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Objectives: The aim of the current study was to develop and validate a nomogram based
on CT radiomics features and clinical variables for predicting lymph node metastasis
(LNM) in gallbladder cancer (GBC).

Methods: A total of 353 GBC patients from two hospitals were enrolled in this study. A
Radscore was developed using least absolute shrinkage and selection operator (LASSO)
logistic model based on the radiomics features extracted from the portal venous-phase
computed tomography (CT). Four prediction models were constructed based on the
training cohort and were validated using internal and external validation cohorts. The most
effective model was then selected to build a nomogram.

Results: The clinical-radiomics nomogram, which comprised Radscore and three clinical
variables, showed the best diagnostic efficiency in the training cohort (AUC = 0.851),
internal validation cohort (AUC = 0.819), and external validation cohort (AUC = 0.824).
Calibration curves showed good discrimination ability of the nomogram using the
validation cohorts. Decision curve analysis (DCA) showed that the nomogram had a
high clinical utility.

Conclusion: The findings showed that the clinical-radiomics nomogram based on
radiomics features and clinical parameters is a promising tool for preoperative
prediction of LN status in patients with GBC.

Keywords: gallbladder cancer, radiomics, computed tomography, lymph node metastasis, nomogram
INTRODUCTION

Gallbladder cancer (GBC) is the most common malignant tumor of the biliary tract, accounting for
80%–95% of biliary tract cancer cases in the world and is ranked the sixth among gastrointestinal
cancers (1). GBC is commonly detected in patients along with cholecystitis; however, early diagnosis
is challenging owing to quiet symptoms and limited imaging methods. Poor diagnosis results in
low median overall survival and low 5-year survival rate (2, 3). Although surgery is associated
with poor prognosis, it is the primary approach for treatment of patients with GBC (4). However,
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only 20%–30% of patients diagnosed in the clinic can undergo
radical resection and the postoperative recurrence rate reaches
50%–70% owing to late diagnosis (5).

Lymph node metastasis (LNM) is the most important factor
in clinical staging of GBC. Patients with positive LNM are
classified as stage IIIb, based on the 8th edition of the
American Joint Committee on Cancer (AJCC) gallbladder
cancer staging system (GBC). Stage IIIb indicates worse
prognosis compared with prognosis of earlier stages (6–8).
Radical cholecystectomy including expanded systemic lymph
node (LN) dissection is recommended to improve surgical
outcome (5, 9). However, not all patients can benefit from
radical lymphadenectomy. Previous studies reported that
extended radical resection should not be conducted in patients
with negative LNM because it may cause serious postoperative
complications (10, 11). Conversely, patients diagnosed with
extensive LNM can choose neoadjuvant therapy or other
conversion treatments as the first choice to improve tumor
resectability. Therefore, studies should develop methods for
accurately predicting LNM status for patients with GBC before
making treatment decision.

Computed tomography (CT) is a widely used imaging
method; however, it is limited in discovering positive LNM
and the diagnostic rate is approximately 24% (12). Most
swollen LN caused probably by cholecystitis or biliary
obstruction (13) can be detected through CT examination
whereas positive LNs < 1 mm cannot be detected by the naked
eye (14). Therefore, it is difficult for surgeons to distinguish LNM
with the assistance of the conventional imaging method (15).

Radiomics technology, a product of artificial intelligence, can
extract several imaging features from quantitative medical
images (16, 17). Radiomics technology is a powerful tool for
predicting LNM in different cancers (18–24). However, studies
have not explored prediction of LNM based on radiomics
technology in GBC.

The aim of the current study was to develop and validate a
clinical-radiomics nomogram based on CT images that
incorporate the radiomics signature and clinical pathological
characteristics to quantitatively predict LNM of GBC.
MATERIALS AND METHODS

Patients
A total of 353 patients with GBC from two medical centers were
enrolled to the current study. The training cohort and internal
validation cohort comprised 209 patients and 47 patients with
radical cholecystectomy recruited from the Second Affiliated
Hospital Zhejiang University School of Medicine (Zhejiang,
China) between January 2013 and December 2018, and
between January 2019 and December 2020, respectively. The
external validation cohort comprised 97 patients with radical
cholecystectomy enrolled from the First Affiliated Hospital
Zhejiang University School of Medicine (Zhejiang, China)
between January 2013 and December 2018 following the same
enrollment procedures. Inclusion criteria were as follows:
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(1) pathologically confirmed GBC with an available histological
report; (2) preoperative enhancement CT in abdomen performed
within 1 month before surgery; (3) no chemotherapy or other
treatment before operation; and (4) complete clinical and
pathological data. Exclusion criteria were as follows: (1) had
received any treatment (radiotherapy, chemotherapy, or
immunotherapy) before CT examination; (2) patients that have
undergone palliative surgery without lymphadenectomy;
(3) lesions that cannot be identified in enhancement CT images;
and (4) incomplete clinical data. A flowchart for patient
recruitment is shown in Figure 1. The ethics committees of two
hospitals approved this retrospective analysis and waived the
requirement for informed consent.

Baseline clinical information, including age, gender, tumor
markers, inflammatory indicators, presence of gallstones,
symptoms, and CT report, was obtained from electronic
medical records. Details on clinical characteristics are
presented in Table 1. The gold standard for LNM was
pathologically evaluated after surgery. Positive LNs were
determined based on preoperative CT images by experienced
radiologists, following the 8th AJCC TNM staging system. A flow
diagram showing the study procedures is shown in Figure 2.

Acquisition
Abdominal CT enhancement examinations were performed on
all patients within 1 month before the operation. Enhanced CT
scan in the first hospital was performed using three CT scanners,
including a 64-slice CT, a 256-slice CT (Philips Healthcare), and
a 16-slice CT (Toshiba Medical System). Contrast-enhanced CT
scan in the second hospital was performed using two CT
scanners, including a 40-slice CT (Siemens AG) and a 320-
slice CT (Toshiba Medical Systems). CT scan parameters of the
two hospitals were uniform and included the following: tube
voltage at 120 kVp, tube current ranging from 125 to 300 mAs,
pitch ranging from 0.6 to 1.25 mm, slice thickness ranging from 3
to 5 mm, and reconstruction interval from 3 to 5 mm. A high-
pressure syringe was used to administer the non-ionic contrast
agent Ultravist (Bayer Schering Pharma) (1.5 ml/kg) at a rate of
3.0 ml/s. CT scans of the arterial phase and portal vein phase
were performed at 25 to 35 s and 55 to 75 s after administration
of the non-ionic contrast agent.

Image Segmentation and Extraction
of Features
Regions of interest (ROIs) were manually segmented slice by
slice around the lesions using an open-source imaging platform
(ITK-SNAP, version 3.6.0). The portal venous phase was selected
for image segmentation because it indicates the tumor boundary
more accurately. Voxel size of the images was resampled to a
normalized 1 × 1 × 1 mm3 to eliminate the pixel difference of the
images, and voxel size and all the tumor regions were quantified
as 64-gray levels to normalize the inhomogeneity of datasets due
to variable tube voltages. Features were extracted from each
segmented ROI and were divided into non-textual features and
textural features using an in-house Python script (Pyradiomics
version: stable; http://github.com/Radiomics/pyradiomics) (25).
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FIGURE 1 | Recruitment pathway of patients.
TABLE 1 | The clinical characteristics of the training cohort and the validation cohorts.

Characteristics Training cohort (n = 209) Internal validation cohort (n = 47) External validation cohort (n = 97)

Gender Male 66 (31.6%) 13 (27.7%) 28 (28.9%)
Female 143 (68.4%) 34 (72.3%) 69 (71.1%)

Age <60 years 66 (31.6%) 14 (29.8%) 32 (33.0%)
≥60 years 143 (68.4%) 33 (70.2%) 65 (67.0%)

Gallstone Yes 103 (49.3%) 15 (31.9%) 49 (50.5%)
No 106 (50.7%) 32 (68.1%) 48 (49.5%)

Cholecystitis Yes 132 (63.2%) 35 (37.1%) 61 (62.9%)
No 77 (36.8%) 12 (25.5%) 36 (37.1%)

Jaundice Yes 26 (12.4%) 7 (14.9%) 9 (9.3%)
No 183 (87.6%) 40 (85.1%) 88 (90.7%)

NLR Normal 105 (50.2%) 25 (53.2%) 48 (49.5%)
Elevated 104 (49.8%) 22 (46.8%) 49 (50.5%)

PLR Normal 106 (50.7%) 28 (59.6%) 47 (48.5%)
Elevated 103 (49.3%) 19 (40.4%) 50 (51.5%)

ALT (U/L) Normal 140 (67.0%) 31 (66.0%) 71 (73.2%)
Elevated 69 (33.0%) 16 (34.0%) 26 (26.8%)

AST (U/L) Normal 150 (71.8%) 34 (72.3%) 76 (78.4%)
Elevated 59 (28.2%) 13 (27.7%) 21 (21.6%)

AFP (ng/ml) Normal 11 (5.3%) 3 (6.4%) 5 (5.2%)
Elevated 198 (94.7%) 44 (93.6%) 92 (94.8%)

CEA (ng/ml) Normal 60 (28.7%) 14 (29.8%) 22 (22.7%)
Elevated 149 (71.3%) 33 (70.2%) 75 (77.3%)

CA125 (ng/ml) Normal 55 (26.3%) 14 (29.8%) 18 (18.6%)
Elevated 154 (73.7%) 33 (70.2%) 79 (81.4%)

CA199 (ng/ml) Normal 101 (48.3%) 24 (51.1%) 44 (45.4%)
Elevated 108 (51.7%) 23 (48.9%) 53 (54.6%)

CT reported LN status Positive 84 (40.2%) 15 (31.9%) 34 (35.1%)
Negative 125 (59.8%) 32 (68.1%) 63 (64.9%)

Radscore −0.143 0.294 −0.244
(−0.033 to 0.234) (−0.208 to 0.243) (−0.019 to 0.220)
Frontiers in Oncology | www.f
rontiersin.org
 3
 Septembe
NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CEA, carcinoembryonic antigen; CA125,
carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9.
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Reproducibility of intra-observer and inter-observer agreement
for ROI drawing was evaluated using 20 randomly chosen samples
drawn fromportal venous phase images by two radiologists blinded
from patients’ characteristics. A radiologist (reader 1) with 20 years
of abdominal imaging experience and a surgeon (reader 2) with
15 years of surgical experience reviewed all CT scans to explore
characteristics of each image.Reader 1 performedROI drawing and
feature extraction twice in a 2-week period, following a similar
procedure to assess intra-observer reproducibility. In addition,
reader 2 independently carried out the same procedure. Then,
inter-observer agreement was assessed by comparing the results
with the radiomics features extracted from the first ROI between
two readers. Intra-observer and inter-observer agreement were
assessed by intraclass correlation coefficient (ICC). An ICC > 0.75
represented satisfactory agreement.

Radiomic Feature Selection and
Radscore Building
Least absolute shrinkage and selection operator (LASSO) algorithm
was used to determine penalty coefficient with 10-fold cross-
validation, which was then used to select optimal features from
the training cohort (26, 27). A radiomics score (Radscore) of each
patient was calculated by a linear combination of selected features,
which were weighted based on their respective coefficients
(Figure 3). More details on LASSO regression and radiomics
features are presented in the Supplementary Material.
Frontiers in Oncology | www.frontiersin.org 4
Development of CT Reported-Only,
Clinical, and Clinical-Radiomics Model
Univariate logistic regression analysis was used to explore the
relationship between LNM status and each clinical parameter,
biomarkers, and Radscore in the training cohort. Significantly
correlated clinical risk factors were then used for stepwise
multivariate logistic regression analysis to build the clinical-
only model. CT-reported LN status, an independent risk
factor, was used to build a CT reported-only model.

Moreover, clinical risk factors of the clinical-only model and
Radscore were used for multiple logistic regression analysis to
build the clinical-radiomics model.
Model Comparison and
Nomogram Development
Each model was selected based on the minimal Akaike’s
information criterion (AIC) to determine the best diagnostic
model. Area under the curve (AUC) was used to determine
prediction accuracy of the four models in the training and
validation cohort. Sensitivity, specificity, and accuracy of each
model in the primary and validation cohort were calculated. A
nomogram was then built based on the most effective model
for LNM prediction of GBC. A calibration curve was plotted
to evaluate both discrimination and calibration of the
best nomogram.
FIGURE 2 | Workflow of this study. Tumors are segmented manually on axial portal venous-phase CT section. Radiomics features were extracted from each CT
images. LASSO regression was used to select radiomics features. The radiomics signature is constructed by a linear combination of selected features. Then, we built
four models and compared their prediction performances with ROC curves. As a result, a clinical-radiomics nomogram was developed based on the best model.
Calibration curves and DSA curves were used to evaluate the clinical utility of the nomogram.
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Clinical Use of the Nomogram
To explore the clinical utility of the nomogram, decision curve
analysis (DCA) was performed based on four models to determine
the utility of the nomogram for a range of threshold probabilities.

Statistical Analysis
Statistical analyseswereconductedusingSPSSsoftware (version21.0)
and R software (version 4.0.0). Continuous variables were compared
using Mann–Whitney U test, whereas category variables were
compared using Chi-squared or Fisher exact tests. Univariate and
multivariate Cox regression analyses were performed to determine
predictors of LN. Variables with p-value < 0.05 in univariate analysis
were selected for multivariate analysis. LASSO regression analysis
was performed using the “glmnet” package in R software version
4.0.0. “pROC” package was used to plot the ROC curve. Nomogram
construction and calibration plots were generated using “rms”
package in R. DCA was performed using the “dca.R” package. A
two-sided p < 0.05 was considered statistically significant.
RESULTS

Clinical Characteristics
Patient characteristics in the training and validation cohorts are
presented in Table 1. Analysis showed no significant differences
in clinicopathological characteristics between the three groups.
Frontiers in Oncology | www.frontiersin.org 5
Feature Selection and
Radscore Development
A total of 293 radiomics features based on the training cohort
were reduced to 14 potential predictors using LASSO regression
analysis (Figure 2). A radiomics score (Radscore) was then
calculated using the formula presented in the Supplementary
material. Findings from univariate logistic regression analysis
showed that the Radscore (OR = 9.610; 95% CI: 4.579–20.168,
p < 0.001) was an independent variable for prediction of LNM in
the training cohort (Table 2).

Development of the Clinical Model and CT
Reported-Only Model
Results of the univariate analysis and the multivariate regression
analysis using training cohort are shown in Table 2. Univariate
analysis of the training cohort identified NLR, PLR, aspartate
aminotransferase (AST), carcinoembryonic antigen (CEA),
carcinoembryonic antigen 125 (CA125), carcinoembryonic
antigen 199 (CA199), and CT reported LN status as
statistically significant risk factors (p < 0.05) (Table 2).
Statistically significant variables selected from the univariate
analysis were used for binary multiple logistic regression, and
the findings showed that CEA (OR = 2.898; 95% CI: 1.418–5.921;
p = 0.004), CA199 (OR = 3.597; 95% CI: 1.921–6.733; p < 0.001),
and CT reported LN status (OR = 2.962; 95% CI: 1.557–5.635;
p = 0.001) were independent risk factors of LNM in the training
cohort. The three independent risk factors based on the logistic
multivariate regression analysis were used for construction of the
clinical model (Table 3). In addition, CT reported LN status
identified as an independent variable in univariate analysis was
used to build CT reported-only model (OR = 4.325; 95% CI:
2.396–7.809; p < 0.001).

Development of the Clinical-
Radiomics Model
Eight factors, namely, NLR, PLR, AST, CEA, CA125, CA199, CT
reported LN status, and Radscore, were used for binary
multivariate logistic regression analysis (Table 2). The findings
showed that CEA (OR = 3.122; 95% CI: 1.426–6.835; p = 0.004),
CA199 (OR = 2.592; 95% CI: 1.288–5.215; p = 0.008), CT
reported LN status (OR = 2.597; 95% CI: 1.278–5.279;
p = 0.008), and Radscore (OR = 7.415; 95% CI: 3.384–16.246;
p < 0.001) were significant predictors of LNM; thus, they were
used to build a clinical-radiomics model for LNM (Table 3).
Notably, Radscore was the dominant factor affecting prediction
of LNM in the clinical-radiomics model.

Model Comparison and Validation
of the Nomogram
AIC was used to determine the goodness of model fitting.
Comparison was performed for the clinical model (AIC =
242.27), the Radscore-only model (AIC = 237.31), the CT
reported-only model (AIC =267.68), and the clinical-radiomics
model (AIC = 209.18). Notably, the clinical-radiomics model had
the lowest AIC value (AIC = 209.18) and was identified as the
best model.
A

B

FIGURE 3 | (A) LASSO, least absolute shrinkage and selection operator. A total
of 293 radiomics features. (B) Tuning parameter (l) selection in the LASSO model
used 10 cross-validation viaminimum criteria (the 1-SE criteria). Vertical lines were
drawn at the optimal values. The optimal l (l = 0.044) resulted in 14 features with
nonzero coefficients.
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ROC curves were used to evaluate the accuracy and predictive
value of the four models (Table 4 and Figure 5A). In the training
cohort, the clinical-radiomics model showed the highest
discrimination between LN positive and negative cases, with an
AUCof0.851 (95%CI, 0.801–0.901). TheAUCvalue of the clinical-
radiomicsmodelwas significantly higher comparedwith that of the
clinical model (AUC 0.779; 95% CI, 0.715–0.842; p = 0.001),
Radscore-only model (AUC 0.774; 95% CI, 0.712–0.836; p =
0.001), and CT reported-only model (AUC 0.669; 95% CI, 0.595–
0.743; p < 0.001). In the internal validation cohort and external
validation cohort, the radiomics model showed the highest AUC of
0.824 (95% CI, 0.741–0.908) and 0.819 (95% CI, 0.645–0.993),
respectively. The clinical-radiomics model showed the best
accuracy for prediction efficiency of LNM in the training cohort
(sensitivity: 86.7%; specificity: 67.6%; accuracy: 78.0%), internal
validation cohort (sensitivity: 73.3%; specificity: 100%; accuracy:
91.5%), and external validation cohort (sensitivity: 78.7%;
specificity: 80%; accuracy: 79.4%) (Table 4).

The clinical-radiomics model showed the best discrimination
and predictive ability among the four models. Therefore, a
clinical-radiomics nomogram was successfully developed based
on the clinical-radiomics model (Figure 4). A calibration curve
of the clinical-radiomics nomogram for the probability of LNM
showed good consistency between prediction and actual LN
status in the three cohorts (Figure 5B).

Clinical Application
DCA curves for the clinical-radiomics model, the clinical model,
the Radscore-only model, and the CT reported-only model in
both the training and validation cohorts are shown in Figure 5C.
The threshold probability of the clinical-radiomics nomogram
was more than 10%, which was better compared with the other
three models in predicting LNM. The combined nomogram
including radiomics signature showed the maximum clinical
utility at almost all threshold probabilities.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

To the best of our knowledge, this is the first study to develop a
clinical-radiomics nomogram based on radiomics technology for
preoperative prediction of LNM in patients with GBC. The
clinical-radiomics model incorporated radiomics signature and
three clinical variables including CEA, CA199, and CT reported
LN status. The Radscore was calculated based on the radiomics
signature and the findings showed that it was an independent
factor in predicting LNM. Addition of radiomic analysis
significantly improved the predictive accuracy of the combined
model. The findings indicated that the clinical-radiomics
nomogram is effective for preoperative prediction of LNM in
GBC and can help in making clinical decisions during
GBC treatment.

Previous studies explored non-invasive methods that can
quantitatively predict preoperative LNM in GBC. Several
conventional imaging examinations such as contrast-enhanced
CT, MRI, and 18-FDG PET/CT are used to determine the LN
status and LN larger than 1 cm in diameter is considered a
standard for positive LNM in these examinations. However,
swollen LN can be caused by biliary inflammation or biliary
obstruction. Petrowsky et al. reported that the accuracy of
enhanced CT and PET/CT for regional LNM prediction was
24% vs. 12% (12). A meta-analysis of 14 institutes reported that
although MRI is effective in predicting LNM of GBC, it is
challenging to detect LNM less than 1 cm (28). Fine needle
aspiration for pathological biopsy is the gold standard for
preoperative diagnosis; however, it can only be applied to a
limited range of patients. The method is associated with severe
complications such as bleeding, tumor dissemination, and
lymphatic fistula owing to the use of fine needle aspiration.
Several studies report that inflammation and metabolites in
tumor areas of the biliary system may cause LN hyperplasia
(29–31). Therefore, the current study established a clinical model
TABLE 2 | Univariate and multivariate logistic regression analysis for LN metastasis in the primary cohort.

Characteristics Univariate analysis Multivariate analysis

Clinical model Clinical-radiomics model

OR (95% CI) P OR (95% CI) P OR (95% CI) p

Gender 1.301 (0.723–2.343) 0.380 NA NA NA NA
Age 0.762 (0.425–1.368) 0.363 NA NA NA NA
Gallstone 0.776 (0.450–1.337) 0.361 NA NA NA NA
Cholecystitis 0.929 (0.529–1.631) 0.797 NA NA NA NA
Jaundice 1.643 (0.716–3.770) 0.241 NA NA NA NA
NLR 2.138 (1.229–3.718) 0.007 1.207 (0.590–2.467) 0.607 1.044 (0.484–2.252) 0.913
PLR 2.622 (1.498–4.590) 0.001 1.963 (0.977–3.944) 0.058 1.888 (0.900–3.962) 0.093
ALT 1.497 (0.839–2.672) 0.172 NA NA NA NA
AST 2.014 (1.092–3.715) 0.025 1.403 (0.680–2.897) 0.360 1.299 (0.579–2.912) 0.525
AFP 3.200 (0.825–12.419) 0.093 NA NA NA NA
CEA 4.323 (2.251–8.303) <0.001 2.898 (1.418–5.921) 0.004 3.183 (1.423–7.123) 0.005
CA125 3.925 (2.016–7.643) <0.001 1.872 (0.857–4.087) 0.116 1.557 (0.661–3.672) 0.311
CA199 4.895 (2.722–8.800) <0.001 3.597 (1.921- 6.733) 0.001 2.230 (1.074–4.632) 0.031
CT reported LN status 4.325 (2.396–7.809) <0.001 2.962 (1.557–5.635) 0.010 2.261 (1.075–4.755) 0.031
Radscore 9.610 (4.579–20.168) <0.001 NA NA 6.645 (3.025–14.597) <0.001
Septemb
er 2021 | Volume 11 | Article
OR, odds ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CEA, carcinoembryonic antigen;
CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9, NA, not available.
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edictive value between four models.

Training cohort ernal validation cohort External validation cohort

Specificity Accuracy AUC (9 ficity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI)

% (84/111) 75.7% (141/209) 67.5% 0.669 (0.59 71.9% (29/47) 61.7% 0.559 (0.379–0.739) (26/47) 55.3% (42/50) 84.0% (68/97) 70.1% 0.697 (0.590–0.803)
% (67/111) 60.4% (147/209) 70.3% 0.774 (0.71 93.8% (42/47) 89.4% 0.763 (0.668–0.857) (27/47) 57.4% (42/50) 84.0% (69/97) 71.1% 0.763 (0.668–0.857)
% (76/111) 68.5% (151/209) 72.2% 0.779 (0.71 56.2% (30/47) 68.1% 0.731 (0.631–0.832) (37/47) 78.7% (31/50) 62.0% (68/97) 70.1% 0.731 (0.631–0.832)
% (75/111) 67.6% (160/209) 78.0% 0.851 (0.80 100% (77/97) 91.5% 0.819 (0.645–0.993) (37/47) 78.7% (40/50) 80% (77/97) 79.4% 0.824 (0.741–0.908)

TABLE 3 | Comparison of four models by multivariate logistic regression analysis.

CT reported-only model Clinical model Clinical-radiomics model

OR (95% CI) P AIC AIC OR (95% CI) P AIC OR (95% CI) p AIC

NA NA 267.68 237.31 2.898 (1.418–5.921) 0.004 242.27 3.122 (1.426–6.835) 0.004 209.18
NA NA 3.597 (1.921–6.733) <0.001 2.592 (1.288–5.215) 0.008

.325 (2.396–7.809) <0.001 2.962 (1.557–5.635) 0.001 2.597 (1.278–5.279) 0.008
NA NA 9 NA NA 7.415 (3.384–16.246) <0.001
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including multiple parameters for comparison. The findings
showed that NLR, PLR, AST, and CA125 were independent
predictive factors for LNM in univariate analysis. However,
analysis showed no significant correlation between these
Frontiers in Oncology | www.frontiersin.org 8
markers with LNM using multivariate logistics regression
analysis. The clinical model build using CEA, CA199, and CT
reported LN status showed higher prediction value compared
with CT reported-only model; however, its overall accuracy was
FIGURE 4 | Developed clinical-radiomics nomogram. The clinical-radiomics nomogram was developed including Radscore, CEA, CA199, and CT reported LN
status in the training group.
A

B

C

FIGURE 5 | (A) ROC curves of the clinical-radiomics model, the clinical model, the Radscore-only model, and the CT reported-only model were shown in the training
cohort, internal validation cohort, and external validation cohort, respectively. (B) Calibration curves of the clinical-radiomics nomogram for predicting LNM between
prediction and actual LN status in the training cohort, internal validation cohort, and external validation cohort. The 45° straight line represents an ideal model perfectly
calibrated with an outcome. A closer distance between two curves indicates higher accuracy. (C) Decision curve analysis for the clinical-radiomics nomogram, the clinical
model, the Radscore-only model, and the CT reported-only model in both three cohorts. The y-axis measures the net benefit. The red line represents the clinical-radiomics
nomogram. The blue line represents the Radscore-only model. The green line represents the clinical model. The yellow line represents CT reported-only model. The azure line
represents the assumption that all patients had LNM. The black line represents the assumption that no patients had LNM.
September 2021 | Volume 11 | Article 633852
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still unsatisfactory. Conventional imaging methods are based on
morphological criteria and serum biomarkers and do not meet
the clinical need for quantitative and accurate diagnosis.

On the contrary, radiomics technology is a quantitative method
and thus it is effective inpreoperativeLNassessment. Several studies
report that radiomics can be correlated with tumor gene
characteristics and protein phenotypes to predict the biological
behavior of tumors (32, 33). Metastatic LN and non-metastatic LN
present different biological behaviors (10). Studies report that a
model established based on radiomics has great potential in
predicting LNM of malignant tumors (21–23). In the current
study, a CT-based radiomics model composed of 14 radiomics
signatures was established using LASSO regression. The Radscore
established included shape, first-order, and textural features.
Radiomics analysis of CT images can help distinguish between
positive LNM and negative LNM for gastric cancer and colorectal
cancer (20, 21). The findings of the current study showed that the
radiomics model based on morphological features and texture
features has better predictive accuracy and goodness of fit for
LNM compared with the single CT reported-only model (AUC =
0.781 vs. AUC = 0.669; AIC 237.31 to 267.68).

For better clinical application, a clinical-radiomics nomogram
was established that integrated Radscore and clinical variables.
This comprehensive nomogram showed higher accuracy and
discrimination of the LNM in GBC compared with the other
three models. Calibration curves and DCA curves showed that
the nomogram had high consistency and potential clinical
applicability in the two medical centers. The clinical-radiomics
nomogram can be used effectively to determine the possibility of
surgical R0 resection, thus assisting in preoperative treatment
decision-making. GBC patients suspected of positive LNM based
on conventional imaging reports can use the nomogram to
reconfirm their LN status. In addition, surgeons can use the
nomogram to accurately assess the necessity for LN resection
before surgery to benefit patients with actual negative LNM, thus
reducing complications and hospitalization costs.

The current study had some limitations. Firstly, genetic
diagnosis related to progress of GBC may provide more value
in the diagnosis of LNM through development of radiogenomic
biomarkers. Further studies that include genotypes to new
predictive models to improve the model’s diagnostic accuracy
should be conducted. Secondly, the data used to build the model
in the current study were obtained from two large-scale medical
centers in a region that may lead to data bias. Therefore, studies
Frontiers in Oncology | www.frontiersin.org 9
should include more patients from multiple centers as a
verification cohort to verify the clinical applicability and
robustness of the nomogram.

In summary, the clinical-radiomics nomogram reported in
the current study can be used as a non-invasive biomarker for
preoperative prediction of LNM in GBC patients. The findings
show that the model is useful in clinical decision-making and can
improve the survival outcome of patients with GBC.
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