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The ALYREF protein acts as a crucial epigenetic regulator in several cancers. However,
the specific expression levels and functional roles of ALYREF in cancers are largely
unknown, including for hepatocellular carcinoma (HCC). In a pan-cancer tissue analysis
that included HCC, we assessed the expression of ALYREF compared to normal tissues
using The Cancer Genome Atlas database. Associations between ALYREF gene
expression and the clinical characteristics of HCC patient samples were assessed
using the UALCAN database. Kaplan-Meier plots were performed to assess HCC
patient prognosis, and the TIMER database was used to explore associations between
ALYREF expression and immune-cell infiltrations. The same methods were used to
assess eIF4A3 expression in HCC patient samples. In addition, ALYREF- and elF4A3-
related differentially expressed genes (DEGs) were determined using LinkedOmics,
associated protein functionalities were predicted for positively associated DEGs, and
both the TargetScan and miRDB databases were used to predict potential upstream
miRNAs for control of ALYREF and eIF4A3 expression. We found that ALYREF gene
expression was dysregulated in several cancers and was significantly elevated in HCC
patient tissue samples and HCC cell lines. The overexpression of ALYREF was
significantly related to both advanced tumor-node-metastasis stages and poor HCC
prognosis. Furthermore, we found that eIF4A3 expression was significantly correlated
with ALYREF expression, and that upregulated eIF4A3 was significantly associated with
poor HCC patient outcomes. In the protein-protein interaction network, we identified eight
hub genes based on the positively associated DEGs in common between ALYREF and
eIF4A3, and the high expression levels of these hub genes were positively associated with
patient clinical outcomes. In addition, we identified miR-4666a-5p and miR-6124 as
potential regulators of ALYREF and eIF4A3 expression. These findings suggest that
increased ALYREF expression may function as a novel biomarker for both HCC diagnosis
and prognosis predictions.
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INTRODUCTION

It is estimated that over 18.1 million cancer patients, and 9.6
million liver cancer patients, died in 2008 globally (1), with
primary liver cancer being the seventh most frequent malignancy
in the world. Statistically, liver cancer has an incidence rate of 9.3
per 100,000 person-years and a mortality rate of 8.5 (2).
Hepatocellular carcinoma (HCC) is the most prominent
histological type of liver cancer and accounts for 75–90% of all
cases (3). Due to the multifactorial, multi-stage, and complex
genetic nature of HCC, its pathogenesis has not been fully
elucidated. It therefore remains urgent to reveal the
complicated molecular pathogenic and developmental
mechanisms for HCC.

Post-transcriptional methylation modifications represent
important epigenetic RNA modifications (4), and 5-
methylcytosine (m5C) additions to RNA play crucial roles in
pre-mRNA splicing (5), nuclear export, transcript stability,
translation initiation, RNA metabolism, tRNA recognition, and
stress responses. Accumulating evidence indicates that the m5C
modification status of RNA is associated with the pathogenesis of
numerous types of cancers (6–9), and the aberrant regulation of
m5C changes contributes to the pathogenesis of both tumor and
non-tumor diseases (8, 10). Studies have also shown that m5C-
related regulators play essential roles in tumor progression in
HCC (11, 12). Research into m5C modifications has also
provided evidence for the epigenetic m5C regulation of
lncRNA related to HCC tumorigenesis and progression (13).
However, the specific genomic distribution of m5C-related genes
for HCC remains unclear.

The Aly/REF nuclear export factor (ALYREF), also known as
THOC4, is an mRNA export adaptor that is part of the
transcription export (TREX) complex, and in human cells it
binds to a region near the 5’ end of mRNA in a CBP80-
dependent manner (14). Importantly, ALYREF acts as an
important nuclear export factor, and is involved with the
splicing of RNAs as part of an exon junction complex in a
cap-dependent manner (15). ALYREF, functions as a m5C
reader, bind with lysine 171 and promote mRNA exudation in
bladder cancer (16). ALYREF also contributes to alternative
RNA splicing, and studies have validated that ALYREF is
recruited to the 5’ end of RNAs. Studies have also determined
that ALYREF plays crucial roles in coordinating 3’-end
processing and in the nuclear export of non-polyadenylated
mRNAs (14, 17, 18). The overexpression of ALYREF is known
to occur in glioblastoma, and its function is considered a putative
target for glioblastoma therapy to regulate mRNA splicing (19).
Aberrantly expressed ALYREF has also been shown to facilitate
hypersensitivity in ovarian cancer cells to DNA-damaging
chemotherapeutic agents and is correlated with poor prognosis
(20). In the previous study, He et al. found that ALYREF was
significantly upregulated in HCC tumor tissues compared with
adjacent normal tissues. In addition, they found that the highly
expressed ALYREF may involve in cell cycle, mitotic reactome
and cellular nitrogen compound catabolic processes in
HCC (12).
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The eukaryotic translation initiation factor 4A3 (eIF4A3) is
known to be involved in the stimulation of ALYREF expression
(21), and eIF4A3 is also a core component of the exon junction
complex (22). Importantly, eIF4A3 is also a key mediator of RNA
splicing and spliced mRNA nuclear export (23) and has been
shown to be involved with the coordination and regulation of
the HCC cell cycle (24). However, specific mechanisms and
interactions between ALYREF and eIF4A3 are currently
unknown, so determining whether ALYREF and eIF4A3
interact in HCC is of great interest.

Here, we used The Cancer Genome Atlas (TCGA) database
and other online tools to explore ALYREF-related gene
expression profiles, immune-cell infiltrations, and HCC patient
sample prognosis. Importantly, we found that eIF4A3 was a
cofactor for ALYREF in HCC, and so a comprehensive analysis
of the regulatory events for both ALYREF and eIF4A3 may help
to better understand HCC progression.
MATERIALS AND METHODS

Patients and Online Databases
The mRNA transcription profiles for ALYREF and eIF4A3 were
collected from TCGA database (https://cancer.gov/tcga), and the
UALCAN database (http://ualcan.path.uab.edu) and were used
to identify associations between mRNA expression levels and
patient clinical characteristics (25). Patient clinical information
was classified into different subgroups based on age, gender, race,
tumor-node-metastasis (TNM) staging, tumor grading,
metastasis status, and TP53 mutations.

Prognosis Analyses
A Kaplan-Meier analysis (http://kmplot.com) was used to
investigate the prognostic role of ALYREF in HCC (26),
including overall survival (OS), progression-free survival (PFS),
relapse free survival (RFS), and disease-specific survival (DSS).
We divided patient sample data into either high-expressed and
low-expressed subgroups based on their sample expressions of
target genes. In addition, we determined overall HCC patient
survival based on their clinical characteristics, including TNM
staging and grading.

Cell Culture and Quantitative Reverse-
Transcription PCR (qRT-PCR)
We adopted LO2, Hep3B and Huh-7 cell lines (purchased from
Chinese Academy of Sciences, Shanghai, China) for the detection
of target genes expression. Cell cultured in DMEM (Gibco,
Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum and 1% penicillin as described previously (27). In
addition, total RNA was extracted form cell lines using Qiagen
RNeasy Mini kit according to Qiagen protocol (Qiagen, Hilden,
Germany). Relative mRNA expression levels were determined by
ABI7500 fast PCR instrument. GAPDH was used as the internal
control. Relative expression levels of ALYREF was quantified
using 2-DDCt method. The forward (F) and reverse (R) primer
July 2021 | Volume 11 | Article 633415
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sequences used for the amplification of ALYREF were 5,-
TCTGGTCGCAGCTTAGGAAC-3’, and 5,- TGCCACCTCTG
TTTACGCTC-3’, respectively.

Associations Between ALYREF and
eIF4A3, and Functional Prediction
To detect any associations between ALYREF and eIF4A3, we
used the cBioPortal (http://www.cbioportal.org/) tool based on
TCGA cohort (28, 29). In addition, we investigated the mutation
data for both ALYREF and eIF4A3, and any effects of their
mutations on mRNA transcription using the cBioPortal
database. Correlations between ALYREF and eIF4A3 were
validated using the Gene Expression Profiling Interactive
Analysis (GEPIA) database (http://gepia.cancer-pku.cn) (30).

Differentially Expressed Genes (DEGs) and
Network Analyses
To determine ALYREF- and eIF4A3-related DEGs, we used the
LinkedOmics database (http://www.linkedomics.org/) (31), and
assessed any relationships between ALYREF- and eIF4A3-related
DEGs using Spearman’s correlation coefficients. DEG data for
ALYREF and eIF4A3 were plotted using volcano maps, and the
top 10 positively-correlated DEGs were plotted using hotmaps.
For known and predicted protein-protein interactions, the
STRING database (http://string-db.org/) was used to detect
interactions between the 104 positively associated DEGs in
common between ALYREF and eIF4A3, and a protein-protein
interaction (PPI) network was constructed based on
those interactions.

Pathway Analyses
To annotate any pathway enrichments for the 104 positively
associated DEGs in common for ALYREF and eIF4A3, we used
both the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) tools and visualized the results using
DAVID (https://david.ncifcrf.gov/) (32, 33). The three domains
of the GO analyses, molecular functions (MF), biological
processes (BP), and cellular components (CC), were visualized
using the bioinformatics website (http://www.bioinformatics.
com.cn/).

Immune-Cell Infiltrations Related to
ALYREF and elF4A3
To calculate any immune-cell infiltrates and the immune purities
related to ALYREF and eIF4A3, we used the Tumor Immune
Estimation Resource (TIMER) database (https://cistrome.
shinyapps.io/timer/) and an algorithm to calculate the
immune-related characteristics of ALYREF and eIF4A3 in the
patient HCC samples as described previously (34).

Hub Gene Identification and
Prognostic Values
To select the hub genes in the network analysis, we utilized the
Cytoscape-based cytoHubba plug-in (version 0.1) to classify
genes based on different criteria (K-score: 2, node score cut-off:
0.2, degree cut-off: 2, and a max depth of 100). In addition, we
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used the UALCAN database to assess the prognostic values of
hub gene expressions for their HCC predictive values.

MicroRNA (miRNA) Predictions and
Functional Annotations
We used the TargetScan (http://www.targetscan.org/) (35) and
miRDB (http://mirdb.org/) databases to both identify and
predict upstream binding microRNAs for both ALYREF
and eIF4A3 and for functional annotations (36, 37).
RESULTS

ALYREF Gene Expression and
Clinical Characteristics
To explore the pan-cancer gene expression of ALYREF, we used
the UALCAN database. The results demonstrated that ALYREF
was dysregulated in tumor tissues compared to normal tissues
(Figure 1A), including primary liver cancer (Figure 1B). As
shown in Figure 1C, ALYREF expression was significantly
increased in HCC tissues compared to normal tissues, and its
expression in fibrolamellar carcinoma was higher compared to
that of hepatocholangio carcinoma (mixed). In addition, the
results showed that ALYREF expression in patients with TP53
mutations was upregulated compared to that seen in patient
samples without TP53 mutations (Figure 1D). We also observed
that ALYREF expression in Asian patient samples was elevated
relative to Caucasian patient samples (Figure 1E), and that
advanced TNM stages had higher ALYREF expressions (Stage
III versus Stage I, and Stage II versus Stage I) (Figure 1F). Similar
results were observed for tumor grading (Grade 4 versus Grades
1 and 2, and Grade 3 versus Grades 1 and 2, respectively)
(Figure 1G). Furthermore, our evaluation of the relative
mRNA expression levels of ALYREF in HCC cell lines and
normal liver cell line. Results showed that the ALYREF
expression was increased in the Huh-7 and Hep3B cell lines
compared to LO2 cell line (both P<0.05, Figure 1H). However,
the clinical characteristics of gender, age, and lymph node
metastasis status, showed no significant differences in ALYREF
expression (Supplementary Figures S1A–C). Taken together,
these findings have demonstrated that ALYREF expression was
increased in HCC tissues, and that this expression may be a novel
biomarker for HCC diagnosis.

The Prognostic Value of ALYREF in HCC
To comprehensively explore the prognostic value of ALYREF in
HCC, we applied the Kaplan-Meier online analysis system. As
shown in Figures 2A–D, we found that patient samples with
high ALYREF expression had poor prognosis, including OS (P =
0.0015), DFS (P = 0.011), RFS (P = 0.0022) and DSS (P = 0.0011).
Considering that TNM staging and tumor grading could affect
patient outcomes, we further assessed OS based on TNM stages
and tumor grades. Patient samples with high ALYREF
expression in stage I had poor prognosis (Figure 2E), and a
similar result was observed for stage II (Figure 2F). But in stage
July 2021 | Volume 11 | Article 633415
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III, there were no significant differences between patient samples
with low or high ALYREF expressions (Figure 2G).
Furthermore, samples with increased ALYREF expression in
TNM stages I-II, and III-IV, had unfavorable prognosis
(Figures 2H, I). In grades 1, 2, and 3, samples with high
ALYREF expression had poor HCC clinical outcomes
(Figures 2J–L). Collectively, our results indicate that patient
samples with high ALYREF expression had poor prognosis, and
ALYREF may be a promising prognostic biomarker for HCC.

Correlation Analysis Between
ALYREF and eIF4A3
ALYREF acts as a classical m5C regulator for RNA modifications
and has a close relationship with eIF4A3 expression. However,
this relationship between the two has not been fully evaluated in
HCC. Using a GEPIA analysis, we observed that ALYREF
expression was strongly correlated with eIF4A3 expression
(R = 0.82, P = 0, Figure 3A). For verification, we used
LinkedOmics for a further analysis, and the results indicated
that eIF4A3 had a similar significant correlation with ALYREF
Frontiers in Oncology | www.frontiersin.org 4
(Figure 3B). In addition, we determined both the negatively and
positively associated DEGs for ALYREF, including the top 10
positively associated DEGs, using a volcano map and a heat map,
respectively (Figure 3C). Similar results for eIF4A3 are shown in
Figure 3D. Together, these data strongly suggest that eIF4A3
expression is closely related to ALYREF expression in HCC.

The Expression of eIF4A3 in HCC and Its
Prognostic Value
A pan-cancer assessment of eIF4A3 expression indicated that it
was upregulated in many cancers, including liver cancer
(Supplementary Figures S2A, B). Similar to ALYREF, high
eIF4A3 expression was significantly related to TP53 mutations,
Asians and African-Americans, advanced TNM stages, and grade
3 (Supplementary Figures S2C–F). In addition, the beta value
for eIF4A3 promoter methylation was lower for liver cancer than
for normal tissue (Supplementary Figure S2G). The Kaplan-
Meier analysis showed that patients with low eIF4A3 expression
in their samples had longer survival times than those with high
eIF4A3 expression (Supplementary Figure S2H). These results
A

C D E

F G H

B

FIGURE 1 | Increased pan-cancer ALYREF mRNA expression and in liver hepatocellular carcinoma (LIHC) subgroups based on clinical characteristics. (A) ALYREF
was increased in pan-cancer tissues compared to normal tissues, especially in LIHC. (B) ALYREF mRNA expression was significantly increased in primary tumors
compared to normal tissues. (C–G) The transcription levels of ALYREF in different clinical trait-based groups. The specific groupings were based on pathophysiology,
TP53 mutation status, race, clinical stages, and clinical grades. (H) The expression levels of ALYREF mRNA were increased in Huh-7 and Hep3B cell lines compared
to normal liver cell line LO2.
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A C DB

E G HF

I K LJ

FIGURE 2 | Elevated ALYREF expression and poor prognosis in liver hepatocellular carcinoma. (A–D) A Kaplan-Meier analysis was used to assess ALYREF-
associated prognosis, and the results indicated good prognostic values for ALYREF in OS, RFS, PFS, and DSS. (E–L) Kaplan-Meier analyses representing
differences in OS in the various patient subgroups based on clinical staging and grading.
A C

DB

FIGURE 3 | Genomic correlations between ALYREF and eIF4A3. (A, B) ALYREF and eIF4A3 expressions were strongly correlated with each other. (C, D) ALYREF-
and eIF4A3-associated differentially expressed genes (DEGs) and the top-ten DEGs.
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demonstrate that eIF4A3 may have an oncogenic role in HCC,
and that it may also be a potential biomarker for HCC diagnosis
and for predicting prognosis.

ALYREF and eIF4A3 Mutations and
Immune-Cell Infiltrations
To assess the frequencies of ALYREF and eIF4A3 gene
mutations, the cBioPortal genomic mutation database was
used. The somatic mutation frequencies for both ALYREF and
eIF4A3 were found to be 0.3%, with fusion mutations observed
in ALYREF, and missense mutations found in eIF4A3
(Figure 4A). In addition, genetic alterations for both were 17
cases out of 372 cases in TCGA-LIHC dataset (approximately
5%), with details of the mutation subtypes shown in Figure 4B.
An assessment of the effect of different mutation subtypes on
gene expression indicated that there were significant differences
between ALYREF and eIF4A3 expression levels (Figure 4C).
Frontiers in Oncology | www.frontiersin.org 6
We next assessed any associations between immune-cell
infiltrations in the patient samples and ALYREF and eIF4A3
expression levels. We found that ALYREF expression levels were
significantly associated with B cells, macrophages, and dendritic
cells (partial correlation >0.4, P<0.001), and that eIF4A3
expression was significantly associated with dendritic cells
(partial correlation >0.4, P<0.001) (Figure 4D). These results
indicate that ALYREF and eIF4A3 are closely correlated with
some gene mutations and immune-cell infiltrations, providing
promising clues for both HCC diagnosis and possible
immune therapies.

Detection of Positively Associated DEGs
in Common Between ALYREF and elF4A3,
and Pathway Enrichment Analyses
For ALYREF, we identified 835 positively associated DEGs
(Spearman’s correlation coefficients > 0.4), and 150 positively
A

C

D

B

FIGURE 4 | ALYREF- and eIF4A3-related genomic mutations, and immune-cell infiltrations. (A, B) The different genetic alterations of ALYREF and eIF4A3.
(C) ALYREF- and eIF4A3-associated mRNA expression levels for the different types of somatic mutations. (D) Correlation analyses for ALYREF and eIF4A3 for
immune purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltrations, respectively.
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associated DEGs for eIF4A3. As shown in Figure 5A, 104 of
these DEGs were found to be in common for ALYREF and
eIF4A3. For these 104 DEGs, a GO analysis for functional
annotations showed that DNA replication initiation was
significantly enriched in the biological processes category, and
nucleoplasm and membrane were significantly enriched in the
cellular component. For the molecular function component, poly
(A) RNA binding and ATP binding were significantly enriched
(Figure 5B). In addition, the KEGG analysis showed that DNA
replication, cell cycle, and spliceosome were all pathways that
were significantly enriched (Table 1).

The Protein-Protein Interaction (PPI)
Network, and Identification of Hub Genes
We constructed a PPI network based on the 104 DEGs in
common between ALYREF and eIF4A3 (Figure 6A) and
found that these DEGs frequently interacted with each other.
Based on CytoScape software, we identified eight hub genes
(BIRC5, MCM2, MCM3, MCM6, NOP56, PCNA, RFC4, and
SNRPD1) by degree of association (Figure 6B). We next
assessed the expression levels of these hub genes and found
that all their expression levels were increased in HCC tissues
Frontiers in Oncology | www.frontiersin.org 7
(Figures 6C–J), and that high hub gene expression was
significantly related to poor clinical outcomes for HCC patients
(Supplementary Figure S3). These results demonstrate that
these hub genes may have oncogenic roles in HCC
tumor development.

Potential Upstream miRNAs for Regulating
ALYREF and eIF4A3 Expression
miRNAs can regulate target-gene expression by binding to
target-gene mRNA. We explored potential upstream miRNAs
for regulating ALYREF and eIF4A3 expression using the
TargetScan and miRDB websites, and the details are shown in
Figure 7A. Based on the TargetScan analysis, we identified 65
potential upstream miRNAs for ALYREF, and 435 potential
upstream miRNAs for eIF4A3. In addition, based on the
miRDB analysis, we identified 18 potential upstream miRNAs
for ALYREF, and 24 potential upstream miRNAs for eIF4A3.
Both miR-4666a-5p and miR-6124 were miRNAs that were in
common for ALYREF and eIF4A3 based on these analyses. A
schematic representation (Figure 7B) illustrates the potential
binding sites for miR-4666a-5p and miR-6124 within the 3’
untranslated regions (3’-UTRs) of ALYREF and eIF4A3.
A B

FIGURE 5 | Analysis of co-related genes and pathways between ALYREF and eIF4A3. (A) The differentially expressed genes for both ALYREF and eIF4A3, and the
104 in common between them. (B) The Gene Ontology analysis indicated that ALYREF and eIF4A3 have many co-related pathways in common.
TABLE 1 | KEGG analysis of the 104 common DEGs.

Term Count p-value Genes Fold
enrichment

FDR

DNA replication 7 2.00E-07 PCNA, RFC4, MCM7, MCM3, MCM5, MCM6, MCM2 25.73529412 1.46E-05
Cell cycle 9 2.74E-06 CDC45, PCNA, MCM7, CHEK1, MCM3, MCM5, MCM6, MCM2, ANAPC11 9.684361549 9.53E-05
Spliceosome 9 3.92E-06 EFTUD2, ISY1, HNRNPM, SNRNP40, PPIL1, PRPF38A, SNRPD1, DDX23, LSM2 9.233926129 9.53E-05
Pyrimidine metabolism 5 0.004612 NT5C, UCK2, TK1, TYMS, DCTPP1 7.193094629 0.084178
RNA transport 6 0.006302 NUP85, SUMO2, EIF3D, RAE1, RAN, NUP37 4.963235294 0.092004
Ribosome biogenesis in eukaryotes 4 0.020392 NOP56, UTP6, UTP18, RAN 6.701414743 0.248101
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A
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FIGURE 6 | Identification of co-related hub genes for ALYREF and eIF4A3. (A) The protein-protein interaction network for the 104 co-related differentially expressed
genes between ALYREF and eIF4A3. (B) In total, eight co-related hub genes were identified for ALYREF and eIF4A3. (C–J). The expression levels of these hub
genes in primary liver cancer samples and in normal samples. Hub gene expressions were elevated in tumor tissues compared to normal tissues.
A B

FIGURE 7 | Identification of co-targeting miRNAs for ALYREF and eIF4A3. (A) A Venn diagram showing the possible overlap in miRNAs between ALYREF and
eIF4A3. (B) miR-4666a-5p and miR-6124 may both interact with ALYREF and eIF4A3 binding sites.
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Collectively, these findings suggest that both miR-4666a-5p and
miR-6124 may be potential upstream regulators of ALYREF and
eIF4A3 expression.
DISCUSSION

Methylation modifications are crucial cues for malignancy
initiation and progression (38, 39), and m5C methylation has
recently attracted more research attention (40). As one of most
common post-transcriptional modifications of RNA, m5C
methylation has been found to play pivotal roles in several
cancers, and has also shown great potential as a prognostic/
predictive biomarker and a cancer therapy target for bladder
cancer (16), glioblastoma multiforme (41), leukemia (42), and
HCC (12). As m5C methylation is known to be involved in
tumor progression, it is crucial to detect and unravel its
molecular mechanisms.

Previous studies have reported that ALYREF, a reader of m5C
methylation, could recognize and bind to m5C sites to exert
biological functions. ALYREF has also been shown to be involved
in multiple RNA processing events, and its aberrant expression
has been correlated with poor cancer patient survival (14, 19, 20).
Here, we have demonstrated that ALYREF expression was
increased in HCC tissues, and that its high expression levels
were significantly correlated with both advanced TNM staging
and poor prognosis. Similar to our findings, He et al. (12) found
that high ALYREF and NSUN4 expression levels were
significantly associated with poor prognosis in HCC patients.
Sun et al. reported that m5C-modified H19 promoted cancer
development through the recruitment of G3BP1 in HCC (4).
Taken together, both m5C regulators and m5C methylation play
key roles in HCC development and progression and exploring
the regulation mechanisms of m5C methylation may help to
develop target-specific drugs and HCC gene therapies.

We also found that ALYREF expression was remarkably co-
related to eIF4A3 expression, and that eIF4A3 expression was
upregulated in HCC tissues compared to adjacent non-tumor
tissues. Consistent with these findings, Lin et al. (22) reported
that eIF4A3 mRNA was overexpressed in both cirrhosis and
HCC tissue samples, and that high eIF4A3 expression was
significantly correlated with shorter patient survival times.
Chan et al. have reported that eIF4A3 may have a splice-
dependent influence on mRNA translation (43), but more
importantly, eIF4A3 has been shown to stimulate ALYREF
binding not only at spliced RNAs sites, but also at single-exon
transcripts sites (44). Collectively, these findings indicate that
elevated eIF4A3 expression may function as an oncogene in
HCC, and that it may be a novel therapeutic target for HCC.

We identified both miR-4666a-5p and miR-6124 as potential
upstream regulators of ALYREF and eIF4A3 and identified the
overexpression of eight hub genes (BIRC5, MCM2, MCM3,
MCM6, NOP56, PCNA, RFC4 and SNRPD1) in HCC tissues.
In addition, the increased expressions of these hub genes were
significantly associated with poor prognosis in patients with
HCC. Concordant with these results, Cao et al. found that
MCM2-7 expression was also both upregulated and associated
Frontiers in Oncology | www.frontiersin.org 9
with poor patient outcomes (45), and similarly, elevated PCNA
expression was reported in HCC samples and its high expression
was significantly related to poor prognosis in HCC patients (46).
A recent study has also reported that RFC4 expression was
increased in HCC samples, and that this increased RFC4 was
an indicator for poor HCC prognosis (47). These findings
suggest that these identified hub genes may also be potential
biomarkers and therapeutic targets for HCC.
CONCLUSIONS

Our findings have revealed that high ALYREF expression was
significantly correlated with poor prognosis in HCC patients,
and that the upregulation of ALYREF was significantly related to
eIF4A3 upregulation. Based on these findings, the present study
provides a better understanding of the function of a m5C
regulator. ALYREF and eIF4A3 may represent novel
biomarkers for HCC progression and their further study is
warranted as potential targets for HCC therapy.
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Supplementary Figure 1 | ALYREF mRNA expression based on clinical-
characteristic subtypes. (A–C) ALYREF mRNA expression showed no significant
differences based on gender, age, staging, and early metastasis status.

Supplementary Figure 2 | Increased pan-cancer expression of eIF4A3 mRNA
and in clinical characteristic-based liver hepatocellular carcinoma (LIHC) subgroups.
(A) eIF4A3 mRNA expression was increased in pan-cancer tissues compared to
normal tissues, including LIHC. (B) eIF4A3 mRNA expression was significantly
increased in primary tumor samples compared to normal tissue samples.
(C–F) ALYREF transcription levels in different clinical trait-based groups. The
Frontiers in Oncology | www.frontiersin.org 10
specific groupings were based on TP53 mutation status, race, clinical staging, and
clinical grading. (G) The beta values for eIF4A3 mRNA expression in primary liver
cancer and in normal samples. (H) A Kaplan-Meier analysis showed that high
eIF4A3 expression indicated poor prognosis compared to low eIF4A3 expression.

Supplementary Figure 3 | A prognosis analysis based on the eight hub
genes. (A–H) An overall survival analysis using the eight hub genes (BIRC5,
MCM2, MCM3, MCM6, NOP56, PCNA, RFC4, and SNRPD1) showed that
their high expressions were associated with poor prognosis compared to their
low-expression subgroups.
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