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Radiomics is the method of choice for investigating the association between cancer
imaging phenotype, cancer genotype and clinical outcome prediction in the era of
precision medicine. The fast dispersal of this new methodology has benefited from the
existing advances of the core technologies involved in radiomics workflow: image
acquisition, tumor segmentation, feature extraction and machine learning. However,
despite the rapidly increasing body of publications, there is no real clinical use of a
developed radiomics signature so far. Reasons are multifaceted. One of the major
challenges is the lack of reproducibility and generalizability of the reported radiomics
signatures (features and models). Sources of variation exist in each step of the workflow;
some are controllable or can be controlled to certain degrees, while others are
uncontrollable or even unknown. Insufficient transparency in reporting radiomics studies
further prevents translation of the developed radiomics signatures from the bench to the
bedside. This review article first addresses sources of variation, which is illustrated using
demonstrative examples. Then, it reviews a number of published studies and progresses
made to date in the investigation and improvement of feature reproducibility and model
performance. Lastly, it discusses potential strategies and practical considerations to
reduce feature variability and improve the quality of radiomics study. This review focuses
on CT image acquisition, tumor segmentation, quantitative feature extraction, and the
disease of lung cancer.

Keywords: radiomics, lung cancer, reproducibility, variability, CT acquisition, tumor segmentation, feature
extraction, quality control
INTRODUCTION

Radiomics refers to the determination of tumor imaging phenotypes by extracting and analyzing a
large number of quantitative image features, a.k.a. radiomics features (1–3). Unlike molecular- and
tissue-based analyses, radiomics strives to characterize differences in tumor phenotypes based on
non-invasive radiographic images that can be routinely obtained from clinical practice and clinical
trials. Radiomics can capture the heterogeneity of a whole tumor and tumor metastases in multiple
body sites and their surrounding tissues, and it can be used to monitor changes in tumor biology
(e.g., mutation status) over time. Thus, radiomics is promising to be capable of addressing key issues
across the continuum of cancer care.
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The hypothesis underpinning radiomics is that disease
processes, which produce histopathological and genetic
alterations, also manifest in characteristic phenotypes that can
be captured by radiographic images. Qualitative visual
interpretation of CT features has been used by radiologists in
making routine diagnoses for decades, such as lung nodules with
spiculated edges indicating malignancy and an enlarged tumor
size (diameter) post-therapy indicating a worse prognosis for the
treatment. However, the big moment for cancer imaging
phenotype was the 2007 article on the reconstruction of global
gene expression profiles of hepatocellular carcinoma (HCC)
using predefined imaging traits assessed qualitatively by
radiologists on contrast-enhanced CT (CECT) (4). A new
radiogenomic venous invasion scoring system, derived from
three imaging traits (internal arteries, hypodense halos, and
tumor-liver difference) on CECT in HCC, was reported to
serve as a noninvasive imaging biomarker for histological
microvascular invasion, a tissue biomarker associated with
early disease recurrence and poor overall survival (5). While
human eyes have an incredible ability to recognize both local and
global patterns, visual interpretations can be subjective and
prone to variation especially when evaluating subtle
differences. Radiomics can objectively discern clinically
relevant information that human eyes cannot even perceive.
Indeed, a fast-growing literature shows the great promise of
radiomics signatures (radiomics features and models) as a
“virtual biopsy” to assist in cancer diagnosis and prognosis,
treatment plan, patient stratification, and assessment of tumor
response to therapy. The current status of CT-based radiomics in
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lung cancer has been well summarized in a recent collection of
review articles [e.g., (6–17)].

Radiomics features are well defined, and some are even
intuitive (in line with expert radiologists’ visual interpretation).
Radiomics analysis is a favorable approach for studying tumor
imaging phenotypes because performing it requires a relatively
small number of patients to train models compared to
convolutional neural networks (CNNs), and sometimes it
yields explainable analysis results as well. However, multiple
sources of variation in every step of the radiomics workflow
create an intrinsic methodological weakness that has been
recognized since the earliest days of radiomics analysis (18, 19)
(Figure 1). For instance, radiomics features can be sensitive to
heterogeneous image acquisition settings (scanners, scanning
techniques, and reconstruction parameters). Unknown ground
truth of tumor boundaries can introduce uncertainty into
features derived from segmented tumors. Despite an explosive
increase in the radiomics literature, this research frequently fails
to adequately consider sources of variation and reports isolated
results not validated by replication in external data sets (20). The
resulting concerns about rigor and reproducibility slow the pace
of innovation in radiomics and limit its translational potential.

Recognizing the need to evaluate the scientific merit and
clinical utility of radiomics studies, a group of scientists proposed
a radiomics quality score (RQS) in 2017 (21) which evaluates a
set of essential components in the radiomics workflow, starting
with the quality of image protocol and ending with the
availability of open science and data. A maximum of 36
possible points is awarded by scoring each component’s
FIGURE 1 | Radiomics workflow, along with sources of variation and potential strategies to reduce feature variability.
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accordance to the suggested guidelines, with more important
aspects earning more points. While the RQS is not perfect, it does
establish a set of practices that can facilitate clinical translation of
radiomics research. It also highlights the weakness of the current
literature: the mean RQS scores of published radiomics studies
are low (<10 points) (22, 23), indicating inadequate
scientific quality.

The quality of radiomics studies has recently improved
thanks to community-wide efforts to explore and reduce
variability in medical imaging and to promote the translation
of quantitative imaging biomarkers into clinical practice and
clinical trials (24–27) (Figure 2). Figures 2A, B are drawn based
on a research team’s recent literature search for the CT-based
radiomics studies in lung cancer (6), which we supplemented
with studies published as of July, 2020 as well as information
about imaging parameters (slice thickness, reconstruction
kernel) and segmentation (inter-/intra-variability, software,
result supervised or not) (Table 1 in Supplementary
Material). Although previous imaging studies have shown the
effects of slice thickness and reconstruction kernel on computed
features, between ~5% and ~25% of radiomics studies prior to
2020 did not report their study imaging protocols (Figure 2A,
green color). Most of those who reported their imaging protocols
only included the slice thickness information (Figure 2A, blue
color). It is good to see that the trend of reporting both slice
thickness and reconstruction kernel increased from 10% in 2016
to 50% in 2020 (Figure 2A, pinkish-orange color). Nevertheless,
half of the radiomics studies still do not seem to have considered
the effects of reconstruction kernel on radiomics features,
especially texture features. The percentages of studies that
performed imaging test-retest and inter-/intra-segmentation
have been stable over the years, varying between ~20% - 40%
(Figure 2B, gray and yellow colors). All radiomics studies
published in 2019 and 2020 reported human supervision of
tumor segmentation (Figure 2B, green color), an important
Frontiers in Oncology | www.frontiersin.org 3
step to ensure the accuracy of segmentation, while only ~40%
studies did so in 2016.

A valid quantitative imaging biomarker must be informative,
or sensitive to underlying biology, as well as reproducible and
reliable across various image acquisition settings and
quantitative methods. It is essential to understand and regulate
the sources of variation to ensure that consistent high quality
images can be meaningfully analyzed and biological information
can be reliably extracted by advanced quantitative methods. This
article starts with image acquisition, then considers tumor
segmentation and feature extraction. Readers who are
interested in machine learning for radiomics are referred to
(10, 16, 17). From the point of view of image analysis, in each of
the following sections, it first illustrates how radiomics features
can be affected by various factors using demonstrative examples,
then reviews a number of published studies exploring sources of
variation and offering increased reproducibility of radiomics
features and models. Lastly, it discusses potential strategies and
practical considerations to reduce feature variability and improve
the quality of radiomics studies.
IMAGE ACQUISITION

Radiomics signatures aim to characterize the phenotypes of
tumors and surrounding tissue using radiographic images.
They can be sensitive to image quality governed by image
acquisition settings, or the constellation of factors involved in
acquiring the images, which include (but is not limited to)
scanner equipment, acquisition techniques, reconstruction
parameters, and contrast administration.

Radiomics studies have mostly used retrospective analysis of
imaging data from historical studies and clinical trials that were
not designed for quantitative feature analysis of tumors. Many of
the images studied were acquired in clinical trials to make simple
A B

FIGURE 2 | (A) A trend of radiomics studies reporting image acquisition parameters of slice thickness, reconstruction kernels and both. (B) A trend of radiomics
studies reporting re-imaging, re-segmentation and supervised segmentation. Due to the small number of radiomics studies published in 2014 and 2015, those
studies are excluded from the graphs.
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measurements of tumor diameter on CT images, which did not
demand a high degree of standardization in image acquisition
parameters. Because these datasets are now being radiomically
analyzed retrospectively, and new data sets are being acquired
prospectively, the importance of the degree of variation in CT
acquisition needs to be determined.

Pioneering efforts revealed that imaging variables, such as
repeat CT scans (28), imaging reconstruction slice thicknesses
and kernels (29), and scanners (30), could affect the computed
values of radiomics features. These studies inspired intensive
investigations in feature variability and reproducibility, which
have confirmed the initial findings and extended them to broader
research areas. Investigations on the sources of variation in CT
image acquisition have mainly focused on one or combinations
of the following factors: test-retest (28, 31, 32), vendors’ scanner
(30, 33–36), tube voltage and current (37–41), pitch (36), field of
view/pixel spacing (42–44), reconstruction kernel and slice
thickness (we do not here distinguish between slice thickness
and slice interval, the real physical distance between any two
adjacent images) (29, 31, 38, 39, 45–47), contrast administration
(48–50), and 4D phases (51, 52). In the following subsections, a
number of studies exploring sources of variation in image
acquisition is reviewed, followed by a discussion on potential
strategies and practical considerations to reduce variability in
image acquisition.

In Vivo “Same-Day” Repeat CT Studies
Radiomics features derived from tumor images from two CT
scans performed on the same day or during a short time period
can be different due to factors such as the patient’s relocation,
breath holding, and organ movement, even though no biological
changes would be expected to be discernable during such a short
time period. The reproducibility of radiomics features on repeat
CT scans must be demonstrated in order to establish the
reliability of radiomics models built using these features.

Repeat CT in Lung Cancer
Early radiomics studies already took into account the effects of
repeat CT imaging and re-segmentation on features ’
reproducibility (3, 28, 53), thanks to the availability of The
Reference Image Database to Evaluate Therapy Response’s
Lung CT Collection (RIDER Lung) (54, 55). RIDER Lung is a
unique, publicly available same-day repeat CT image dataset that
allows exploration of the reproducibility of quantitative methods,
including segmentation and feature extraction, for lung cancer
studies. This dataset consists of 31 non-small cell lung cancer
(NSCLC) patients’ repeat CT scan images reconstructed using
1.25 mm slice thickness and the lung kernel. Unfortunately,
RIDER Lung is suboptimal as test-retest for radiomics studies
because CT images in the majority of clinical studies were not
reconstructed using 1.25 mm slice thickness and the lung kernel.

In order to explore reproducibility and variability in
radiomics features due to re-imaging at multiple acquisition
settings with same or different imaging parameters,
investigators published a pilot study on 89 commonly used
radiomics features using same-day repeat CT scan images
reconstructed at six imaging settings/series: a combination of
Frontiers in Oncology | www.frontiersin.org 4
three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two
reconstruction kernels (lung (L): a sharp kernel; standard (S): a
smooth kernel) (31). These settings cover the CT acquisition
parameters widely used in lung cancer oncology trials and
clinical practice. Figure 3A shows an example of a lung cancer
tumor captured on a CT scan that was reconstructed using six
different imaging settings. Given the same slice thickness, tumor
heterogeneity can be better seen on sharper images than on
smoother ones. The curves beneath the tumor images show the
values of two popular GLCM features, Contrast (Figure 3B, blue
color) and Correlation (Figure 3B, orange color), calculated
under each imaging setting. The bigger the value of Contrast,
the more heterogeneous the tumor. The greater the value of
Correlation, the more homogeneous the tumor. In this example,
the value differences were caused by different imaging
reconstruction parameters, not by the tumor’s underlying
biological effects. The study found that the radiomics features
were generally reproducible when calculated between two repeat
scans reconstructed using the same imaging setting. This is
indicated by quite uniformly bright red areas (high
concordance correlation coefficient (CCC) values) in Figure
4A(a). However, a substantial amount of variability was
observed within the same slice thickness when using standard
or lung reconstruction kernels, generating smooth and sharp
images respectively, as indicated by large dark areas (low CCC
values) mostly centered at the texture features [Figure 4A(b)].
The authors’ conclusion that smooth and sharp reconstructions
should not be treated as interchangeable for radiomics studies
has been confirmed by other independent studies (29, 36, 56).

Repeat CT in Rectal Cancer
RIDER Lung was a very well controlled clinical study in which
the two repeat non-contrast chest CT scans were performed
within 15 minutes using the same imaging protocol on the same
scanner. Other radiomics studies also reported good
reproducibility when testing their quantitative features using
RIDER Lung [e.g., (32, 36)]. However, it is possible that repeat
CT scan images of other organs may cause different magnitudes
of feature reproducibility. A study found much lower feature
reproducibility in rectal cancer than in lung cancer (32). The
investigators collected repeat CT scan images from 40 rectal
cancer patients in a clinical setting; the interval times between
two repeat scans ranged from 5 to 19 days. They reported that
only 9/542 features had CCC >0.85 in rectal cancer, whereas 446/
542 features had higher CCC values for the test-retest analysis of
the RIDER Lung dataset. However, this is not surprising because
the longer interval times between the two repeat scans in the
rectal cancer study, the possible use of different imaging settings
for two repeat scans, and presence of more noise in rectal images
could all contribute to the decreased reproducibility.

Four-Dimensional CT (4D CT)
The same-day repeat CT images in the RIDER Lung collection
were acquired with each patient holding their breath.
Radiotherapy scan images, however, are often acquired under
free breathing of the patients. Respiratory motion can cause
changes in tumor location, volume, shape and intensity (57)
March 2021 | Volume 11 | Article 633176
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leading to more uncertainty of target tumors and enlarged
margins in the delineation of the treatment volumes. To
decrease the amount of radiation exposures to healthy tissues,
an emerging modality of gated or 4D CT imaging has been
Frontiers in Oncology | www.frontiersin.org 5
developed and used in radiation treatment planning (58). During
a thoracic 4D CT study, multiple CT images are acquired over a
period of at least one full respiratory cycle (8 or 10 phases) at
each table position. Moving the table and synchronizing the
A

B

FIGURE 3 | Effects of imaging parameters on radiomics features (A) A lung tumor captured on one CT scan reconstructed at 6 different imaging settings: 1.25 mm
slice thickness with the lung reconstruction algorithm (sharp image) (1.25L) (i) and the standard reconstruction algorithm (smooth image) (1.25S) (ii); 2.5 mm slice
thickness with lung reconstruction (2.5L) (iii) and standard reconstruction (2.5S) (iv); 5 mm slice thickness with lung reconstruction (5L) (v) and standard
reconstruction (5S) (vi) (31). (B) GLCM Contrast (blue color) and Correlation (orange color) features computed at the 6 corresponding imaging reconstruction settings.
The bigger the value of Contrast, the more heterogeneous the tumor. The greater the value of Correlation, the more homogeneous the tumor.
BA

FIGURE 4 | (A) CCC heat map of radiomics features. The CCC (0 to 1) of the studied 89 radiomics features were computed from same-day repeat CT images
reconstructed at (a) six identical imaging settings or (b) three different imaging settings. The brighter the red color, the higher the CCC values (i.e., the more
reproducible) of a feature computed for the repeat scans (31). (B) CCC heat map of 23 non-redundant radiomics feature groups (rows) under 15 inter-setting
comparisons (columns). Columns are arranged in descending order according to the average CCC of the inter-setting comparisons. Rows are arranged in
descending order according to average CCCs of non-redundant feature groups (45).
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scans according to the patient’s air-flow-volume curve, a spatial-
temporal 4D CT dataset can be acquired. After being sorted, the
motion-reduced 3D CT image series acquired at each respiratory
cycle can be generated.

A recent study investigated respiration-related 4D stability of
radiomics features across 8 individual respiratory phases for
NSCLC (59). Eight hundred forty-one features were extracted
from all individual phases of each patient. The relationship
between individual coefficients of variation (COVs) and tumor
motion magnitude was also inspected. The study found that
some features (e.g., skewness, many GLDM features) were
sensitive to respiration, whereas others (e.g., shape related
features, many GLCM features) were not. The study did not
observe a clear trend between the feature stability and the motion
magnitude due to respiration. In the second part of the study, the
value of utilizing 4D stability to preselect radiomics features to
build prognostic prediction models for overall survival in early-
stage NSCLC radiotherapy patients was explored. By comparing
the performance of the models built with and without 4D
stability feature preselection, the study showed an improved
prediction performance with the preselection. Other studies in
radiation oncology also suggested using phase images of already
acquired 4D CT data as an alternative way to determine and
remove unstable radiomics features prior to radiomics model
construction when test-retest images were not available (51,
52, 60).

Radiomics Phantoms
Due to concerns such as radiation dose to patients,
comprehensive investigations of image acquisition’s effects on
radiomics features have to rely on phantom studies. However,
there is a significant disparity between tumor phenotypes that are
seen in patient clinical CT images and traditional physical
phantoms (e.g., simple shape, homogeneous density) (61).

Credence Cartridge Radiomics (CCR) Phantom
A group of medical physicists designed the CCR phantom to
assist in exploring intra- and inter-scanner robustness and
reproducibility of radiomics features (30). The CCR phantom
embraces ten cartridges of an equal size of 10.1×10.1×3.2 cm3,
each filled with different materials in different patterns. The
phantoms were scanned on 17 scanners from the four major CT
vendors at multiple medical centers using their local thoracic
imaging protocols. Both histogram-based and texture features
were extracted using the open source radiomics software package
of IBEX (62). The study results showed that the phantom’s
dynamic density range covered that observed in the tumors
seen in 20 NSCLC patients. The authors noticed that inter-
scan variability of the features varied depending on the feature
itself and the cartridge material. One of the drawbacks of the
CCR phantom is its uniform cartridge shape, which cannot study
radiomics features that describe tumor shape and the
interrelation between tumors and surrounding tissue.

Other studies also used the CCR phantom to explore the
reproducibility and robustness of radiomics features across CT
scanners, scanning techniques, and reconstruction parameters.
Frontiers in Oncology | www.frontiersin.org 6
An example was to study the effect of CT tube current on
radiomics features. Using the ten cartridges in the CCR
phantom, one study showed no clear effect of tube current on
radiomics features (33). Another study, however, showed that
tube current affected features extracted from homogeneous
materials more than from tumor-like textured phantoms when
splitting 6 cartridges contained in the CCR phantom into two
groups, one filled with homogeneous materials and the other
filled with more tissue-like texture materials (40).

3D Printed Phantoms
Although the CCR phantom has been widely used to investigate
variability in radiomics features across scanners and scanning
parameters, it does not contain lesion shape information, and its
density textures/patterns are not anatomically informed.
Recently, advances in 3D printing technology have made it
possible to design and fabricate synthetic phantoms with
realistic lesion sizes, shapes, intensities and internal textures
while knowing the ground truth of their characteristics.

Using a subset of lung nodules taken from the database of
Lung Image Database Consortium (LIDC), a series of
corresponding virtual nodule models were created using the
investigators’ software and its built-in fitting and texture
modeling routines (63). A multi-material 3D printer then
distributed 2 base materials in the desired proportions
according to the dithered nodule model to achieve lesion sizes,
shapes, and internal density textures similar to those of the real
nodules. The heterogeneous nodule phantoms were imbedded in
an anthropomorphic thoracic phantom and scanned using
different acquisition parameters of dose level, slice thickness,
and reconstruction kernel. The study demonstrated that the
printed textured phantoms can be used to determine the
variability and accuracy of texture features extracted from CT
images acquired at varying imaging settings.

In order to determine robust shape features, researchers used
spherical harmonic functions to create mathematical tumor
models with increasing degrees of complexity/spiculatedness
and printed the models using a single material 3-D printer
(64). They studied the relationship of a set of commonly used
shape features (e.g., Volume, Surface area, Compactness,
Sphericity) with varying degrees of spiculatedness under
different conditions (slice thickness, resampling, and surface
and volume computing algorithms). As expected, they found
that surface-specific features, such as Surface area, were
positively correlated with tumor spiculatedness, whereas global
shape features, such as Compactness, were negatively correlated
with tumor spiculatedness. They also found that the shape
features are less affected by the aforementioned variables and
less dependent to tumor volume.

Efforts Made in Imaging Harmonization
Image acquisition settings can vary considerably in datasets
collected from retrospective or ongoing multi-center studies.
Radiomics signatures that are influenced by variations in the
source imaging settings may assign significance to differences
such as an imaging parameter used to reconstruct images, rather
March 2021 | Volume 11 | Article 633176
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than the biologically significant differences in tumor images.
Establishing the consistency of image data is vitally important for
the discovery of robust imaging biomarkers which can be
validated and applied to multi-center clinical trials and clinical
practice. Harmonization of imaging protocols is an effective
approach to reduce imaging-induced variability in radiomics.

Identifying Comparable Imaging Parameters
Different imaging settings can be said to be comparable when
similar feature values can be computed from the images they
produce. An early effort to identify comparable imaging settings
was reported by the team who had contributed the RIDER Lung
dataset. As a subsequent analysis of the same-day repeat CT
study, the investigators used the six-setting CT image data to
assess the feature agreements across the 3 slice thicknesses and 2
reconstruction kernels (45). Three inter-setting comparisons, i.e.,
1.25S vs 2.5S, 1.25L vs 2.5L and 2.5S vs 5S, show high average
CCC values (> 0.8 for all feature groups; bottom row in Figure
4B), indicating that these imaging parameters can be used
interchangeably in radiomics studies. The study also found
that changing slice thickness alone can generate better
agreements, especially when the range of slice thickness is
limited to 1.25mm and 2.5mm. Furthermore, combining
thicker slices with sharper reconstruction algorithms can
have the same effects as combining thinner slices with
smoother reconstruction algorithms for the computation of
radiomics features.

Controlling Imaging Protocols
The team who developed the CCR phantom studied whether a
controlled imaging protocol could reduce variability in radiomics
features (35) by scanning an updated version of the CCR
phantom on 100 scanners using both local and study-specified
CT protocols for chest and head & neck (H&N). The local
imaging protocols were heterogeneous, e.g., the slice thickness
ranged from 1 mm to 5 mm, while the study-specified protocols
were controlled by using comparable imaging parameters across
scanners, e.g., the reconstruction used slice thicknesses of 2.5 mm
or 3 mm and smooth kernels. The size of cylindrical ROIs was
8.2 cm in diameter. The IBEX radiomics package was used to
calculate 49 features including Neighborhood Grey Tone
Difference Matrix (NGTDM) and Grey Level Co-Occurrence
Matrix (GLCM). A linear mixed effects model was used to
determine the overall variability contributed by the
manufacturer, scanner of a given manufacturer, cartridge
material, and residual to the variability in the measurements.
The authors found that, compared to the local chest and H&N
imaging protocols, the controlled protocols could reduce the
overall variability by 57% and 52%, respectively.

Optimal standardization of chest imaging protocol
parameters did not ensure the reproducibility of 27 texture
features from the NGTDM and GLCM families, which were
also computed using the IBEX radiomics package, across three
CT vendor scanners (34) in a study using an anthropomorphic
lung phantom with inserted lesions of different materials that
simulated the attenuation properties of a human tissue. The
imaging parameters were optimally chosen for lung cancer
Frontiers in Oncology | www.frontiersin.org 7
studies except the reconstruction slice thickness of 5 mm,
which was rather thick for the small phantom lesions that
ranged from 1 cm - 1.5 cm. One limitation of this study, as
discussed by the authors, was the small size of the lesion inserts.
The authors planned to conduct a follow up study to investigate
the impact of ROI size on feature reproducibility, as calculating
texture features such as GLCM from relatively small lesions on
thick slice thickness can be problematic.

It is hard to make a direct comparison between the findings of
these two phantom studies exploring benefits of the imaging
parameter harmonization across CT scanners due to the
differences of the phantoms, image preprocessing, etc.

Converting Imaging Settings to Desired Setting
Artificial intelligence (AI) offers the potential to automatically
harmonize images which were acquired and reconstructed at
different imaging settings. A recent study reported the use of a
CNN to improve the reproducibility of radiomics features
between different reconstruction kernels (soft and sharp) (65).
The investigators developed a CNN architecture using residual
learning and an end-to-end approach. To demonstrate the
effectiveness of this CNN model, a total of 702 radiomics
features were extracted from 104 pulmonary nodules or masses
(all >= 6 mm; 51 non-enhanced and 53 enhanced CTs) using
Pyradiomics (66), an open-source feature extraction package.
The CCCs of the total features extracted from images
reconstructed at the different kernels and the different kernels
after image conversion were 0.38 and 0.84, respectively. Among
the features, the CCCs of the wavelet features increased the most
after the image conversion of the reconstruction kernels. The
authors concluded that CNN-based CT image conversion can
reduce the effect of reconstruction kernels on radiomics features.
Another study showed that CNN-based super-resolution
methods can improve the reproducibility of radiomics features
extracted from CT images reconstructed at different slice
thicknesses (67).

Matching Image Appearance/Quality
Differences in image quality between special vendors’ CT systems
are unavoidable. In addition to the scanner equipment, tube
voltage and current, FOV, slice thickness, and reconstruction
kernels, there are many other acquisition-related “hidden”
factors that may affect image quality. It is impossible to study
all affecting factors, known or unknown, one by one.

An alternative way to reduce feature variability caused by
imaging is to identify the similarity of images acquired at
different settings. Phantom studies can help match image
appearance and thus identify comparable imaging settings
across different vendors’ scanners, scanning techniques and
parameters, etc. (68, 69). For example, by analyzing noise
power spectrum (NPS), a group of medical physicists
conducted a study using the ACR CT phantom to
quantitatively compare noise texture between two CT systems,
GE and Siemens (68). Under a consistent acquisition protocol
(120 kVp, 0.625⁄0.6 mm slice thickness, 250 mAs, and 22 cm field
of view), using filtered back projection and a wide selection of
available reconstruction kernels, a systematic kernel-by-kernel
March 2021 | Volume 11 | Article 633176
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comparison was performed. The study found that the GE’s
“Soft,” “Standard,” “Chest,” and “Lung” kernels closely
matched the Siemens’ “B35f,” “B43f,” “B41f,” and “B80f”
kernels, respectively. More research in matching image quality
can be found in (69).

Identifying Images Acquired at Optimal
Phase Timing
Multi-phase CT scans after contrast administration are most
widely used for liver cancer diagnosis, prognosis, and response
assessment. Bolus tracking is used clinically during image
acquisition to control (arterial and portal venous) phase timing
to increase the likelihood of the phase timing being optimal.
However, bolus tracking does not consider individual patient’s
biological variation and thus cannot ensure that the optimal
timing was successfully reached in a given patient. In a pilot
study, investigators explored the effect of portal venous phase
(PVP) timing on the density measurement of liver metastases
(LM) from colorectal cancer (CRC) and found that LM-CRC
density was significantly decreased at non-optimal PVP timing
by 14.8%: 16.7% at early PVP and 12.6% at late PVP (49). The
same group then developed both semi-automated and AI-based
fully-automated programs to identify optimal from non-optimal
PVP timing as well as to differentiate five contrast-enhancement
phases (49, 70, 71). They applied the developed PVP optimal-
timing quality assurance (QA) method to their study developing
an on-treatment signature to detect metastatic CRC patients
sensitive to FOLFIRI+cetuximab using radiomics analysis of
tumor changes between baseline and 8-week CT images. The
radiomics signature showed higher performance on optimal
imaging (AUC=0.80; 95%CI:0.69, 0.94) than on non-optimal
imaging (AUC=0.72; 95%CI:0.59, 0.83) (72).

The effect of optimal timing on radiomics features is an
understudied area. Automated AI-based QA algorithms to
identify optimally acquired CT scan images for radiomics
analyses can help ensure image quality and consistency and
thus increase the chances to develop reproducible and reliable
radiomics signatures.

Influence of Imaging Harmonization and
Optimization on Radiomics Models
Imaging harmonization has shown potential for improving the
reproducibility of radiomics features. The following subsections
review and discuss how the performance of predictive models
built using radiomics features is affected by the harmonization
and optimization of image acquisition parameters.

Diagnosis of Solitary Pulmonary Nodule (SPN)
In a study using radiomics signatures to help the diagnosis of
SPN, investigators assessed the effects of contrast enhancement,
slice thickness, and reconstruction kernel on the diagnostic
performance of the model they developed (73). In total, 240
SPN patients (malignant:benign = 180:60) had both non-contrast
CT (NECT) and contrast-enhanced CT (CECT) scans, each
reconstructed using two different slice thicknesses of 1.25 mm
and 5 mm and two reconstruction kernels of lung (sharp kernel)
Frontiers in Oncology | www.frontiersin.org 8
and standard (smooth kernel). At each CT imaging setting, 150
radiomics features were extracted from each SPN and the
diagnostic performance of the resulting signature was assessed
based on its AUC. The validation results showed better
discrimination capability of the radiomics signature derived
from NECT than CECT (AUC: 0.750 vs. 0.735, p=0.014), from
thin-slice than thick-slice CT (AUC: 0.750 vs. 0.725, p = 0.025),
and from smooth kernel than sharp kernel (AUC: 0.725 vs.0.686,
p = 0.039). The authors thus concluded that the non-contrast,
thin-slice (1.25mm) and smooth reconstruction kernel-based CT
was more informative for SPN diagnosis compared to the other
imaging parameters studied.

Prediction of EGFR Mutation Status in Lung
Adenocarcinoma (LAC)
Investigators evaluated whether the optimal selection of CT
reconstruction settings improved the construction of a
radiomics model to predict EGFR mutation status in LAC
using standard of care CT images (74). In this study, CT scans
of 51 patients (EGFR : WT = 23:28) with LACs of clinical stage I/
II/IIIA were reconstructed at the following four image setting
groups: 1) Thin-Sharp, 2) Thin-Smooth, 3) Thick-Sharp, and 4)
Thick-Smooth (Thin: 1 mm; Thick: 5 mm; Sharp: B70f/B70s;
Smooth: B30f/B31f/B31s). In total, 1,160 radiomics features were
extracted and used to build machine learning prediction models
at each of the four settings and a mixture setting (cases randomly
selected from the groups 1-4). The study showed the best AUC
(95%CI) of 0.83 (0.68, 0.92) when using the Thin-Smooth setting
and the worst AUC (95%CI) of 0.75 (0.59, 0.86) when using the
mixture setting (P<10-3).

Prediction of Overall Survival (OS) in Head
and Neck Cancer
A recent radiomics study in head and neck cancer found that
models built with patients on a controlled imaging protocol did
not predict OS better than models built using varying imaging
protocols (75). In this study, investigators retrospectively
collected 726 patients’ CT images from one U.S. and two
European institutions, among which the largest subset of 511
patients’ CT images was acquired using a GE scanner with the
reconstruction parameters of a standard kernel and 1.25 mm
image thickness. The radiomics features were computed using
IBEX (62). Radiomics models to predict OS were built using the
full patient dataset (heterogeneous imaging protocols) and the
largest subset (controlled imaging protocol). This study did not
find increased performance of the outcome prediction model
when the imaging protocol was controlled (AUCs: full set vs.
subset = 0.72 vs. 0.55). Moreover, volume and HPV status were
selected as covariates in the OS prediction model built on the full
patient dataset. The authors further reported that volume alone
or volume and HPV status provided an AUC of 0.73, indicating
that adding radiomics features did not improve the model
performance. This again suggests that radiomics texture
features can be a surrogate for/correlated with tumor volume
and points to the need to remove redundant features prior to
model building (3, 76).
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Discussion: Potential Strategies and
Practical Considerations to Reduce
Variability in Image Acquisition
Image acquisition is the first essential step in the radiomics
workflow, directly determining the quality of images upon which
all subsequent analyses rely. Some strategies and considerations
to improve image consistency and reduce feature variability are
highlighted below.

Controlling Imaging Protocols To Increase Image Consistency.
CT scanners, scanning techniques, and reconstruction
parameters can affect radiomics features and models. The
degree of variation caused by these factors depends on the
tumor’s characteristics and the radiomics feature itself. Studies
should report imaging acquisition settings in detail so that they
can be reproduced by others. Ensuring high quality and
consistent images across scanner devices and imaging
protocols is the key for the successful development and
application of radiomics signatures.

Potential Optimal Imaging Parameters For Studying Lung
Cancer Phenotypes. Controlling CT imaging protocols and
complying with these protocols are essential to the acquisition
of high quality and consistent image data for radiomics studies.
Preliminary data suggest that the most suitable imaging
parameter setting for phenotype studies in lung cancer is thin
slice thicknesses (e.g., 1 mm, 1.25 mm) and smooth
reconstruction kernels (e.g., standard, B31f/B31s). Moreover,
same-day repeat CT studies found that the settings of 1.25S
and 2.5S generated the most reproducible features (Figures
4A, B). These independent findings support the use of thinner
slice thickness and smoother kernel for prospective lung cancer
phenotype studies. However, this approach warrants further
investigation, especially because of the conflicting findings in
the H&N study.

Test-Retest With Proper Imaging Parameters. The purpose of
test-retest is to identify radiomics features that are sensitive to re-
imaging and remove them from subsequent analyses. Because
image acquisition parameters can affect computed feature values,
the imaging parameters should be matched, or adequately
similar, between the test-retest data and the individual studies’
data so that the testing results are reliable. In addition, different
disease sites should have their own test-retest image data, which
can be acquired from either patients or (texture) phantoms.
Before re-shooting a phantom, make sure to relocate/re-orient
the phantom. When test-retest imaging is not available for the
phenotype of interest, image perturbation such as noise addition,
image translation and rotation, and volume growth or shrinkage
can be considered (77).

4D CT - An Alternative For Test-Retest. Scanning patients twice
during a short time period is impractical. However, 4D CT imaging
has been used in radiotherapy to reduce respiratorymotion-induced
changes in tumor location andmorphology. Such image datasets are
often available in radiation oncology departments. Due to its ability
to generate 3D CT image series at multiple respiratory phases, the
4D CT scan images can serve as a candidate of test-retest dataset to
investigate feature variability. Studies show that certain radiomics
features are sensitive to respiration and the preselection of 4D
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stability features can improve the performance of radiomics
prediction models. Moreover, the end of the exhale phase, which
is less affected by respiratory motion compared to the other phase
images, is recommended to reduce feature variability for
radiomics studies.

Radiomics Phantoms. Phantom studies play an essential role
in exploring different sources of variation and their magnitudes
across vendor scanners, scanning techniques and reconstruction
parameters. However, traditional physical phantoms are usually
constructed of materials that are radiologically equivalent to
tissues and contain simple geometric features such as cartridges,
cylinders, line-pair patterns, and ramps. Anthropomorphic
phantoms typically mimic the overall shape of a human being
but don’t include detailed intra-organ/lesion features and are
mostly used for dosimetry measurements. Thus, there is a
significant gap between the intricate anatomical details that are
seen in clinical CT images and the mostly uniform and simple
nature of traditional physical phantoms. Characterizing such
synthetic lesions using the cutting-edge 3D printing technology
would be instrumental toward assessing the variability of features
across different CT platforms and protocols.

Quantitative Metrics To Determine Image Quality and/or
Similarity. The wide range of vendors’ scanners, scanning
techniques, and reconstruction parameters used in clinical
practice and clinical trials makes it impossible to study the effects
of all possible variables on radiomics features and models.
Developing quantitative methods/metrics to determine image
quality and/or similarity can be an alternative way to identify
comparable images that can be used interchangeably or to decide
whether an image’s quality is adequate for computing radiomics
features. This should be done based on the acquired images such as
identifying optimal phase-timing, with no need to know the exact
acquisition parameters of the images.

Imaging Harmonization Through AI/CNN. Image processing
methods can reduce variability in images acquired with
heterogeneous image acquisition settings. Voxel size resampling
followed by Butterworth smoothing (an image processing method)
has been found to improve feature reproducibility (42). Traditional
image processing methods cannot be automatically adapted to
harmonize a multitude of imaging settings that could exist in an
image dataset. AI/CNN, however, shows great promise in
converting CT imaging settings to a desired setting and in
identifying whether images are acquired at the optimal phase
timing. There is no doubt that AI, especially generative
adversarial network (GAN)-based networks, will play a significant
role in image-to-image translation including CT imaging
conversion/harmonization (78).

Reproducible Features vs. Clinically Informative Features.
When investigators report the improved reproducibility of
radiomics features, a common method is to count the
increased number of the studied features that have increased
CCC values or CCC values greater than a predefined threshold
(e.g., CCC >0.85). It is true that when more features are
reproducible, there is a greater likelihood to identify robust
radiomics models which are built using these reproducible
features. However, the reproducibility of a feature does not
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necessarily mean that it is clinically informative. On the other
hand, it is likely that heterogeneous imaging settings may have
little effects on some coarse clinically informative radiomics
signatures such as ground glass opacity (GGO) portion and
necrosis component of a tumor. Nevertheless, successful
radiomics models must be built upon reproducible and
robust features.
LESION SEGMENTATION

Lesion segmentation is a prerequisite for feature extraction, a
critical step in radiomics workflow. Segmentation is an essential
part of computer vision and image processing and is still an
active research area today. Artificial intelligence (AI) promises
fully-automated detection and segmentation of lesions (79).

Segmentation Methods and Variability
Segmentation can be performed manually, semi-automatically,
or fully-automatically. Variability of the lesion segmentation may
come from diverse segmentation algorithms and human
supervised post-segmentation correction.

Manual Segmentation
Manual segmentation, a hand-drawing method using a computer
mouse, is used only when there is no access to reliable semi-
automated segmentation software because it is time consuming,
subjective, and prone to variability due to radiologists’ different
opinions on identifying lesion boundaries (inter-reader
variability) or a radiologist’s inconsistency in delineating lesion
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boundaries at different time points (intra-reader variability).
Manual segmentation was still used in about 40% of the lung
cancer radiomics studies in our literature search (Table 1 in
Supplemental Materials).

Semi-Automated Segmentation
Semi-automated segmentation requires an operator to use a
computer mouse to manually initiate a segmentation algorithm
that can be developed using different strategies such as clustering,
region-growing, active contours, and watershed transform.

Inter-Algorithm Variability
Different strategies employed in different segmentation
algorithms can yield different results (inter-algorithm
variability). In a “moist run” dataset (40 lung lesions and 12
lung phantom lesions) collected by the Quantitative Imaging
Network (QIN) for a lung segmentation challenge, large
variations were seen when three different segmentation
algorithms were applied to the same GGO lung lesion (Figure
5A) (80). Briefly, the algorithm Alg01 was based on the marker-
controlled watershed transform and required a region-of-interest
(ROI) manually drawn outside the lesion as the algorithm’s
initial input (Figure 5A, top-left). Alg02 and Alg03 used the
region-growing approach, with either one or multiple clicks to
determine seed points (Alg02) (Figure 5A, top-middle) or a seed
circle (Alg03) (Figure 5A, top-right) inside the lesion as the
initial input. For heterogeneous lesions, the region-growing
based algorithms can easily be trapped by a local homogeneous
region, creating a high risk of under-segmentation. In this
example, Alg02 segmented only the solid part of the lesion
(under-segmentation) when the seed point was placed in a
high-density area of the lesion.
A B

FIGURE 5 | (A). Inter-reader variability in segmentation. Top panel: manual initializations (seed point/ROIs) of three segmentation algorithms; bottom panel:
corresponding segmentation results. (B) Intra-reader variability in segmentation. Segmentation results are affected by seed points/ROIs. Reproduced with permission
from (80).
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Intra-Algorithm Variability
After manual initialization, each algorithm analyzes the density
distribution of the pixels provided by the initial ROI and then
automatically separates the lesion from its background using the
input information and its own segmentation strategy/objective
criteria. Therefore, initial ROIs can affect segmentation results.
Figure 5B shows variations (Dice Coefficient distribution) of the
segmentation results (lesion volumes) of each of the three
algorithms when initial ROIs are placed differently. This kind
of variation is called intra-algorithm variability. A good
segmentation algorithm should be insensitive to initial ROIs.
Studies reported that radiomics features extracted from
segmented lesions had higher reproducibility when using the
same algorithm with different initial inputs than when using
different segmentation algorithms (81, 82).

Fully-Automated Segmentation
Fully-automated segmentation is performed without any
human-machine interaction. The input of such algorithms is
the entire image series and the output is the image series
containing automatically segmented lesions. A fully-automated
segmentation method needs to perform lesion detection and
segmentation simultaneously. The challenge for automated
lesion detection is to avoid false negative and false positive
lesions. Unlike manual and semi-automated segmentations,
repeatedly running a fully-automated algorithm on one image
series won’t change the output result. However, the impact of
image acquisition settings on fully-automated segmentation
algorithms needs to be explored (83).

Human Supervised Post-Segmentation
Correction
Ideally, a lesion segmentation algorithm should be fully
automated, reproducible, and accurate. However, both lesions
and relationships between lesions and their surrounding tissues
can manifest in complex patterns on CT, making a satisfactory
segmentation for all lesions unrealistic. To avoid segmentation
errors, a radiologist needs to review and correct computer-
generated lesion contours. Over the past few years, awareness
of the need for human supervised post-segmentation correction
has increased (Figure 2B; green color). Supervised segmentation
is influenced by the radiologist’s subjective judgement. However,
only the modified parts of the lesion contours are affected by the
manual correction and the unmodified contour parts are still
determined by objective criteria. This explains why radiomics
features extracted from lesions segmented manually were less
reproducible than those extracted from lesions segmented
algorithmically with supervision by a radiologist (84, 85).

Segmentation of Multiple Disease Sites
Solid tumors, including primary and metastatic lesions, exist in
various organs. They can present various intra-tumoral patterns
and contrast levels to the surrounding tissues on CT images,
which challenges lesion segmentation to different degrees. For
instance, lung lesions are usually easy to be segmented due to
their high contrast to the surrounding lung parenchyma.
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However, when lung lesions attach to blood vessels or chest
walls possessing similar densities to those of the lesions,
segmentations can become difficult. Lymph nodes are well-
known for their low contrast to their surrounding
backgrounds. Segmentation of liver lesions can suffer from
their heterogeneity, low contrast against liver parenchyma
(contrast-enhancement dependent), and noisy abdominal
images. Various strategies have been developed to better
delineate tumors of different types.

In general, texture features are affected more than volume
feature by image acquisition parameters. Over-segmentation, i.e.,
inclusion of surrounding non-lesion tissues in the lesion
segmentation, can have a large effect on texture features when
there is a large density difference between the lesion and its
surrounding tissues (e.g., lung lesion and lung parenchyma). A
tight segmentation is thus more desired than a loose
segmentation in radiomics studies. Lesion segmentation can hit
lesion boundary-related features harder than others.

A study preliminarily analyzed the effect of inter-observer
variability between three manual contours on the stability of
1,404 radiomics features in head and neck squamous cell
carcinoma (HNSCC), malignant pleural mesothelioma (MPM),
and NSCLC (86). There were 11 lesions for each type. The
authors found that the inter-observer delineation variability was
the highest in MPM and the lowest in NSCLC, and the stability
rate of radiomics features negatively correlated with delineation
variability. Shape-related features showed the weakest stability
among the 3 tumor types.

Effect of Inter-Reader Variability on
Radiomics Prediction Model
The last example in this section shows a pilot study exploring the
effects of inter-reader variability on radiomics prediction models.
In the study, the investigators predicted EGFR mutational status
in early stage NSCLC patients treated with a targeted therapy
(Gefitinib) using the change in 89 radiomics features over 3
weeks (delta features) extracted from 1.25 mm and lung kernel
images (87). Lung lesions in 46 patients (EGFR:wildtype = 20:26)
were independently segmented by three radiologists using in-
house software that allowed manual post-segmentation
correction. Univariate analysis identified the most significant
delta features computed from each of the three radiologists’
segmentation results. The best EGFR prediction performance
expressed by AUC values differed for each radiologist's
segmentation: 0.79 (top feature: compact factor – a shape
feature), 0.85 (top feature: mean density) and 0.91 (top feature:
volume), respectively. Delta volume was the only feature that was
among the top 5 most significant features in all three radiologists’
results. The prediction performances using the delta volumes
obtained by the three radiologists were (AUC=) 0.77, 0.80 and
0.91, respectively. All outperformed the corresponding
unidimensional performances of 0.63, 0.53 and 0.66.
Unidimensional measurement (i.e., tumor in-plane diameter) is
used to assess tumor change by conventional Response
Evaluation Criteria in Solid Tumors (RECIST) (88). None of
the three radiologists’ results included the delta diameter in its
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top 5 most significant feature list. The results of this study
warrant validation on larger data.

Open Source Software for
Lesion Segmentation
3D Slicer and ITK-Snap are the most popular open source
platforms for interactive segmentation, registration, and
volume rendering/visualization of medical images. Built over
two decades through support from the National Institutes of
Health (NIH) and software engineers worldwide, 3D Slicer has
provided researchers with a set of free image processing tools
(89). ITK-SNAP is another open source tool that offers free semi-
automatic segmentation software (90). Both platforms provide
manual delineation functions. So far, about 25% of lung cancer
radiomics studies were conducted with the help of open source
segmentation tools (Table 1 in Supplemental Materials).

Discussion: Potential Strategies and
Practical Considerations to Reduce
Variability in Lesion Segmentation
Accurate, reproducible, and efficient segmentation tools that can
be widely distributed are essential to accelerating and advancing
cancer imaging research. Semi-automated segmentation tools
have commonly been used in radiology-oncology imaging
studies. An imaging platform providing lesion segmentation
software should also provide a manual editing/correction
function. Certainly, computer segmentation methods are more
efficient when they require fewer human-machine interactions.

Inter- and/or Intra-Reader Test. The Purpose of Inter-Reader
(or intra-reader) testing is to recognize radiomics features that
are sensitive to lesion segmentation so that they can be removed
from subsequent analyses. Features that are sensitive to
segmentation can be identified by asking multiple radiologists
to delineate the same lesions or an individual radiologist to
delineate a set of lesions at two or more sessions, with a sufficient
time interval between any two annotation sessions to avoid the
effects of the radiologist’s reading memory.

Radiologists’ Consensus on Lesion Contouring. Radiologists are
not specifically trained in identifying tumor boundaries; big
variations can happen especially when segmenting partial solid
tumors. The Tumor Segmentation step shown in Figure 1
(Radiomics workflow) offers an example of three radiologists’
manually delineated tumor contours; some tend to delineate
contours tightly surrounding a solid tumor component, while
others tend to delineate contours loosely including more GGO
areas. Although there may not be “gold standard” lesion boundaries,
obtaining radiologists’ consensus about lesion boundaries can help
reduce variability in segmentation and thus in computed
radiomics features.

Proper Use of Segmentation Software. Different semi-
automated algorithms use different strategies to obtain
information about lesions and/or their surrounding tissue from
initial ROIs, which can help the algorithms identify lesion pixels/
voxels. For instance, to properly start a region-growing based
algorithm, seed ROI points/circle should be placed in both hypo
and hyper density areas inside a heterogeneous lesion so that the
range of lesion densities can be fully captured and used to guide
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the region growing algorithm. Proper use of a segmentation
algorithm can improve the segmentation’s accuracy and
consistency. Again, to avoid unpredictable surrounding tissues
of possible high (or low) contrasts, tight segmentation results are
more preferred than loose segmentation results in
radiomics studies.

In radiation oncology, the standard treatment planning
process has generated a large amount of annotated tumors that
can be readily used in radiomics studies. However, it should be
noted that the quality of the segmentations might not be
sufficiently precise for radiomics. For instance, there is no need
to accurately delineate the speculated edges of a tumor for the
purposes of treatment planning while radiomics requires a very
precise delineation of the tumor. Therefore, segmentation results
taken from radiotherapy data may need to be refined prior to
feature extraction.

Effects of Imaging on Segmentation. Acquisition settings
determine image quality and can thus affect segmentation
algorithms [e.g., (91, 92)]. The ultimate goal of image pre-
processing is to reduce noise while maintaining image details.
Generally, pre-processing methods using smoothing filters (e.g.,
Gaussian filter) are applied for the region-growing based
algorithms, whereas sharpening filters (e.g., Laplacian filter) are
used by the edge-based segmentation algorithms. When
investigating volumetric imaging biomarkers, variables
affecting volumetry/tumor segmentation have been intensively
studied, particularly by the RSNA-organized Quantitative
Imaging Biomarkers Alliance (QIBA) (93–95), which is not
further discussed in this review.
FEATURE EXTRACTION

Radiomics features are also known as quantitative image
features. In the past decades, pattern recognition using
quantitative image features has been widely used for tasks such
as image segmentation, classification, and computer-aided
detection and diagnosis (96).
Radiomics Features
Radiomics features can be grouped into two categories: agnostic
and quantified semantic features (18). Agnostic features are derived
to quantify lesion morphology and density heterogeneity through
mathematical equations/descriptors, while quantified semantic
features are developed to characterize visual patterns of lesions
(ROIs) based on radiology lexicons. Agnostic features are usually
further divided into the following four categories based
on: 1) morphology (e.g., size, shape), 2) histogram-statistics (e.g.,
mean, standard deviation, skewness, kurtosis), 3) texture (e.g., Run-
Length, GLCM), and 4) transformation (e.g., Wavelet transform).
Histogram-based features, a.k.a. first-order statistics, describe tumor
density distribution without considering spatial information,
whereas texture features, a.k.a. second-order statistics, characterize
tumor heterogeneity by considering the spatial interrelations of
image pixel/voxel densities. Transformation-based features are
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computed from transformed images rather than original images. Of
note, there is another type of quantitative features that can provide
additional information, i.e., features that characterize density
transition between a lesion and its surrounding tissues/
parenchyma. An example is the feature class of Sigmoid Function;
the feature, Sigmoid-slope, can be used to quantify lesion edge
(density) sharpness.

Quantified semantic features are perceptive because they are
created based on a radiologist’s visual observations. For instance,
GGO volume percentage, a quantified visual feature, was found
to be significantly higher in tumors with exon 21 missense
mutation than that in tumors with other EGFR mutation
status (97). Some agnostic features can also be intuitively
interpreted. Skewness, an agnostic feature that measures the
asymmetry of a density distribution about its mean (e.g.,
density distribution of a solid tumor is left-skewed with a
negative skewness value), was found to be predictive for
disease-free-survival (DFS) associated with certain histologic
subgroups of lung adenocarcinoma; the lower the skewness
value is, the poorer the DFS will be (98). Another example is
the Laws’ Energy features. This feature class emphasizes texture
patterns of edge, spot, ripple and wave through the Laws filters.
Whether such tumor image patterns are clinically informative
needs to be investigated. However, meanings of many agnostic
features can be hard to be intuitively interpreted. Nevertheless, it
is believed that models built upon one or multiple radiomics
features can distinguish imaging phenotypes that can or cannot
be visually observed by human.

Sources of Variation in
Feature Computation
Traditional radiomics features are computed from predefined
mathematical equations/descriptors that can be found in
textbooks and/or published literature (99). Theoretically, these
radiomics features are clearly defined and thus fully controllable.
However, sometimes there are multiple choices to define a feature
with an identical name, select specific values for feature parameters,
and implement a feature calculation. In reality, values of radiomics
features computed using different feature extraction software can
vary considerably, which makes it hard to compare radiomics
studies especially if details of the feature definitions, parameter
settings, and implementations are not disclosed adequately.

Feature Definition
Variations in feature definition can happen when multiple
equations/descriptors are used to define a same feature. A simple
example is Compactness, a shape feature that is defined to quantify
how spherical a 3D object’s shape is. Although Compactness is a
function of an object’s surface area (S) and volume (V), there are
different equations to define it, e.g., V/(p ½

* S
3/2) and 36*p* V2/S3.

Even if these two equations are related, the computed values from
the two equations are different. This type of variance can be
controlled by making feature definitions transparent.

Feature Parameter Setting
Many features, especially texture features, have parameters in
their definitions so that they can be used to quantify image
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patterns at multiple scales and different orientations. The feature
parameter used most often is the number of gray-level (density)
bins, a.k.a. the bin level. Density discretization groups the entire
density range of images into bins of equal width. Reducing the
bin level or increasing the bin width can improve the
computational efficiency for certain features such as GLCM
features. Moreover, density discretization can lessen noise
interference. In general, bin width should not be lower than
random noise level. However, a large bin width may not be able
to capture the subtle differences in density (texture).

The GLCM feature class is an excellent example to explain
feature specific parameters (Figure 6) (100). A GLCM matrix is
created by counting how often pairs of pixels with specific gray-
level values occur in a specified distance and direction over the
ROI. The GLCM features are the computed statistics from
the matrix (101). There are 3 key parameters: the bin level of
the original images (i.e., the dimension of GLCM), the distance of
pixel pairs, and the direction of the line spanned by the pixel pair.
In Figure 6A, starting with an original image, the figures show
the feature computation process. Two example GLCM matrices
are generated with the bin levels of 4 [Figures 6A(b)–(d)] and 8
[Figures 6A(e)–(g)], both with the distance of 1 pixel and
direction of 0° (Figure 6B). For each GLCM matrix, two
common GLCM features, Contrast and Homogeneity, are
calculated and their values are different due to the different bin
levels, Figures 6A(d) and (g).

The influence of density discretization (bin levels) on
radiomics features was investigated using the CCR phantom
(33). The effect of the bin width (5 to 50 HU) on the stability of
114 studied texture features was found to be marginal compared
to the effect of scanners, slice thicknesses, and tube currents.
Although the study concludes that feature stability may not be
compromised during the optimization of gray-level
discretization when attempting to improve model performance,
evidence from clinical studies is needed.

Feature Implementation
Often, there are multiple choices to implement certain radiomics
features. For instance, a lesion surface area can be evaluated by a
mesh-based representation of the outer surface or by areas of
voxel faces toward the outside of the lesion. For features that are
derived from pre-processed images using a filtering technique
such as Gabor filter, filter length is a feature parameter, and the
method for handling the ROI edge when moving the filter over
the ROI is a hidden variable in the implementation of the Gabor
filter. Moreover, features can be computed in 2D, 2.5D (a
combination of 2D features), or 3D and extracted from the
original images as well as from pre-processed images using
different filtering techniques. In 2D image processing, for
instance, 4 or 8 connected pixels are usually considered as
neighboring pixels and 4 or 8 directions are chosen. All these
and more unspecified variances during feature computation/
implementation can add unknown variation to the computed
feature values. To date, no radiomics studies have provided
sufficient details about their feature definitions, parameter
settings and implementations so that others can reproduce this
aspect of their studies.
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Studies Exploring and Reducing Variability
in Feature Computation
Research has investigated sources of variation in feature
computation (81, 102–104). Two collaborative studies on this
topic are reviewed and discussed in the following subsections.

Preliminary Effort by the Quantitative Imaging
Network (QIN)
This study, conducted by ten teams from the PET/CT working
group of the QIN funded by the National Cancer Institute (NCI),
explored the agreement of 13 software packages on nine basic
radiomics features including volume, 2D and 3D diameters,
mean density, standard deviation, kurtosis, surface area,
sphericity, and GLCM entropy (103). The investigators applied
the feature extraction software used by the teams (about half
open source and half in-house) to both Digital Reference Objects
(DROs) and patient image data. The DROs consisted of three
objects with both texture and uniform densities and spherical
and spiculated shapes (105). The patient data contained images
from 10 patients taken from the LIDC database, a publicly
accessible database (106). One pre-annotated contour for each
DRO/lesion was used to extract radiomics features. Percentage
coefficient of variation (CV) was used to evaluate agreement of
the computed features. The results showed that for the DROs, six
out of the nine features, i.e., volume, 2D and 3D diameters, mean
density, standard deviation and kurtosis (after Fisher correction),
demonstrated excellent agreement (CV < 1%). The features of
surface and sphericity showed moderate agreement (CV: ~13%).
GLCM entropy had big variations (texture DRO: ~50%; uniform
DRO: CV > 600%). For the patient data, CV values of 2D and 3D
diameters, surface, and sphericity increased but were still
moderate. CV of the GLCM entropy decreased to ~36%. All
other features remained in excellent agreement.
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From the DROs to real lesions, ROI shapes became more
irregular and densities became less uniform. This was why the
software packages turned out to agree less with each other when
computing features that relied more on ROI boundaries/surfaces,
such as 2D and 3D diameters and surface and sphericity features.
It was not surprising that the GLCM entropy feature showed
such big variations between feature extraction software packages.
Harmonization of some key parameters (e.g., bin level, pixel
pair’s distance and direction) was found to reduce the average
CV value of GLCM entropy from ~36% to ~20%.

Comprehensive Study by the Image Biomarker
Standardization Initiative (IBSI)
Since 2016, the IBSI, an independent international collaboration,
has focused on standardizing definition and implementation of
quantitative image features and providing benchmark data sets
and consensus-based reference values (26). The IBSI reference
manual is written to provide consensus-based recommendations
and guidelines to improve reproducibility and transparency of
radiomics features and studies.

Recently, the IBSI published a large scale study that
standardized 169 commonly used radiomics features (104).
This multi-year, multi-phase study involved 25 research teams
using their own feature extraction and image processing software
and showed the investigators’ first-hand experience in the
calibration and certification of various feature extraction
software packages. The study utilized a consensus-based and
iterative approach. Phase I (25 participating teams) obtained the
reference values of radiomics features based on a 3D digital
phantom. Phase II (15 teams) defined a general image processing
scheme, implemented it at different configurations, and obtained
corresponding reference values of radiomics features using a
lung cancer CT image series. Initially, only weak consensus (<3
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FIGURE 6 | (A) Computing the GLCM features of Contrast and Homogeneity using different bin levels. (a) Original image. (b) Normalized image using the bin level of
4. (c) GLCM matrix derived from (b). (d) Contrast and Homogeneity computed from GLCM in (c). (e) Normalized image using the bin level of 8. (f) GLCM matrix
derived from (e). (g) Contrast and Homogeneity computed from GLCM in (f). (B) Calculation of the GLCM features for a 9X9 2D image at four directions and a
neighborhood distance of 4 pixels. Reproduced with permission from (100).
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teams matched) existed for 76.8% features at phase I and 65.4%
features at phase II. At the final iteration, strong or better
consensus (6-9 team matches) was achieved to 95.1% and
90.6% at phase I and II, respectively. Phase III (9 teams)
prospectively assessed reproducibility of the 169 standardized
features against a public dataset of CT, PET, and MR images
from 51 sarcoma patients. More than 97% of the features studied
reached an excellent reproducibility (ICC > 0.9), showing the
value of feature standardization in reducing variability between
different feature extraction software.

The study identified several causes of deviation. For instance,
lesion volumes can be represented by simple voxel cubes or
polygonal models (or meshes). This affects the computation of
surface area and thus morphological features. Sometimes, there
are “holes”, which are dark regions inside segmented lesions. The
decision whether to fill such small holes prior to feature
computation can influence the computed value. Differences of
this kind are controllable and can be reduced or eliminated
through feature standardization.

Feature Distribution Harmonization –
Combat
Image acquisition-induced variations in radiomics features are
intensively discussed in the early section of Image acquisition,
where the suggested solutions to reduce such variability are
mainly focused on obtaining consistent and/or comparable
images through controlling image acquisition protocols and/or
post-processing of acquired images using both conventional and
AI-based methods.

Recently, a new data-driven method based on the empirical
Bayes frameworks, called ComBat harmonization, was introduced
into radiomics to reduce feature variability caused by scanners and
scanning parameters (107–109). This method was initially
developed for large-scale genomic data analysis (110). When
combining different datasets collected from microarray
experiments, a big challenge is to remove non-biological
variations caused by the systematic technical differences while
handling samples, i.e., to remove the so-called “batch effects”,
where the batches denote operators, array types, etc. In radiomics,
batches refer to scanners, imaging protocols, individual imaging
parameters, etc. Unlike the imaging harmonization, the ComBat
method operates directly on the computed feature values to remove
batch-induced bias. This eliminates/reduces, for example, the
demands for sharing and transferring medical images between
institutions that can be limited by specific regulations and
standardizing image acquisition settings that can be hard to be
implemented in routine clinical practice.

Figure 7 shows two examples of harmonization/realignment
of a feature, GLCM Homogeneity (108). The example shows two
distributions of the feature, computed from the images
reconstructed at two different reconstruction kernels, Lung vs.
Standard (example 1, Figure 7A), and at two different slice
thicknesses, 1.25 mm vs. 5 mm (example 2, Figure 7B). In each
example, feature distributions were better overlapped after
applying the ComBat harmonization function (https://github.
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com/Jfortin1/ComBatHarmonization). A follow-up study
independently verified the published results by applying the
ComBat method to harmonize a larger set of radiomics
features computed from a broader range of imaging protocols
in a larger cohort of patients. The investigators noticed that the
harmonization also increased the repeatability of texture features
(109). This promising technology warrants validation for its
clinical usefulness in radiomics.

Experience With Open Source Software
and Open Source Databases in Building
Radiomics Prediction Models
There are a number of free open source software packages to
compute radiomics features. Based on the literature searching
results, open source and in-house feature software were used
almost equally frequently in the lung cancer radiomics studies
published from 2014 to July 2020 (Supplemental Materials;
excluding ~9% “not specified” software). Pyradiomics (~15%)
(66) and Imaging Biomarker Explorer (IBEX) (~8%) (62)
are the two most popular open source software to
study radiomics.

Recently, a new radiomic feature calculator, called RaCaT,
became available (111). It calculates a large number of features
that are in compliance with the IBSI standard. Although the
calculator can be downloaded and used without requiring any
programming skills, it does not provide any Graphical User
Interface. Users need to call the calculator either from their own
programming environments or from the command line.

A research group recently reported its first-hand experience
in building a radiomics model to predict EGFR mutation status
in NSCLC patients using two open source databases, TCIA
(The Cancer Imaging Archive) (112) and TCGA (The Cancer
Genome Atlas) (113), and three feature extraction software
packages, the open source Pyradiomics (1319 features) and
IBEX (1563 features), and an in-house package (1160 features)
(114). Although they encountered some obstacles, they
reported a smooth experience overall with the public datasets
and open source feature extraction software. They were able to
collect both image data and clinical data for the majority of
patients satisfying the inclusion criteria of their study.
However, the TCGA-LUAD and the TCGA-LUSC datasets
contained image data and genomic data that were stored
separately on the TCIA and the TCGA, respectively, for the
majority of cases. In addition, the genomic data was often
incomplete, which reduced the number of useable cases. The
two open-source software packages had clear instructions that
made them amenable to beginners. Radiomics feature
definitions were well documented and were able to be
extracted from the majority of lesions. Some errors did occur
during the extraction in both open-source software packages
that could not solved. The study found that although the three
software packages selected different features to build their
prediction models, the models’ performances were similar.
The correlations found between those selected features by the
different software indicate that these features may describe
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similar tumor imaging phenotypes that are associated with
underlying biological characteristics.

Discussion: Potential Strategies and
Practical Considerations to Improve
Feature Extraction
Variations in feature computation are caused by possible
differences in feature definition, parameter setting, and
implementation. Variations also come from the previous steps
of image acquisition, lesion segmentation, and image
preprocessing, which exaggerate variability in radiomics
features and models built using these features (12, 115, 116).

Feature Definition Standardization. One way to reduce
feature variability, enhance collaboration, and accelerate the
development and validation of radiomics signatures is to
standardize feature definition, parameter setting, and
implementation. The IBSI’s effort in standardizing the feature
extraction process is a significant step toward increasing feature
transparency, reducing feature variation, and providing reference
images and reference feature values to help verify/calibrate
feature extraction software developed by researchers globally
(104). Customizable 3D DROs can be created to help
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standardize radiomics features and uncover coding errors
(105) . I t should be noted that promoting feature
standardization does not mean that investigators shouldn’t
develop and use their own feature definitions, parameter
settings, and implementation methods that are different than
those suggested by the IBSI.

Feature Parameter Setting. Normally, we only use about 100
or less fundamental radiomics features. However, with multiple
settings of feature-specific parameters, different implementation
methods, and various image pre-processing methods, the total
number of features that can be provided by a feature extraction
software package can easily reach multiple thousands. Currently,
the settings of many feature parameters are “randomly” chosen
or simply adopted from the literature where the image types and
contents can be very different than those of the investigators’
own clinical studies. As a result, the same features, same feature
parameter settings, and/or same image pre-processing methods
are often used to study different clinical questions for different
disease sites using different imaging modalities. This so called
one-size-fits-all scenario may delay or prevent the discovery of
radiomics signatures. In order to increase the opportunity to
identify biologically relevant features while studying lung cancer,
FIGURE 7 | Probability density distributions of Homogeneity before (without realignment) and after (with realignment) ComBat in patient data by using two CT
reconstruction kernels (A) and two slice thicknesses (B). Reproduced with permission from (108).
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for instance, understanding the density range of lung tumors and
image noise characteristics may help choose proper values of
feature parameters.

Feature Redundancy. On one hand, multiple parameter
values allow quantification of lesion textures at different scales,
contrasts, and directions, which can increase the chance to
identify biologically relevant features. On the other hand,
multiple parameters can drastically increase the total number
of features, many of which are correlated. The high
dimensionality of features can also lead to model overfitting.
Reducing feature dimension is necessary prior to building
prediction models using machine learning methods. Feature
reduction and identification of potential confounding variables
such as image acquisition parameters (e.g., slice thickness) and
clinically used prognosticators (e.g., tumor size) are beyond the
discussions of this review paper.

Feature Transparency. Inadequate descriptions of feature
extraction in the current literature is a big burden for
widespread adoption of the features and replication/validation
of the developed radiomics signatures. For researchers who are
capable of writing their own feature extraction algorithms, it is
important for them to track their changes of the codes using
version control software and describe the feature extraction
details as much as possible in publications. For the groups
offering open source feature extraction software, the software
version numbers along with the release dates and upgrades
should be clearly documented and provided for the purposes
of record tracking.

Image Pre-Processing. Image pre-processing includes, but is
not limited to, smoothing, sharpening, and/or resampling of
images prior to feature extraction. Generally speaking, image
smoothing can improve density-based feature reproducibility.
For instance, the LoG (Laplacian of Gaussian) texture features
computed from the same-day repeat CT scan images
reconstructed at different imaging settings is an example
(Figure 4A). LoG_s1 denotes no pre-processing and LoG_s4
indicates that a large Gaussian kernel is applied to strongly
smooth the original images before the feature calculation. The
reproducibility of LoG features calculated on the smoothed
images is drastically improved (CCC heat map colors changed
from dark to bright) even when the features are calculated from
images reconstructed using different kernels. However, over
smoothing can suppress image texture details, which may lose
clinically useful information related to low contrast textures.
There is a trade-off between reproducible features and
informative features.

Another image pre-processing operation is to resample CT
images to isotropic resolutions in x-, y-, and z-directions. Studies
show that isotropic resolutions can improve feature
reproducibility (42). It is worth mentioning that, in 3D image
segmentation, the isotropic resampling of images is often a
precondition for direct use of 3D image processing operators
that are employed by many 3D segmentation algorithms.

Reproducible and Reliable Features. Both re-imaging and re-
segmentation can introduce variation into radiomics features. To
assess the reproducibility due to re-imaging, features are
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extracted from a set of lesions imaged and segmented from
two repeat scans acquired within a short time interval. To assess
reproducibility due to re-segmentation, features need to be
extracted from a set of lesions segmented by the same
radiologist in at least two different sessions (intra-reader
variability) and/or by at least two independent radiologists
(inter-reader variability). If repeat scan image data are
available, re-segmentation of lesions on repeat images can take
into the account the variability caused by both re-imaging and
re-segmentation simultaneously. The concordance correlation
coefficient (CCCs) is a widely accepted statistical method to
assess the reproducibility of radiomics features (117). Only
reproducible features will be retained for the subsequent
machine learning analysis. Once features are extracted,
checking outliers for each feature is a practical way to help
identify imaging artifacts, segmentation errors, etc.

ComBat Feature Harmonization. The ComBat is an easy-to-
use and fast feature harmonization method recently introduced
to remove batch effects in radiomics. Based on calculated feature
values, the ComBat method has the ability to adjust for the batch
effects at multiple layers, e.g., at institution, scanner, imaging
protocol and individual imaging parameter levels. With the
ComBat method, more features can become robust and be
analyzed, historical image data can be better reanalyzed and
multi-center data can be properly combined and/or compared.
Future research includes, for instance, incorporating clinical and
biological variables into the ComBat method to preserve
biological variation while maximally removing batch effects.
The ComBat feature harmonization opens a new and efficient
avenue to accelerate the development, validation and
dissemination of robust and generalized radiomics signatures
and their transfers to clinical practice.

CNN Features. Given sufficient data, features derived from a
CNN can be expected to overcome the limitations of pre-defined
traditional radiomics features because a CNN’s backward
propagation of errors for training purposes enables the
network to self-learn novel features which are most useful for a
specific application. The automated learning and iterative image
filtering performed by a CNN may also make the CNN models
less likely to be confounded by heterogeneous image acquisition
settings. The CNN also eliminates the step of lesion
segmentation, a major source of variation in radiomics.
Nevertheless, radiomics can build tumor imaging phenotype
models using small datasets, a necessity for many medical
studies. Radiomics signatures can often be intuitively
interpreted, which also makes radiomics favorable over the
“black box” approach of using a CNN. In the foreseeable
future, there is no doubt that both radiomics and AI/CNN will
be mainstream approaches to study quantitative imaging
biomarkers in precision medicine.
SUMMARY

Radiomics has shown promise for a variety of clinical
applications in lung and other cancers, and in particular for
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diagnosis, prognosis, and response assessment. Radiomics
derives strength from hypothesis neutral techniques that can
identify subtle details or changes in patterns/features of medical
images that are associated with biological activities and clinical
outcomes. This, however, also creates a potential weakness: the
values of computed radiomics features and the performance of
radiomics models incorporating them can be sensitive to many
variables intrinsic to the radiomics workflow. Given
heterogeneous image acquisition settings, varied quantification
software packages, different diseases’ characteristics, and small
and mixed patient populations, the development of reproducible
and generalizable radiomics signatures is not as straightforward
as it initially appeared. Indeed, radiomics is a multidisciplinary
research field. Its success relies on close collaborations among
physicians, medical imaging physicists, biomedical engineers,
statisticians, and computer scientists. Over the past years, great
community efforts have been made to better understand sources
of variation, improving reproducibility and reliability of
radiomics features and models through imaging and feature
harmonization and increasing transparency and quality of
radiomics studies. Ever-growing open source imaging and
genomic databases as well as open source software packages
help accelerate the development and external validation of
radiomics signatures.
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MV, Mansilla Legorburo F, et al. Radiomics of CT features may be
nonreproducible and redundant: influence of CT acquisition parameters.
Radiology (2018) 288(2):407–15. doi: 10.1148/radiol.2018172361

37. Fave X, Cook M, Frederick A, Zhang L, Yang J, Fried D, et al. Preliminary
investigation into sources of uncertainty in quantitative imaging features.
Comput Med Imaging Graph (2015) 44:54–61. doi: 10.1016/j.
compmedimag.2015.04.006

38. Lo P, Young S, Kim H, Brown M, McNitt-Gray M. Variability in CT lung-
nodule quantification: effects of dose reduction and reconstruction methods
on density and texture based features.Med Phys (2016) 43(8Part1):4854–65.
doi: 10.1118/1.4954845

39. Midya A, Chakraborty J, Gönen M, Do RK, Simpson AL. Influence of CT
acquisition and reconstruction parameters on radiomic feature
Frontiers in Oncology | www.frontiersin.org 19
reproducibility. J Med Imaging (2018) 5(1):011020. doi: 10.1117/1.
JMI.5.1.011020

40. Mackin D, Ger R, Dodge C, Fave X, Chi P-C, Zhang L, et al. Effect of tube
current on computed tomography radiomic features. Sci Rep (2018) 8(1):1–
10. doi: 10.1038/s41598-018-20713-6

41. Hepp T, Othman A, Liebgott A, Kim JH, Pfannenberg C, Gatidis S. Effects of
simulated dose variation on contrast-enhanced CT-based radiomic analysis
for Non-Small Cell Lung Cancer. Eur J Radiol (2020) 124:108804. doi:
10.1016/j.ejrad.2019.108804

42. Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Harmonizing the
pixel size in retrospective computed tomography radiomics studies. PloS One
(2017) 12(9):e0178524. doi: 10.1371/journal.pone.0178524

43. Shafiq-ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC,
Balagurunathan Y, et al. Intrinsic dependencies of CT radiomic features
on voxel size and number of gray levels. Med Phys (2017) 44(3):1050–62.
doi: 10.1002/mp.12123

44. Rastegar S, Beigi J, Saeedi E, Shiri I, Qasempour Y, Rezaei M, et al.
Radiographic Image Radiomics Feature Reproducibility: A Preliminary
Study on the Impact of Field Size. J Med Imaging Radiat Sci (2020) 51
(1):128–36. doi: 10.1016/j.jmir.2019.11.006

45. Lu L, Ehmke RC, Schwartz LH, Zhao B. Assessing agreement between
radiomic features computed for multiple CT imaging settings. PloS One
(2016) 11(12):e0166550. doi: 10.1371/journal.pone.0166550

46. Kim H, Park CM, Lee M, Park SJ, Song YS, Lee JH, et al. Impact of
reconstruction algorithms on CT radiomic features of pulmonary tumors:
analysis of intra-and inter-reader variability and inter-reconstruction
algorithm variability. PloS One (2016) 11(10):e0164924. doi: 10.1371/
journal.pone.0164924

47. Shafiq-ul-Hassan M, Zhang GG, Hunt DC, Latifi K, Ullah G, Gillies RJ, et al.
Accounting for reconstruction kernel-induced variability in CT radiomic
features using noise power spectra. J Med Imaging (2017) 5(1):011013. doi:
10.1117/1.JMI.5.1.011013

48. Yang J, Zhang L, Fave XJ, Fried DV, Stingo FC, Ng CS, et al. Uncertainty
analysis of quantitative imaging features extracted from contrast-enhanced
CT in lung tumors. Comput Med Imaging Graph (2016) 48:1–8. doi:
10.1016/j.compmedimag.2015.12.001

49. Dercle L, Lu L, Lichtenstein P, Yang H, Wang D, Zhu J, et al. Impact of
variability in portal venous phase acquisition timing in tumor density
measurement and treatment response assessment: metastatic colorectal
cancer as a paradigm. JCO Clin Cancer Inf (2017) 1(1):1–8. doi: 10.1200/
CCI.17.00108

50. Kakino R, Nakamura M, Mitsuyoshi T, Shintani T, Hirashima H, Matsuo Y,
et al. Comparison of radiomic features in diagnostic CT images with and
without contrast enhancement in the delayed phase for NSCLC patients.
Phys Med (2020) 69:176–82. doi: 10.1016/j.ejmp.2019.12.019

51. Larue RT, Van De Voorde L, van Timmeren JE, Leijenaar RT, Berbée M,
Sosef MN, et al. 4DCT imaging to assess radiomics feature stability: An
investigation for thoracic cancers. Radiother Oncol (2017) 125(1):147–53.
doi: 10.1016/j.radonc.2017.07.023

52. Tanaka S, Kadoya N, Kajikawa T, Matsuda S, Dobashi S, Takeda K, et al.
Investigation of thoracic four-dimensional CT-based dimension reduction
technique for extracting the robust radiomic features. Phys Med (2019)
58:141–8. doi: 10.1016/j.ejmp.2019.02.009

53. Hunter LA, Krafft S, Stingo F, Choi H, Martel MK, Kry SF, et al. High quality
machine-robust image features: Identification in nonsmall cell lung cancer
computed tomography images. Med Phys (2013) 40(12):121916. doi:
10.1118/1.4829514

54. Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, Lefkowitz RA, et al.
Evaluating variability in tumor measurements from same-day repeat CT
scans of patients with non–small cell lung cancer. Radiology (2009) 252
(1):263–72. doi: 10.1148/radiol.2522081593

55. Prior F, Smith K, Sharma A, Kirby J, Tarbox L, Clark K, et al. The public
cancer radiology imaging collections of The Cancer Imaging Archive. Sci
Data (2017) 4:170124. doi: 10.1038/sdata.2017.124

56. Lu L, Liang Y, Schwartz LH, Zhao B. Reliability of Radiomic Features Across
Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using
ACR CT Phantom. Tomography (2019) 5(1):226. doi: 10.18383/
j.tom.2019.00005
March 2021 | Volume 11 | Article 633176

https://doi.org/10.1007/s00330-019-06360-z
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1593/tlo.13832
https://doi.org/10.2967/jnumed.117.200501
https://doi.org/10.1186/s13244-019-0764-0
https://doi.org/10.1007/s10278-014-9716-x
https://doi.org/10.1593/tlo.13865
https://doi.org/10.1097/RLI.0000000000000180
https://doi.org/10.1038/srep23428
https://doi.org/10.18383/j.tom.2016.00208
https://doi.org/10.1080/0284186X.2017.1351624
https://doi.org/10.1097/RCT.0000000000000632
https://doi.org/10.1097/RCT.0000000000000632
https://doi.org/10.1038/s41598-018-31509-z
https://doi.org/10.1038/s41598-018-31509-z
https://doi.org/10.1148/radiol.2018172361
https://doi.org/10.1016/j.compmedimag.2015.04.006
https://doi.org/10.1016/j.compmedimag.2015.04.006
https://doi.org/10.1118/1.4954845
https://doi.org/10.1117/1.JMI.5.1.011020
https://doi.org/10.1117/1.JMI.5.1.011020
https://doi.org/10.1038/s41598-018-20713-6
https://doi.org/10.1016/j.ejrad.2019.108804
https://doi.org/10.1371/journal.pone.0178524
https://doi.org/10.1002/mp.12123
https://doi.org/10.1016/j.jmir.2019.11.006
https://doi.org/10.1371/journal.pone.0166550
https://doi.org/10.1371/journal.pone.0164924
https://doi.org/10.1371/journal.pone.0164924
https://doi.org/10.1117/1.JMI.5.1.011013
https://doi.org/10.1016/j.compmedimag.2015.12.001
https://doi.org/10.1200/CCI.17.00108
https://doi.org/10.1200/CCI.17.00108
https://doi.org/10.1016/j.ejmp.2019.12.019
https://doi.org/10.1016/j.radonc.2017.07.023
https://doi.org/10.1016/j.ejmp.2019.02.009
https://doi.org/10.1118/1.4829514
https://doi.org/10.1148/radiol.2522081593
https://doi.org/10.1038/sdata.2017.124
https://doi.org/10.18383/j.tom.2019.00005
https://doi.org/10.18383/j.tom.2019.00005
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao Reproducibility in Radiomics
57. Lewis JH, Jiang SB. A theoretical model for respiratory motion artifacts in
free-breathing CT scans. Phys Med Biol (2009) 54(3):745. doi: 10.1088/0031-
9155/54/3/018

58. Pan T, Lee TY, Rietzel E, Chen GT. 4D-CT imaging of a volume influenced
by respiratory motion on multi-slice CT.Med Phys (2004) 31(2):333–40. doi:
10.1118/1.1639993

59. Du Q, Baine M, Bavitz K, McAllister J, Liang X, Yu H, et al. Radiomic feature
stability across 4D respiratory phases and its impact on lung tumor
prognosis prediction. PloS One (2019) 14(5):e0216480. doi: 10.1371/
journal.pone.0216480

60. Lafata K, Cai J, Wang C, Hong J, Kelsey CR, Yin F-F. Spatial-temporal
variability of radiomic features and its effect on the classification of lung
cancer histology. Phys Med Biol (2018) 63(22):225003. doi: 10.1088/1361-
6560/aae56a

61. Valladares A, Beyer T, Rausch I. Physical imaging phantoms for simulation
of tumor heterogeneity in PET, CT, and MRI: an overview of existing
designs. Med Phys (2020) 47(4):2023. doi: 10.1002/mp.14045

62. Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open
infrastructure software platform to facilitate collaborative work in radiomics.
Med Phys (2015) 42(3):1341–53. doi: 10.1118/1.4908210

63. Samei E, Hoye J, Zheng Y, Solomon JB, Marin D. Design and fabrication of
heterogeneous lung nodule phantoms for assessing the accuracy and
variability of measured texture radiomics features in CT. J Med Imaging
(2019) 6(2):021606. doi: 10.1117/1.JMI.6.2.021606
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