup of glioma patients benefitting from this treatment (9,
10). Recent studies regarding the tumor microenvironment have
challenged the traditional cognition that tumor tissue is
composed of pure tumor cells (11). It holds that the core
tumor cells are surrounded by a complex microenvironment,
which consists of multiple components, such as newborn blood
vessels, multiple cell factors, extracellular matrix (ECM),
fibroblasts, and immune cells. Immune cells infiltrating the
TME were confirmed to be predictive to patients’ clinical
outcomes and have a critical role on the immune response
affecting the efficacy of immunotherapy, indicating that
identifying the infiltrating pattern of immune cells in TME is
of great significance to estimate the prognosis of GBM patients
and assess the value of various therapies (12, 13).

Recently, it was reported that the epigenetic modification of
RNA ha s a po t en t i a l s p e c ifi c d ep end en c e w i t h
microenvironment infiltrating immune cells, suggesting that
elucidating the epigenetic characteristics of GBM can provide a
comprehensive basis for immunotherapy (14). Among over 150
RNA modifications, N6-methyladenosine (m6A) RNA
methylation is the most dominant form of epigenetic
regulation, occupying approximately 0.3% of total adenosine
residues (15–17). Three types of distinct m6A regulatory
factors called “writers”, “erasers”, and “readers”, respectively,
dynamically regulate the process of RNA translation,
degradation, and nuclear export by methyltransferases,
demethylases, and binding proteins, separately (18). In total, 21
regulators participate in the m6A RNA methylation process,
among which RBM15, ZC3H13, METTL3, METTL14, WTAP,
and KIAA1429 represent the methyltransferases, while FTO and
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ALKBH5 catalyze the demethylation process. The remaining
regulators, such as YTHDF1/2/3, are a group of RNA-binding
proteins identifying specific m6A methylation regions to regulate
downstream translation processes (19, 20). Although previous
studies suggested YTHDF family have the role of enhancing
translation, mRNA degradation, simultaneously accelerating
translation and mRNA degradation respectively through
binding different m6A-modified region (21–26), a novel model
of YTHDF proteins shows that they bind the same mRNA and
co-mediate mRNA degradation and cellular differentiation (27).
A growing number of studies suggested that m6A regulators
participate in multiple biological processes during tumor
progression, thus elucidating the relationship between m6A
regulators and tumor microenvironment infiltrating immune
cells can assess GBM patients’ anticancer response to
immunotherapy (28–30).

Traditional bulk sequencing provides genetic information at
the resolution of individual samples, thus there is a limitation
whereby it cannot identify specific cells in the given tissue.
Hence, single-cell RNA sequencing (scRNA-seq) emerged as a
practical tool to thoroughly distinguish each cell cluster,
including immune cells in normal and tumor tissue (31). Due
to the expensive sequencing costs, scRNA-seq cannot easily
translate into clinical setting, and is primarily used for
laboratory research only. In order to efficiently estimate
immune cell infiltration level, we applied a relative quantitative
algorithm based on single-sample gene-set analysis (ssGSEA),
which can utilize traditional bulk expression profile data to
determine the relative abundance of 23 immune cells in tumor
tissue (32, 33). Additionally, by analyzing the correlation among
expression patterns of 21 m6A methylation regulators, we
established the m6A methylation-based prognostic assessment
pipeline (MPAP) to calculate GBM patients’ m6A modification
score (MMS). According to the MMS, we can further predict the
clinical outcomes of GBM patients. Using the MPAP, we can
determine m6A modification patterns in disease tissue by using
only conventional bulk transcriptome data, which provides novel
perspectives of GBM in an efficient and inexpensive way.
MATERIALS AND METHODS

Patient Selection and Data Preprocessing
From Gliovis (gliovis.bioinfo.cnio.es), a published data
visualization web tool for brain tumor expression profile data
uploaded on Gene-Expression Omnibus (GEO) and the Cancer
Genome Atlas (TCGA) (34), six glioblastoma datasets (Donson
et al, n = 21; Ducray et al, n = 48; Gravendeel et al, n = 163;
Kamoun et al, n = 19; Murat et al, n = 84; Rembrandt et al, n =
209); (tumor = 495; normal = 49) and corresponding clinical data
were obtained for downstream analysis, which was sequenced
using Affymetrix expression arrays (HG-U133_Plus_2, HG-
U133A, HG_U95Av2, and HuGene-1_0-st). Before acquiring
the expression data, the data had undergone robust multi-array
average normalization, followed by quantile normalization using
R package “affy.” The median of genes with multiple probe sets
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was selected as the final expression value. To eliminate the batch
effect produced not by biological differences but by technical
biases, we adopted the “Combat” function in the sva package
based on the classical Bayesian algorithm. In addition, somatic
datasets for glioblastoma and low-grade glioma were obtained
from TCGA and Copy Number Variation (CNV) data was
downloaded from the UCSC Xena website (https://xena.ucsc.
edu/).

M6A Regulators Clustering
To further explore the regulation mode of m6A regulators, we
extracted expression profiles of 21 m6A regulators from
integrated GBM microarray datasets. Eight methylases (METTL3/
14, RBM15/15B, WTAP, KIAA1429, CBLL1, ZC3H13), two
demethylases (ALKBH5, FTO), and 11 RNA binding
proteins (YTHDC1/2, YTHDF1/2/3, IGF2BP1, HNRNPA2B1,
HNRNPC, FMR1, LRPPRC, ELAVL1) were included for
unsupervised clustering analysis. Thereafter, we utilized the
ConsensusClusterPlus package to run an unsupervised consensus
clustering one thousand times to divide GBM patients into stable
subgroups based on different m6A modification patterns (35). The
R package of ConsensusClusterPlus was used to classify patients
with qualitatively different m6A modification patterns based on the
expression of 21 m6A regulators, and two distinct modification
patterns were eventually identified using unsupervised clustering,
including 233 cases in pattern A and 262 cases in pattern B. We
termed these patterns as m6A cluster A-B, respectively.
Additionally, we conducted a principle component analysis
(PCA) of 21 regulators of GBM expression data to explore
different m6A modification patterns between tumor and normal
tissue, as well as each GBM cluster based on consensus clustering.

Assessment of Immune Cell Infiltration
To estimate immune cell infiltration level, we applied single-
sample gene-set enrichment analysis (ssGSEA) using traditional
microarray expression data (36). To identify multiple immune
cells using ssGSEA, a specific gene set, including gene expression
features of 23 immune cells, was employed (32, 33). We obtained
an enrichment score for each sample, representing the relative
infiltration level of immune cells, using ssGSEA.

Gene Set Variation Analysis (GSVA) and
GO/KEGG Annotation
We downloaded KEGG pathway gene sets, named C2 collection,
from the molecular signature database (MsigDB) (https://www.
gsea-msigdb.org/gsea/msigdb) for GSVA inputting.29 Next, we
performed GSVA using R package “GSVA” on each subgroup to
compare relative enrichment level of immune-related KEGG
pathways (37). Furthermore, differentially expressed genes
(DEGs) among subgroups of distinct m6A modification
patterns were utilized for GO and KEGG enrichment analysis
based on R package “ClusterProfi l er” , which uses
hypergeometric distribution tests to annotate DEGs (38).

Differential Expression Analysis
We performed a differential expression analysis among
subgroups with different m6A modification patterns based on
Frontiers in Oncology | www.frontiersin.org 3
R package “limma”, which implemented an empirical Bayesian
algorithm to identify DEGs (39). We considered genes with
adjusted p values < 0.05 as statistically different DEGs and
utilized these for downstream analysis.

Collection of Expression Data Matching
Immunotherapy Response Information
In order to investigate potential predictive values of m6A
modifications for immunotherapy response in GBM patients,
we comprehensively searched expression data matching
anticancer responses for PD-L1 treatment. A urothelial
cancer cohort treated with anti-PD-L1 antibody was finally
included for downstream analysis (40). The entire expression
data and matching PD-L1 response information can be wholly
obtained from R package IMvigor210CoreBiologies. For
raw expression data in the R package, we adopted the
function filterNvoom to normalize and filter out genes with
low reads.

Construction and Validation of MPAP
Using DEGs obtained from subgroups with distinct m6A
signatures, we aimed to construct a scoring system in order to
estimate GBM patients’ prognosis. Firstly, R package rbsurv, a
modeling tool to produce numerous Cox models and then select
the optimum one, was applied to filter the survival-related genes
for the purpose of enhancing the robustness using cross-
validation methods. Next, we utilized the least absolute
shrinkage and selection operator (LASSO) regression, an
efficient regression approach for high-dimensional data with
large correlated covariates (41–43), to establish our m6A
methylation-based immune cell infiltration assessment pipeline
(MPAP). Combining Robustness and LASSO regression, we
established a MPAP based on 13 genes and its correlation
coefficients. Simultaneously, our MPAP was also validated in
another GBM cohort. Then, in univariate and multivariate
analysis, m6A modification scores (MMS) obtained from the
MPAP were proven to be independent prognostic factors in both
training and verification sets (Table 1, Figure 5).

Statistical Analysis
R software (version 3.6.0) was used for all statistical analysis and
p-values < 0.05 were considered statistically significant.
Robustness regression was conducted to select the optimum
Cox model and LASSO regression was subsequently performed
to construct a predictive model. Thereafter, we utilized the
Kaplan-Meier (K-M) approach to establish survival curves and
log-rank tests to calculate p-values between each group. To find
the optimum cut-off value of each dataset, we adopted R package
survminer, which examined the efficiency of all potential cut-off
points. Applying receiver operating characteristic (ROC) curves,
we estimated the specificity and sensitivity of the predictive
model, which was implemented using R package pROC.
Correlation coefficients among 21 m6A regulators were
calculated using the Spearman correlation analysis and
transformed by -log10. In the training set and validation set,
we used multivariate analysis and calculated the hazard ratio
February 2021 | Volume 11 | Article 632934
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(HR) to compare the predictive efficacy between the clinical
information and our predictive model.
RESULTS

Somatic Mutation Frequency Landscape
of 21 m6A Methylation Regulators
In our research, a total of 21 m6A RNAmethylation regulators was
determined, including eight methyltransferases (writer), two
demethylases (eraser), and 11 RNA binding proteins (reader). To
illustrate the process by which we constructed the MPAP and what
datasets were applied in our study, a schematic workflow was
developed dividing the overall work into four steps broadly (Figure
1A). In Figure 1B, we summarized the somatic mutation frequency
difference of 21 regulators between low-grade glioma (LGG) and
GBM. In 21 regulators, IGF2BP1, RBM15B, YTHDF2, and FTO
were significantly higher in GBM than LGG containing one writer
(RBM15B), one eraser (FTO), and two readers (YTHDF2,
IGF2BP1). Despite the non-significant statistical difference
between LGG and GBM among the remaining 17 regulators, the
somatic mutation frequency in GBM on m6A regulators was
considered to be more than in LGG, due to the larger sample
size of LGG (508) than GBM (495), except HNRNPC, FMR1, and
WTAP, which demonstrated that the somatic mutation frequency
of GBM patients among m6A regulators tended to be higher than
that of LGG patients. This data implies that higher somatic
mutation frequency of m6A regulators may contribute to the
malignant degree of gliomas. The somatic mutation frequency of
21 m6A regulators was depicted in GBM samples. Totally, in 495
GBM samples, 41 obtained alterations accounting for 10.43%.
IGF2BP1 displayed the highest mutation rate, while WTAP and
HNRNPC did not display any mutation (Figure 1C). Next, we
further demonstrated the co-occurrence of 21 regulators, among
which YTHDC1/2 and ZC3H13, YTHDC1/2 and LRPPRC,
YTHDC1/2 and YTHDF3, YTHDC1 and YTHDC2, YTHDF3
and ZC3H13, YTHDF3 and LRPPRC, YTHDF2 and FMR1, and
YTHDC2 and METTL14 exhibited significant correlation (Figure
1D). The composition of 495 GBM samples’ base conversion is
shown in Figure 1E. Additionally, based on the transcriptome
Frontiers in Oncology | www.frontiersin.org 4
expression level of 21 m6A regulators, GBM samples can be entirely
discriminated against normal tissue using PCA analysis
(Supplemental Figure 1).

Expression Pattern Based on 21 m6A
Methylation Modification Regulators
To explore m6A modification patterns in GBM, we included
several GEO datasets and matching clinical information for
integrative analysis. Applying copy number variation (CNV)
alteration analysis, we observed widespread CNV alteration on
21 regulators, among which amplification and deletion vary.
CBLL1, HNRNPA2B1, ELAVL1, and YTHDF1 displayed the
prevalent CNV amplification, while ZC3H13, HNRNPC,
METTL3, and WTAP displayed the opposite (Figure 2A). We
further analyzed the transcriptome expression level of 21 m6A
regulators in GBM patients. Results indicate that regulators with
CNV amplification tend to exhibit higher mRNA expression
levels compared to normal tissue in GBM patients, and vice
versa, suggesting that the expression levels of m6A regulators are
predominantly influenced by CNV alterations (Figure 2B).
Nevertheless, the transcriptome expression level of some
specific regulators including HNRNPC, KIAA1429, METTL14,
METTL3, WTAP, is opposite to its CNV alterations. For
example, HNRNPC and METTL3 with CNV deletion in GBM
tissue have a relatively higher transcriptome expression level
than that in tumor tissue. These opposite trends could be
a t t r ibu ted to t ranscr ip t iona l event s media t ed by
transcriptional factors and epigenetic changes like histone
modifications, DNA methylations, which need to be further
elucidated in GBM progression. Adopting R package
ConsensusClusterPlus, we divided 495 GBM patients into two
clusters with distinct m6A modification patterns according to
transcriptome expression levels of 21 m6A regulators
(Supplemental Figures 2A–C). In addition, the heatmap of 21
m6A regulators, classified by the abovementioned two clusters,
demonstrates the relationship between expression level and
matching clinical information, including age, clinical status,
CIMP, and histology subgroup. Notably, GBM patients in
m6A cluster B are more likely to express CIMP. Regarding the
histology subgroup GBM patients in m6A cluster A tend to be in
TABLE 1 | Univariate cox proportional hazards analysis of clinical parameters and m6A risk score level of glioblastoma (GBM) patients in the training set and
validation set.

Variables Training set Validation set

Univariate analysis Univariate analysis

HR(95%CI) P-value HR(95%CI) P-value

Age group Younger vs old 0.41(0.286-0.61) 6.7e-06 1.24(0.87-1.76) 0.217
CIMP status G-CIMP vs NON 1.63(0.96- 2.78) 0.068 / /
Gender Male vs Female 1.04(0.78- 1.40) 0.764 0.91(0.63-1.32) 0.642
Subtype NE+PE vs CL+ME 1.15(0.80- 1.64) 0.437 / /
m6Arisk group Low vs High 0.48(0.34- 0.70) 8.67e-05 0.53 (0.32-0.86) 0.0103
Radiotherapy Yes vs No / / 0.51(0.26-1.02) 0.05
Chemotherapy Yes vs No / / 0.59(0.30-1.18) 0.139
IDH status Wildtype vs Mutant / / 1.45(0.83-2.53) 0.190
1p19q status Non vs Codel / / 1.20(0.48-2.97) 0.690
Feb
ruary 2021 | Volume 11 | Article
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classical and mesenchymal subtype while patients in m6A
cluster B tend to be in Neural and Proneuronal subtype. And
there is no significant difference in the age distribution between
two m6A clusters (Figure 2C). PCA analysis according to
transcriptional expression level of m6A regulators also
Frontiers in Oncology | www.frontiersin.org 5
completely distinguished between two clusters, implying two
m6A clusters exist distinct expression profiles of m6A regulators
(Figure 2D). Regulators in the same functional module tend to
express similarly. Besides, there is also a significant correlation
between methyltransferases and demethylases. For example,
A

B C

D E

FIGURE 1 | Somatic mutation frequency landscape of 21 m6A methylation modification regulators in GBM. (A) Schematic workflow for the construction of MPAP.
(B) Comparison of somatic mutation frequency of 21 m6A regulators between LGG (n=508) and GBM (n=393). The asterisk means the p-value <0.05. (C) The
somatic mutation frequency of 21 m6A regulators in 393 GBM patients, in which each column represents a sample. The top bar chart demonstrates tumor mutation
burden in each sample. The number on the right shows the somatic mutation frequency of each m6A regulator. The bar chart on the right shows the proportion of
mutation types in each regulator. In the middle grid chart, different colors in each lattice represent different types of mutations. (D) Correlation of 21 m6A regulators
between each other. (E) The stacked chart indicates the composition of 393 GBM samples’ base conversion.
February 2021 | Volume 11 | Article 632934
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among subgroups with higher expression levels of eraser
ALKBH5, most writers express the same trend, including
METTL14, RBM15, RBM15B, WTAP, CBLL1, and ZC3H13
(Figure 3A). Simultaneously, regarding samples with higher
expression of FTO (another eraser), we observe a significantly
higher level of writers, implying that writers and erasers display
Frontiers in Oncology | www.frontiersin.org 6
a potential interactive effect (Figure 3B). In total, 2 m6A clusters
with potentially different m6A modification pattern were
determined within the 495 GBM patients based on the
transcriptome expression level of 21 m6A regulators. m6A
cluster A was characterized by the relatively low expression of
FTO, KIAA1429, ZC3H13, FMR1, LRPPRC, IGF2BP1,
A B

C

D

FIGURE 2 | Expression pattern of 21 m6A modification regulators in GBM. (A) The copy number variation (CNV) percentage of m6A regulators in GBM. The red dot
represents the CNV amplification and the blue dot represents the CNV deletion. (B) The expression value of each m6Aregulators between tumor and normal sample.
(C) The heatmap indicating the expression pattern of m6A regulators between 2 m6A modification clusters, which matched the clinical information, including age,
status, CIMP, and histology subtype. (D) Principal component analysis (PCA) of m6A regulators to differentiate 2 m6A clusters.
February 2021 | Volume 11 | Article 632934
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YTHDC1 and high expression of the remaining regulators,
while m6A cluster B showed an opposite trend. Although no
significant difference in the age distribution was identified, other
corresponding clinical information including CIMP and
Frontiers in Oncology | www.frontiersin.org 7
histology subgroup expressed distinct between 2 m6A clusters,
indicating that 2 m6A clusters with different expression pattern
of 21 regulators could have potential mechanisms to mediate
these adverse clinical features.
A B

C D

E F

FIGURE 3 | The relationship between m6A modification genes and specific immune cell infiltration. (A) The expression level of eraser ALKBH5 between high and low
expression groups of writers, including METTL3/14, RBM 15/15B, WTAP, KIAA1429, CBLL1, and ZC3H13. (B) The same as A in eraser FTO. (C) Correlation
between 23 immune cells infiltration level and 21 m6A modification regulators. (D) The enrichment level of immune related pathways in KEGG between high and low
expression groups of ELAVL1. (E, F) The response percentage for PD-L1 treatment in high and low expression groups of ELAVL1. SD, stable disease; PD,
progressive disease; CR, complete response; PR, partial response.
February 2021 | Volume 11 | Article 632934
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Immune Cell Infiltration Features in
Different m6A Modification Modules
Spearman correlation of infiltration levels between 23 immune
cells and 21 m6A regulators demonstrated that expression level
of m6Aregulators and TME infiltration closely related to each
other. It is suggested that clarifying expression modes of m6A
regulators is of great significance for forecasting anticancer
immune responses, which could be a powerful tool to indicate
the efficacy of immunotherapies, such as PD-L1 treatment in
GBM patients (Figure 3C). We also found that the expression
level of the regulator ELAVL1 negatively correlated with the
infiltration level of most immune cells, except only type 2 T
helper cells and activated CD4+ T cells. Utilizing GSVA to
compare immune-related KEGG pathway enrichment degree
between subgroups expressing high and low ELAVL1 levels, it
was demonstrated that subgroups with high ELAVL1 expression
tend to exhibit relatively low enrichment degrees in immune-
related pathways and vice versa (Figure 3D). Besides, infiltration
levels of 23 immune cells and the difference in expression of
MHC molecules, costimulatory molecules, and adhesion
molecules among subgroups with high and low ELAVL1 show
the same trend: the expression of ELAVL1 is negatively
correlated to the infiltration level of most immune cells and
above-mentioned immune-related modules (Supplemental
Figures 3A, B).

The results indicate that m6A regulator ELAVL1 is a potential
predictive factor of immune response, which could be applied to
forecasting the anticancer efficacy of immunotherapy. To
elucidate the relationship between expression level of ELAVL1
and response to immunotherapy, we included a urothelial cancer
cohort treated with anti-PD-L1 antibody (40). The Kaplan-Meier
survival curve between two group classified by ELAVL1
expression did not differ significantly (p-value = 0.38,
Supplemental Figure 3C). In addition, Figures 3E, F
demonstrate the proportion of patients with response to PD-L1
blockade immunotherapy in low or high ELAVL1 groups,
indicating that high ELAVL1 expression correlates with
relative efficient responses to PD-L1 treatment. KEGG and GO
enrichment analysis for DEGs obtained from two clusters with
distinct m6A modification patterns indicates that several
immune-related KEGG pathways and GO annotation are
significantly upregulated, such as neutrophil-mediated
immunity and neutrophil activation involved in immune
responses, which also supports the results indicating that m6A
modification patterns are closely correlated to immune response
(Figures 4A, B).

Establishment and Validation of m6A
Methylation-Based Prognostic
Assessment Pipeline (MPAP)
To further explore the potential prognostic value of m6A
methylation modifications, we constructed the MPAP, which
could be used to assess GBM patients’ prognosis. Using DEGs
obtained from two clusters with different m6A modification
patterns for Robustness regression, we chose the optimum Cox
modeling gene for the construction of our pipeline. Thereafter,
Frontiers in Oncology | www.frontiersin.org 8
LASSO regression was applied for the establishment of the
MPAP, during which 13 genes and the correlation coefficients
were obtained (Supplemental Figures 4A, B). According to the
expression value of 13 genes and the correlation coefficients, we
computed the m6A modification score to divide GBM patients
into groups with distinct clinical outcomes (Figure 4D). The
overall survival of the high-risk m6A modification group is
significantly shorter than that of the low-risk group with a log-
ranked p-value < 0.0001. The expression levels of 13 genes
(AEBP1, ARL4C, ASL, CHST2, FKBP9, GPI, GYS1, IGFBP2,
LDHA, LGALS3, SLC2A10, TSTD1, YKT6) are depicted in the
heatmap (Figure 4C).

Simultaneously, for the purpose of testing the robustness of
the MPAP, we utilized another GBM cohort from CGGA for
prognostic prediction as a validation dataset. Similarly, GBM
patients in the validation set were divided into two m6A
modification pattern-based risk groups according to MMS
obtained using the MPAP. The expression levels of 13 genes
are also depicted in the heatmap (Figure 4F). The Kaplan-Meier
curve depicted by matching clinical outcomes reveals a similar
trend: the overall survival of the high-risk m6A modification
group is significantly shorter than that of the low-risk group (log-
ranked p-value = 0.00036), which confirms the robustness of our
model in a different GBM cohort (Figure 4G).

Furthermore, we depicted ROC curves of the predictive
model in the training and validation sets. The MPAP displays
satisfactory prediction sensitivity and specificity with the area
under the ROC curve measuring 0.720 and 0.622 in the training
and validation sets, respectively (Figures 4E, H). The
multivariate Cox regression analysis confirmed that the MPAP
was an independent prognostic predictor in GBM patients with a
log-ranked p-value <0.001 (Figure 5A), and the same result was
obtained in the validation set (Figure 5B). To reveal the
correlation between 21 m6A regulators and 13 signatures in
the MPAP, we depicted a network diagram indicating that most
regulators and signatures are regulated positively by each other,
except TSTD1 and KIAA1429 (Figure 6A). In addition, a
nomogram was established to quantitatively forecast the
clinical outcomes matching other clinical predictors, which
indicates that the MMS was the most valuable predictor
(Figure 6B). The calibration plot simultaneously demonstrated
superior clinical predictive efficiency (Figure 6C). In ROC curve,
area under the curve (AUC) at 1 year, 3 year and 5 year were
0.704, 0.803 and 0.87 respectively, which indicates that the
nomogram have a superior sensitivity and specificity in
predicting the probability of survival (Figure 6D).
DISCUSSION

GBM is a group of heterogeneous intracranial neoplasms with
distinct histopathological and molecular biological characteristics,
resulting in different subsets of patients benefitting from various
treatment strategies, despite advancement in multiple therapies for
malignant gliomas, including checkpoint inhibitors and targeted
therapies et al. (6, 43, 44). To solve this problem, it is urgent to
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FIGURE 4 | Signature patterns of expression level and biological characteristics of each risk group separated by MPAP. (A, B) Bubble plots showing the GO and
KEGG annotation of DEGs obtained from two m6A modification clusters. (C, D) Heatmaps demonstrating the expression level of 13 m6AA related signatures and
the matched clinical information in the training dataset and validation dataset. (E, F) Kaplan-Meier survival curves of risk groups separated by MPAP in the training
dataset and validation dataset. (G, H) ROC curves of the MPAP in the training set and validation set.
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establish a risk stratification method and classify GBM patients
into various risk groups with diverse anticancer responses to
various therapies. Although the classical approach for identifying
specific targets and assessing prognosis has made remarkable
achievements, such as immunohistochemistry (IHC) and
traditional histopathology, we require more comprehensive and
thorough tools to adapt the changing treatment strategies. Despite
its powerful efficiency in detecting potential therapeutic targets
and eliminating interference of intra-tumoral heterogeneity,
scRNA-seq cannot be applied to clinical settings due to the high
Frontiers in Oncology | www.frontiersin.org 10
costs of sequencing and is thus only used for laboratory research.
Recently, many studies have suggested that m6A methylation
modification influences multiple processes during cancer
progression, such as inflammation and specific cellular signaling
pathways (45). Therefore, applying next generation sequencing
(NGS) to explore m6A methylation modification patterns in GBM
will contribute to the classification of GBM patients for precision
medicine and individualized treatment.

Recently, mRNAm6Amethylation modification was reported
to have significant role in multiple immune-related biological
A

B

FIGURE 5 | The multivariate Cox regression analysis depicts log-ranked p-values of each factor to predict the prognosis in the training dataset and validation
dataset. (A) The forest plot shows the results of multivariate Cox regression analysis in the training dataset, in which the black squares represent the Hazard Ratio
(HR) and the whiskers around the squares represent the 95% confidence interval. The figures on the left side are the HR of each predictor while on the right side are
the p-value. (B) The same as A in the validation dataset. AIC, Akaike information criterion.
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process including innate and adaptive immune response,
immune cell homeostasis, immune recognition as well as anti-
tumor immunity (14, 46–48). Although various evidence
suggested single m6A regulator is related to individual type of
immune cell and specific aspect of immunity (48), integrated
analysis of 21 m6A regulators to determine its relationship with
Frontiers in Oncology | www.frontiersin.org 11
multiple immune cell infiltration has not been conducted in
GBM. Since substantial evidence demonstrated that some
mutational signature can be utilized to predict a poor T cell
infiltration, low survival rate and multiple systematic therapy
resistance in gliomas especially for PD-1 blockade (49),
comprehensive recognition of epigenetic modification mediated
February 2021 | Volume 11 | Article 632934
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FIGURE 6 | Construction of quantitative prediction nomogram based on methylation-based prognostic assessment pipeline (MPAP). (A) The network diagram
shows the interaction between 21 m6A regulators and 13 m6A related signatures. (B) A nomogram to quantitatively predict survival based on m6A modification score
(MMS), clinical, and molecular parameters. (C) Calibration curves of the nomogram demonstrates the accuracy of the predicted survival. (D) Receiver operating
characteristic (ROC) curves to estimate the performance of the predictive nomogram.
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immune cell infiltration feature in intracranial malignancies can
provide novel insights into risk stratification and clinical
therapeutic strategy. Hence, we identified 2 diverse m6A
methylation modification patterns in GBM patients with
distinct tumor microenvironment immune cell infiltration
utilizing 21 m6A modification regulators. However, the
concrete mechanism regarding how regulators influence
immune cell infiltration and proceed to regulator immune
responses requires further clarification. In addition, it is
important to elucidate the interaction and mechanism among
m6A regulators and to find hub regulators that could be adopted
for GBM treatment. Our research provides practical ideas for the
above-mentioned challenges. However, further research is
required to understand how m6A modification affects
immune response.

Increasing evidence suggested that m6A modification play an
extensive role in antitumoral drug resistance through various
mechanisms including drug transport and metabolism,
mutational drug targets, cellular damage repair etc (50). It was
also reported that targeting some specific m6A regulators can
substantially surmount drug resistance in several cancers (51–53).
Notably, previous study demonstrated that methylation
modification of MGMT promoter can lead to increased
chemotherapeutic effect in high grade gliomas (54, 55).
Therefore, identifying epigenetic modification related targets
will contribute to enhancing anticancer effect of systematic
treatment in GBM especially of immunotherapy. And
integration of multiple therapy and choosing the optimum
treatment strategy on the basis of advanced risk stratification
model may be the future direction for treating intracranial
malignancies. It was also confirmed that DEGs obtained from
differential expression analysis between two clusters with different
m6A methylation modification modes were closely related to
epigenetic and immune response-related KEGG pathways and
GO terms, for example, neutrophil-mediated immunity and
neutrophil activation involved in immune responses. We
considered these m6A modification related DEGs as key
signature genes in GBM, which could be utilized to detect
potential characteristics within intra-tumoral heterogeneity of
GBM, including immune cell infiltration. Thus, using these
m6A modification-related signature genes, the MPAP was
constructed to quantitatively assess m6A patterns in GBM.
Hence the MPAP could be used as a novel tool to relatively
assess GBM patients’ prognosis and guide clinical decision-
making. As the means of GBM therapy diversifies, formulating
treatment strategy based on prognostic models to guide precision
medicine will be a trend in the fields of cancer treatment (56, 57).

However, our study has a few limitations: retrospective
research displays statistical bias and the traditional bulk
sequence transcriptome data lack comprehensive exploration
for the intra-tumoral heterogeneity. Admittedly, there is urgent
demand for a prospective study to acquire a superior fit. Yet, we
have established a superior predictive model to quantitatively
assess GBM patients’ clinical outcomes based on m6A
modifications through multiple transcriptome data, at a
relatively low price that could be widely used.
Frontiers in Oncology | www.frontiersin.org 12
Additionally, although recent study had explored the
connect ion between tumor mutat ional burden and
immunotherapy response in gliomas (49), the influence of
specific gene for the efficacy of immunotherapy in GBM has
not been elucidated due to the small sample capacity in the
research on the effect of immunotherapy for GBM. Instead, we
applied a urothelial cancer cohort treated by PD-L1 blockade to
explore the connection between transcriptome expression
pattern and immunotherapy response and ELAVL1 was
determined to be a predictor for the efficacy of PD-L1
blockade. But that urothelial cancer cohort is different from
GBM in some respects, for example, tumor samples in that
cohort are metastases. And urothelial cancer is thought to be in a
totally different immune subtype from GBM (58), which will
affect the prediction value of ELAVL1 on immunotherapy. To
clarify these confusions, we further explore the correlation
between the expression level of 21 m6A regulators and
immune cells infiltration level in that urothelial cancer cohort
(Supplemental Figure 5). It was demonstrated that the
correlation between ELAVL1 and 23 immune cells infiltration
level in the urothelial cancer has a similar trend with that in GBM
cohort (Supplemental Figure 5, Figure 3C), which support our
conclusion to a certain extent. However, due to the heterogeneity
between urothelial cancer and GBM the prediction value of
ELAVL1 and its potential mechanism for immunotherapy still
needs to be further proved by large glioma cohort treated by PD-
1/L1 blockade.

To summarize, comprehensively studying the m6A
methylation modification patterns in GBM patients, two
diverse m6A phenotypes with distinct epigenetic modification
modes were identified to explore m6A modification-related
signatures. Using a quantitative method to assess the
infiltration level of 23 immune cells in transcriptome
expression data, we integrated these m6A regulated signature
genes for further analysis to determine the relationship between
immune responses and m6A modifications, which we could
apply to estimate anticancer responses to immunotherapies in
clinical practice. According to our results, m6A modification
regulator ELAVL1 was identified to potentially play a role in the
efficient prediction of PD-L1 treatment, while the effect of other
m6A regulators on specific treatment strategies were to be
determined. Considering the urgent demand for the
construction of a risk stratification and prognosis assessment
system in GBM patients to cautiously formulate treatment
management, we established the MPAP using the m6A-related
signature genes to assess the m6A modification level, by which
immune cell infiltration level can be identified and then be used
to predict the clinical outcomes for patients receiving
immunotherapy treatment. Furthermore, integrating other
clinical information, including CIMP and age, we constructed
a nomogram to precisely forecast GBM patients’ survival time, in
which the MMS obtained from MPAP was the leading predictor.
In short, our findings provided a comprehensive understanding
of m6A modifications in GBM and provided a powerful, high
quality tool at a low cost to quantitatively estimate GBM patients’
therapeutic response and clinical prognosis.
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CONCLUSIONS

In conclusion, by detecting distinct expression patterns of 21
m6A modification regulators in GBM, this study successfully
identified 13 m6A-related signatures and constructed the MPAP
combining the Robust and LASSO regression, which we could
employ to quantitively predict the prognosis of GBM patients.
Additionally, we also determined that m6A regulators are
correlated with specific immune cell infiltration levels.
Comprehensively exploring m6A modification patterns in
GBM will enhance our understanding of immune infiltration
features in order to better manage the treatment strategies and
improve clinical outcomes.
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Supplementary Figure 1 | Principle component analysis (PCA) of m6A
modification genes to differentiate normal and tumor tissue.

Supplementary Figure 2 | Consensus clustering of GBM patients’ m6A
modification regulators. (A)Consensus matrices of the GBM cohort for k (number of
clusters) = 2 dividing GBM patients into two clusters. (B) Empirical cumulative
distribution function (CDF) plot display consensus distributions for each k, which
suggests dividing the patients into 2 groups reach the maximum stability. (C) The
relative change area under CDF curve (y-axis) indicates the relative increase in
cluster stability, which means the optimal k=2.

Supplementary Figure 3 | (A) infiltration level of 23 immune cells between
groups with high and low ELAVL1. (B) Expression level of MHC molecules, co-
stimulatory molecules, and adhesion molecule between groups with high and low
ELAVL1. (C) Kaplan-Meier survival curves of groups with high and low ELAVL1
expression level.

Supplementary Figure 4 | (A) LASSO coefficient profiles of the m6A related
signatures. (B) Using 10-fold cross-validation to the optimal penalty parameter
lambda.

Supplementary Figure 5 | Correlation between 23 immune cells infiltration level
and 21 m6A modification regulators.
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