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Molecular mechanisms underlying the tumorigenesis of a highly malignant cancer,

cholangiocarcinoma (CCA), are still obscure. In our study, the CCA expression profile

data were acquired from The Cancer Genome Atlas (TCGA) database, and differentially

expressed genes (DEGs) in the TCGA-Cholangiocarcinoma (TCGA-CHOL) data set were

utilized to construct a co-expression network via weighted gene co-expression network

analysis (WGCNA). The blue gene module associated with the histopathologic grade of

CCA was screened. Then, five candidate hub genes were screened by combining the co-

expression network with protein–protein interaction (PPI) network. After progression and

survival analyses, bloom syndrome helicase (BLM) was ultimately identified as a real hub

gene. Moreover, the receiver operating characteristic (ROC) curve analysis suggested

that BLM had a favorable diagnostic and predictive recurrence value for CCA. The gene

set enrichment analysis (GSEA) results for a single hub gene revealed the importance

of cell cycle-related pathways in the CCA progression and prognosis. Furthermore, we

detected the BLM expression in vitro, and the results demonstrated that the expression

level of BLM was much higher in the CCA tissues and cells relative to adjacent non-tumor

samples and normal bile duct epithelial cells. Additionally, after further silencing the BLM

expression by small interfering RNA (siRNA), the proliferation and migration ability of CCA

cells were all inhibited, and the cell cycle was arrested. Altogether, a real hub gene (BLM)

and cell cycle-related pathways were identified in the present study, and the gene BLM

may be involved in the CCA progression and could act as a reliable biomarker for potential

diagnosis and prognostic evaluation.
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INTRODUCTION

Cholangiocarcinoma (CCA) is one of the most frequent primary biliary duct malignancies and
accounts for 3% of all gastrointestinal neoplasias (1, 2). Since CCA possesses the characteristics
of high malignancy, insidious onset, and rapid progression, the prognosis of patients with CCA is
often poor (3, 4). Large-scale clinical research revealed that the 5-year survival rates were 5 and 17%
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for intrahepatic CCA (iCCA) and extrahepatic CCA (eCCA),
respectively, for the cases diagnosed between 2000 and 2007 in
Europe (5). In the USA alone, CCA accounts for approximately
5,000 deaths per year (6). Moreover, since its early symptoms are
not obvious and CCA lacks a highly efficient disease screening
biomarker, many patients have frequently lost the chance of
radical surgery upon the first diagnosis (7). Furthermore, as
the pathogenesis of CCA is rather complicated, there is still
no satisfying targeted treatment option available for CCA in
the age of individualized medicine (8). Therefore, there is an
urgent need to explore the molecular pathogenesis of CCA and
reveal the biomarkers closely related to the diagnosis, occurrence,
progression, and prognosis of CCA.

Due to advances in sequencing and microarray technologies,
bioinformatics has begun to play an increasingly important role
in various fields of life sciences (9, 10). The development of large-
scale “omics” research methods such as genomics, proteomics,
and transcriptomics has brought about a vast amount of
biological information data (11). Gene co-expression networks
can describe and cluster multiple genes sharing high-expression
correlations in microarray data or high-throughput sequencing
data and ultimately be used to establish key regulatory genes (12).
A weighted gene co-expression network analysis (WGCNA), as
one of the most representative analytical methods of a gene
network, has provided significant biological information for the
research on multiple species such as humans, mice, and yeast
(13, 14). In this study, a WGCNA network was constructed, and
genes with similar expression patterns were incorporated into
the identical modules. By relating the results of the module to
the corresponding clinical data, the modules that were mostly
associated with the CCA progression were found. Finally, after
a range of screening and validation tests, we identified a bloom
syndrome helicase (BLM) gene that could indeed promote the
tumor progression and predict the prognosis of CCA.

MATERIALS AND METHODS

Data Sets and Study Design
RNA-sequencing (RNA-seq) data (Illumina RNA Seq V2,
Illumina, San Diego, CA) and the corresponding clinical data on
CCA samples were downloaded from The Cancer Genome Atlas
(TCGA) database (http://cancergenome.nih.gov/). This CHOL
data set included 36 CCA samples and 9 corresponding adjacent
non-cancerous samples, and its clinical data were composed
of tumor histologic grade, pathological stage, and numerous
follow-up information. The messenger RNA (mRNA) expression
profile and clinical data were employed to search for differentially
expressed genes (DEGs) and construct co-expression networks.
The microarray data sets GSE76297 and GSE132305 were
acquired from the gene expression omnibus (GEO) database
of the National Center for Biotechnology Information (NCBI)
database (https://www.ncbi.nlm.nih.gov/). These two data sets
were generated on the platforms of the Affymetrix Human
Transcriptome Array 2.0 and Affymetrix Human Genome
U219 Array, respectively. The data set GSE76297 contained 91
iCCA tissue and 92 non-neoplastic samples, and the data set
GSE132305 included 182 eCCA samples and 38 corresponding

adjacent non-cancerous samples. These two data sets were used
to further validate our candidate hub genes.

Differentially Expressed Gene Screening
and Principal Component Analysis
The “TCGAbiolinks” R package (15) was used to identify the
DEGs between adjacent normal tissues and CCA samples in
the CHOL data set. Significance analysis with a false discovery
rate (FDR) < 0.01 and |log2 fold change (FC)| ≥ 1 was
adopted to choose the genes for a network construction. To
explore gene expression patterns between the CCA samples and
adjacent tissues, the top 500 DEGs were included in the principal
component analysis (PCA) utilizing the R package “pca3d”
(https://cran.r-project.org/web/packages/pca3d/). The first three
principal components were utilized and plotted to show the
expression pattern of the two groups.

Weighted Gene Co-expression Network
Analysis
R package of “WGCNA” (16) was utilized to build a co-expression
network for the qualified expression data profiles of filtered
DEGs with the available clinical data. First, we retained the
RNA-seq data of the filtered CCA tissues if they proved to be
good samples. Second, outlier samples were culled after a sample
clustering via correlation analysis. Third, based on a Pearson
correlation analysis, a matrix of similarity for all pairs of kept
genes was constructed. Then, appropriate soft-thresholding was
chosen to achieve a scale-free co-expression network. Next, the
adjacency matrix was converted to a topological overlap matrix
(TOM). In line with the TOM-based dissimilarity method, genes
were assigned to the different modules. Here, we set the soft-
thresholding power to 9 (scale-free R2 = 0.913), the cut height to
0.25, and the minimal module size to 30 to identify key modules.
The module most relevant to clinical traits was chosen to screen
co-expression hub genes.

Function Enrichment Analyses
We performed gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses utilizing the R
package “clusterprofiler” (17). GO terms or KEGG pathways with
p < 0.05 were regarded as statistically significant and visualized
by R package “GOplot” (18).

Candidate Hub Genes Identification
In this research, a module of interest was determined, and co-
expression hub genes were specified as high module connectivity
(module membership > 0.8) and high clinical trait significance
(gene significance > 0.4). Moreover, the gene list of this key
module was submitted to the STRING database to build a
protein–protein interaction (PPI) network (19), which was then
visualized by Cytoscape software (20). PPI network hub genes
were defined as the top 20 nodes ranked by degree using the
plugin cytoHubba. Hub genes shared by the 2 networks were
selected as the candidates for further validation and analysis.
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Validation and Survival Analysis of
Candidate Hub Genes
To screen real hub genes, we used R package “ggstatsplot”
to explore the candidate gene expression pattern between
CCA and adjacent normal tissue in the TCGA-CHOL data
set, GSE76297, and GSE132305; the candidate genes that
were correlated with a clinical feature (histological grade)
were analyzed by using the tumor samples from the TCGA-
CHOL data set. Survival analysis was also performed for
the candidate genes in gene expression profiling interactive
analysis (GEPIA), an online database (http://gepia.cancer-pku.
cn/index.html), and validated in the data set GSE107943
by using online web server OSchol (http://bioinfo.henu.edu.
cn/CHOL/CHO-L_GSE107943.jsp). Independent sample t-tests
were used as appropriate, and p < 0.05 was considered as
statistically significant.

Methylation Analyses and Efficacy
Evaluation of Real Hub Genes
An online tool DiseaseMeth 2.0 (21) contains a mass of
methylome data and annotations on the DNA methylation
status in multiple diseases. We exploited this web tool to
compare the methylation level of the real hub gene between the
CCA and adjacent normal tissues. Additionally, the association
between the BLM expression and DNA methylation status was
explored via the web tool MEXPRESS (22), which can integrate
and visualize gene expression, DNA methylation, and clinical
information from the TCGA database. The receiver operating
characteristic (ROC) curves were plotted, and the area under the
curve (AUC) was calculated with the “pROC” R package (23) to
assess the capability of BLM gene of distinguishing tumor and
normal samples as well as recurrent and non-recurrent CCA.

Gene Set Enrichment Analysis
Based on the median expression value of the real hub gene, CCA
samples of the TCGA-CHOL data set were divided into low- or
high-expression groups. To explore potential functions of the real
hub gene, gene set enrichment analysis (GSEA) was performed
to detect which KEGG pathways were enriched (24). Terms with
FDR < 0.05 were visualized by R package “ggplot2” (https://
cloud.r-project.org/web/packages/ggplot2/).

Cell Culture
Human CCA cell lines (QBC939 and RBE) and human biliary
epithelial cell line (HiBEC) were obtained from Sciencell
(Carlsbad, USA) and the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China) and maintained in Roswell Park
Memorial Institute (RPMI) 1,640 medium (Gibco, NY, USA)
containing 10% fetal bovine serum (FBS) (ScienCell, San Diego,
CA, USA) and 100 U/ml penicillin-streptomycin (Beyotime,
Shanghai, China) at 37◦C in a humidified incubator supplied with
5% CO2.

Transfection
Small interfering RNA (SiRNA) silencing was attained by
transient transfection with Lipo3000 (Invitrogen, Waltham, MA,
USA). BLM siRNAs (si-RNA1 and si-RNA2) were purchased

from RiboBio (RiboBio, Guangzhou, China), with scramble RNA
serving as a negative control (scramble). The sequences for si-
RNA1 and si-RNA2 were 5′-GGATGTTCTTAGCACATCA-3′

and GACTCAGAATGGTTAAGCA, respectively. The scramble
sequence was 5′- TTCTCCGAACGTGTCACGTdTdT-3′. The
siRNA knockdown efficiency was examined by qRT-PCR and
western blotting assays.

CCK8 Assay
Cells transfected with si-BLM or scramble were seeded into 96-
well-plates at 4×103 cells per well and cultured for 0–3 days.
Then, 10 µl of CCK8 solution (Dojindo, Kumamoto, Japan) was
added to the fresh culture medium, and the cells were incubated
at 37◦C for 1.5 h. Afterward, the absorbance at 450 nm was
determined by using a microplate reader.

Wound-Healing Assay
For the wound-healing assay, transfected cells were inoculated
into 6-well-plates. After the cell attachment, a sterile plastic
microtube head was used to generate scratch wounds. Then,
the cells were washed twice with PBS, and initial wounds were
recorded by a microscope. After incubation for 36 h at 37◦C,
the current wound space was captured. The quantity of wound
closure was defined as the mean percentage of the distance of cell
migration compared with the initial wound width.

Transwell Assay
Cell migration ability was further evaluated via transwell assays.
Briefly, transfected cells (3 × 104) were plated into 8.0-µm
pore polycarbonate membrane chambers (Corning, NY, USA)
with 200 µl of serum-free medium, and then the chambers
were placed in 24-well-plates containing 600 µl of complete
medium. After 24 h, the cells migrating to the lower surface
were fixed with a formaldehyde solution and stained with 0.1%
crystal violet solution. The number of migrated cells was counted
in five randomly selected visual fields of each membrane with
a microscope.

Quantitative Real-Time PCR Analysis
Total RNA from the cultured cells was extracted by using
TRIzol (Invitrogen, Carlsbad, CA, USA), and then it was reverse
transcribed into cDNA via PrimeScript RT Master Mix (Takara,
Dalian, China). Subsequently, quantitative real-time PCR (RT-
qPCR) was conducted by utilizing the TAKARA PCR Kit, run
on a StepOnePlus Real-Time PCR system (Applied Biosystems,
CA, USA). β-actin was chosen as an internal reference. The
relative expression abundance of genes was assessed by using
the 2−11CT approach (25). Primers were provided as follows:
β-actin, forward 5′-TGCTATGTTGCCCTAGACTTCG-3′ and
reverse 5′-GTTGGCATAGAGGTCTTT ACGG-3′; and BLM,
forward 5′- CAGACTCCGAAGGAAGTTGTATG’ and reverse
5′- TTTGGGGTGGTGTAAC AAATGAT-3′.

Western Blot Analysis
For the total protein extraction, the treated cells were lysed
by RIPA buffer (Beyotime, Shanghai, China) with protease
inhibitors (Servicebio, Wuhan, China). Then, the same amount
of whole-cell lysates was loaded on the sodium dodecyl
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sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then
transferred onto PVDF membranes. After 1 h of blocking,
proteins were incubated with anti-β-actin antibodies (abs132001,
Absin, Shanghai, China), anti-GAPDH antibodies (abs132004,
Absin, Shanghai, China), and anti-BLM antibodies (abs122169,
Absin, Shanghai, China) and subsequently with appropriate
secondary antibodies (Servicebio Technology, Wuhan, China).
Protein bands were detected and quantified via ImageLab (Bio-
Rad, Hercules, CA, USA).

Immunohistochemistry Staining
A tissue microarray (TMA) containing 27 CCA specimens and
9 paracancerous samples was procured from Shanghai Outdo
Biotech (Shanghai, China). In short, paraffin sections were first
deparaffinized, antigen retrieval was conducted in citrate buffer
(pH 6.0), and endogenous peroxidase activity was blocked in
0.3% H2O2. The slides were continuously incubated with the
indicated primary and secondary antibodies until visualization
with peroxidase and 3,30-diaminobenzidine tetrahydrochloride.
Immunohistochemical staining was scored semiquantitatively
according to the percentage and intensity of positively stained
cells as follows: 0: <5% positive cells; 1: from 5 to 24%
positive cells; 2: from 25 to 49% positive cells; 3: from 50
to 74% positive cells; and 4: more than 75% positive cells.
The intensity was scored as 0 for the absence of staining, 1
for weak, 2 for moderate, and 3 for strong staining. Staining
index score = intensity × positive rate (absent, 0–1; mild, 2–
4; moderate, 5–8; and strong, 12). A staining index score ≥8
represented a high expression, while scores <8 represented a
low expression. Immunohistochemical slices were observed by
utilizing an Olympus BX microscope.

Flow Cytometry
The treated cells were washed with pre-cooled PBS twice and
fixed in 70% pre-cooled ethanol overnight at 4◦C and washed
again with PBS twice. The cells were resuspended in 1ml
PI/Triton X-100 staining solution containing 0.2mg RNase A for
15min at 37◦C and then analyzed via flow cytometry. Cells were
assayed at each cell cycle.

Statistical Analysis
Each cell experiment was carried out thrice. All measurement
data were presented as the mean ± SEM. Statistical data analysis
was conducted by a one-way ANOVA or unpaired two-tailed
Student’s t-test, as appropriate. Values of p < 0.05 were deemed
to indicate statistical significance.

RESULTS

Screening of DEGs
After data preprocessing, data normalization, data filtering,
and quality assessment by “TCGAbiolinks,” 6,219 DEGs were
identified (4,087 upregulated and 2,132 downregulated) with the
following threshold: FDR < 0.01 and |logFC| ≥1. Then, the
screened genes were utilized for a follow-up analysis. The volcano
plot for all DEGs is displayed in Figure 1A; the PCA of the top
500 DEGs is shown in Figure 1B.

WGCNA and Key Module Identification
The “WGCNA” R package was utilized to build a co-expression
network, and DEGs with similar expression relationships were
assigned into the same modules by average linkage clustering.
Here, we selected the power of β = 9 (scale-free R2 = 0.913)
to assure a scale-free network (Figures 2A,B), then 29 modules
were determined (Figure 2C) in the subsequent experiments.
The module that was most significantly correlated with a tumor
grade indicated a great value in predicting the CCA progression,
and the ME of the blue module indicated its high correlation
with the CCA progression (Figure 2D). Moreover, we also
found that the module significance (MS) of the blue module
was the highest among all the modules that were positively
correlated with disease progression (Figure 2E). Afterward, GO
and KEGG analyses were performed to uncover the potential
role of the members within the blue module. The most
significant enrichment results are illustrated in Figures 3A–D.
The biological function analysis suggested that bluemodule genes
mainly participated in the cell cycle regulation and pathways in
multiple cancers.

Identification of Hub Genes
According to the scheme mentioned above, a total of 94 genes
highly connected to the key module were selected as co-
expression network hub genes in the blue module (Figure 4A).
Additionally, we also built a PPI network for all blue module
genes, which was composed of 123 nodes and 271 edges
(Figure 4B). Then, using the cytoHubba plugin, the top 20
nodes associated with over 8 nodes were identified as hub
genes in the PPI network (Figure 4C). Eventually, five common
network hub genes—BLM, GGH, RPS3, NUP107, and CCT2—
were identified as potential candidates for further validation and
analysis (Figure 4D).

Validation of Real Hub Gene
To verify the diagnostic value of the candidate genes, first,
we examined the expression relationship of the candidate
genes between CCA and normal controls using the TCGA-
CHOL data set. It showed that the expression of candidate
genes was upregulated in the CCA sample, except for the
GGH gene (Figure 5A). Then, among the CCA samples in the
TCGA-CHOL data set, we explored their correlations with the
pathological grade of clinical features. The results suggested
that four candidate genes were significantly higher in the low-
differentiation tumor samples, indicating a role in the CCA
progression (Figure 5B). To further examine the prognostic
value of candidate genes in CCA, we conducted a subgroup
(high- and low-expression group) survival analysis of these 5
genes in the TCGA-CHOL data set, and their prognostic value
was validated in the data set GSE107943 by using the online
tool OSchol (26). Kaplan–Meier (KM) survival curves indicated
that only higher BLM expression was correlated significantly
with worse disease-free survival (Figures 5C,D). Furthermore,
the expression pattern of BLM in both the eCCA data set
GSE132305 and the iCCA data set GSE76297 suggested that the
expression of BLM in tumor tissue was enhanced compared with
paracancerous samples (Figures 6A,B). ROC curves were then
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FIGURE 1 | Volcano plot and PCA of DEGs. (A) Volcano plot of the DEGs between cholangiocarcinoma (CCA) tissues and normal controls of The Cancer Genome

Atlas (TCGA) CHOL data set. Red means upregulated DEGs, and green indicates downregulated DEGs. (B) PCA plot for the TCGA-CHOL data set based on top 500

DEGs. PCA, principal component analysis; DEGs, differentially expressed genes.

generated to assess the capacity of BLM to differentiate recurrent
and non-recurrent CCA as well as tumor and non-tumor tissues
(Figures 6C,D). The results above identified BLM as the real hub
genemost closely related to the progression of CCA and as having
an essential value in potential diagnosis and prognosis assessment
of the disease.

Relationship Between Methylation and
Expression of the Real Hub Gene
We examined the relationship between the real hub gene’s
expression level and its methylation status to illuminate the
potential cause of aberrant BLM expression in CCA. With the
help of DiseaseMeth version 2.0, it revealed that the mean
methylation level of BLM was significantly lower in CCA than
in paracancerous normal tissue (Figure 6E). Additionally, we
discovered that many methylation sites in the DNA sequence of
gene BLM had a negative correlation with BLM expression using
MEXPRESS (Figure 6F).

GSEA of Real Hub Gene
To determine the potential function of BLM in CCA, GSEA
was performed to seek significant pathways enriched in the
sample group with high BLM expression. Nine gene sets, “BASE
EXCISION REPAIR,” “CELL CYCLE,” “DNA REPLICATION,”
“HOMOLOGOUS RECOMBINATION,” “MISMATCH
REPAIR,” “OOCYTE MEIOSIS,” “PROGESTERONE
MEDIATEDOOCYTEMATURATION,” “SPLICEOSOME,” and
“NUCLEOTIDE EXCISION REPAIR” were enriched (FDR <

0.05; Figure 6G). Overall, these gene sets were tightly associated
with cell proliferation.

BLM Expression Level Is Upregulated in
CCA Cell Lines and CCA Tissue Samples
Through the previous analysis, BLM was identified as
the only real hub gene. We further investigated its
expression level in different cell lines. The experiment

results indicated that cancer cells (QBC939 and RBE)
expressed higher levels of BLM than normal cells (HiBEC)
at both the mRNA and protein levels (Figures 7A,B). We
then conducted immunohistochemistry (IHC) assay to
assess BLM expression utilizing a CCA TMA (including 27
CCA tissues and 9 paracancerous samples). As presented
in Figure 7C, expression levels of BLM showed higher
levels in CCA tissues compared with paracancerous
samples (staining index: non-cancer = 3.78 ± 0.49;
cancer= 6.78± 0.29).

BLM Knockdown Inhibits the Proliferation
and Migration of CCA Cells in vitro and
Induced G2-Phase Arrest
To study the function of BLM in vitro, CCA cell lines (QBC-
939 and RBE) were transfected with control siRNA (scramble)
or BLM siRNA (si-RNA1 and si-RNA2). Via PCR and western
blot analysis of the harvested cells, we confirmed that BLM
expression was significantly knocked down in BLM siRNA
transfected cells than that in control groups at both the mRNA
(Figure 8A) and protein (Figure 8B) levels. Using the CCK8
assay, we analyzed the viability of BLM-downregulation cells.
Our results demonstrated that the downregulation of BLM
expression significantly restrained the proliferation of both cell
lines (Figures 8C,D). Next, we also assessed the effect of BLM
on CCA cell migration in vitro. The downregulation of BLM
significantly inhibited the migration of QBC-939 and RBE cells
(Figures 8E–I). These results suggest a promotive role of BLM
in CCA cell proliferation and migration. Moreover, we checked
whether BLM silencing has cell cycle arrest effect in CCA cell
lines. Cell cycle analysis performed by flow cytometry revealed
that downregulation of BLM increased the cell percentage in
G2 phase and decreased those in G1 phase and S phase
(Figures 8J–L). It indicates that BLM can promote the CCA
progression by modulating the cell cycle.
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FIGURE 2 | WGCNA of DEGs in CCA samples. (A) Examination of the scale-free fit index for distinct soft-thresholding powers (β). (B) Examination of the mean

connectivity for distinct soft-thresholding powers. (C) Clustering dendrogram of filtered DEGs due to a dissimilarity measure. (D) Heatmap showing the connection

between module eigengenes and five clinical traits of CCA. (E) Distribution of mean gene significance and errors in the modules correlated with tumor grade of CCA.

WGCNA, weighted gene co-expression network analysis.

DISCUSSION

CCA is a highly malignant and heterogeneous neoplasm with

a largely unknown molecular basis (27, 28). Because CCA is

highly invasive and has no efficient screening methods, once
diagnosed, only approximately one-third of patients are suitable

for radical resection. However, even undergoing R0 resection,
the disease recurrence rate is still high for patients with CCA,
with an informed incidence of 60 and 80% at a median follow-
up time of 2 and 5 years, respectively (29–31). For patients
with late-stage CCA who have lost the chance of radical
operation, the 5-year survival rate of non-surgical treatment
is only 5% (28, 32). Therefore, exploring the pathogenesis of

CCA and searching for key molecules closely associated with
the occurrence, progression, and prognosis of the disease is
particularly significant for the current diagnostic and treatment
strategies of patients with CCA. In this study, first, we determined
the blue module most relevant to the pathological grade of CCA
by employing WGCNA. Five candidate genes were identified.
After subsequent analyses, a real hub gene tightly related to the
progression and prognosis of CCA was screened. Our findings
may help to improve the ability of treatment decision-making,
risk assessment, and prognosis prediction for patients with CCA.

The biological network can intuitively display the
interrelationships between various functional elements in
the biological system and provide an important platform for the
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FIGURE 3 | Functional annotation of all the blue module genes. (A) GO terms for biological process. (B) GO terms for cellular component. (C) GO terms for molecular

function. (D) KEGG enrichment pathway for genes in the blue module. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

characteristics of the study objects at the system level (33, 34).
In combination with the traditional one-dimensional molecular
biology research methods, network analysis methods can more
accurately illustrate the characteristics of biological systems (35).
Gene co-expression network research, as an essential component
of biological network research, can aid in obtaining multiple
gene modules based on the gene expression profile by analyzing
the expression correlation of multiple genes and in studying
the association between genes and external traits at the gene
module level (36, 37). We conducted a WGCNA to identify the
co-expression modules correlated to the CCA progression. A
total of 5,378 filtered DEGs were utilized to build a co-expression
network, and 29 modules were screened. Loss of differentiation

is a common event in tumor progression, and a high histological
grade largely has an intimate correlation with an unfavorable
prognosis (38). Here, it was found that the blue module had
the highest correlation with tumor grade, which means that
blue module genes are closely related to clinical traits. GO
analysis can describe how genes act in biological systems and can
put these descriptions in a computable format, while a KEGG
pathway enrichment analysis displays higher-order functional
significance and indicates the value of the cell or the organism
from its genome data (39, 40). In line with the published data,
the enrichment of blue module genes in several GO terms,
such as DNA replication, cell–cell junction, mitotic cell cycle
checkpoint, and cadherin binding, confirms their involvement in
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FIGURE 4 | PPI network and hub gene detection. (A) Scatter plot of module eigengenes in the blue module. (B) PPI network for blue module gene. The color intensity

of each node was proportional to the connectivity degree in the PPI network (highest connectivity degree in red and lowest connectivity degree in blue). (C) Top 20

hub nodes screened by the cytoHubba plugin of Cytoscape software. (D) Identification of candidate genes in the PPI network and co-expression network. PPI,

Protein–protein interaction.

the development of CCA (41, 42). Moreover, the KEGG pathway
enrichment results of the identified module genes also indicate
their involvement in CCA pathogenesis. For example, hepatitis
C virus (HCV) infection is identified as an important risk factor
for the development of CCA (43); recent progress has shown
that cellular senescent markers can distinguish cholangiocellular
carcinoma from duct adenoma, implying a possible role in the
pathophysiology of CCA (44, 45). Additionally, cell cycle changes
are particularly important for the growth of malignant tumors
(42). According to the GO and KEGG enrichment results, we
propose that these blue module genes are closely related to the
cell cycle regulation and CCA development.

A study on the cellular function requires a deep understanding
of functional interactions between the expressed proteins.
The online STRING database can collect and integrate the
cellular function data from the investigated and predicted
PPI information for a great number of organisms (19). By
constructing a PPI network based on the STRING database,

we can study the interaction of proteins expressed by a group
of genes and identify the key network proteins among them.
In addition, hub genes of the co-expression network are
characterized as highly related to the clinical traits of CCA
samples in TCGA. A total of five candidates (BLM, RPS3, GGH,
NUP107, and CCT2) were distinguished, which were common
hub genes in both the co-expression network and PPI network of
the blue module. All of them were reported to exert important
roles in the pathogenesis of some carcinomas (46–50). Here, we
carried out an expression pattern analysis and a survival analysis
to explore the real hub genes, and BLM with high diagnostic
and prognostic value was ultimately identified. Meanwhile, in
the cell and tissue levels, we clarified the expression of the real
hub gene, and the results further confirmed that BLM possesses
completely different expression patterns in CCA compared with
the non-tumor control.

The RecQ helicase family, which includes RECQ1,
RECQ4, RECQ5, Werner protein (WRN), and BLM, plays an
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FIGURE 5 | Validation of candidate hub genes in the TCGA-CHOL data set. (A) bloom syndrome helicase (BLM), CCT2, GGH, NUP107, and RPS3 gene expression

contrast between CCA and non-tumorous adjacent samples. (B) Expression of BLM, CCT2, GGH, NUP107, and RPS3 in CCA samples with different pathological

grades. (C) Association between BLM, CCT2, GGH, NUP107, and RPS3 expression and disease-free survival time in the TCGA-CHOL data set. The red line indicates

samples with high gene expression (above the median value), and the blue line designates the samples with lowly expressed genes (below the median value). (D)

Association between BLM, CCT2, GGH, NUP107, and RPS3 expression and disease-free survival time in the data set GSE107943. The red line indicates samples

with high gene expression (above the median value), and the green line designates the samples with lowly expressed genes (below the median value).

indispensable role in DNA replication, repair, RNA transcription,
and telomere maintenance (51, 52). Germ cell mutations in these
genes can lead to inherited diseases characterized by premature

aging and/or cancer propensity, suggesting a pivotal role
of the RecQ family in genome stability (53). For example,
WRN, BLM, and RECQ4 are closely associated with the
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FIGURE 6 | The expression of BLM in the external data sets of GSE76297 and GSE132305, the methylation level of BLM, the value of BLM in the diagnosis and

prediction of recurrence, and gene set enrichment analysis (GSEA). (A) BLM gene expression differences between iCCA and adjacent non-tumor tissues of the iCCA

data set GSE76297. (B) BLM gene expression differences between eCCA and adjacent non-tumor tissues of the eCCA data set GSE132305. ROC curves and AUC

statistics were used to assess the capacity of BLM for CCA diagnosis (C) and to distinguish recurrent and non-recurrent CCA (D). (E) The methylation levels of BLM in

CCA and paracarcinoma tissue were examined by using DiseaseMeth 2.0. (F) The methylation sites of BLM and its associations with gene expression were visualized

by using MEXPRESS. (G) GSEA using the TCGA-CHOL data set and statistically 9 significant functional gene sets enriched in CCA samples with high BLM expression

were listed. iCCA, intrahepatic cholangiocarcinoma; eCCA, extrahepatic cholangiocarcinoma; ROC, receiver operating characteristic; AUC, area under the curve.
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FIGURE 7 | BLM expression was increased in CCA. (A,B) qRT-PCR (A) and western blot (B) analysis of BLM expression in human biliary epithelial cell lines (HiBECs),

QBC-939 cells, and RBE cells. (C) Representative BLM immunohistochemistry (IHC) staining and score for NT and T samples. T, tumoral tissue; NT, corresponding

adjacent non-tumoral tissues. Data are represented as the mean ± SEM of 3 independent experiments. *p <0.05 vs. the control group.

Werner syndrome, Bloom syndrome, and Rothmund Thomson
syndrome, respectively, for which there are currently no effective
therapies (54). Meanwhile, recent studies have demonstrated that
RecQ helicases are also involved in the pathogenesis of multiple
human sporadic tumors. RECQ1 may serve as a vital mediator
in promoting the non-small cell lung cancer progression via the
regulation in epithelial to mesenchymal transition (EMT) (55).
Lieb et al. proved that theWRN inactivation selectively decreased
the viability of microsatellite instability-high (MSI-H) colorectal
and endometrial cancer cell lines (56). Moreover, RECQ4
overexpression accelerated the DNA replication rate and reduced
chemosensitivity in breast cancer, thus promoting the tumor
progression in established breast cancers (57). Patients with
Bloom syndrome, who have BLM germ-line mutation resulting
in striking decreases in both mRNA and protein expression levels
of BLM, are apt to develop diverse malignancies including breast
cancer, prostate cancer, and lung cancer (52, 58). Furthermore,
previous studies have supposed that BLM serves as a cancer
suppressor through targeting the proto-oncogene c-MYC, and
recent researches also proposed that a series of malignancies are
associated with the overexpression of the MYC gene and loss of
BLM function (54, 59). Chandra et al. further confirmed this view
in their research, which suggested that BLM indeed promoted the

degradation of Myc proto-oncogene protein and subsequently
led to an obstruction in the MYC-dependent induction of tumors
(60). Interestingly, recent studies have also demonstrated that
BLM is highly expressed in multiple cancer tissues and even acts
as a novel cancer biomarker. For example, Chen et al. showed
that BLM protein could promote cell proliferation and inhibit
apoptosis via activating AKT signaling and downregulating the
PTEN expression in prostate cancer cells (61); Arora et al. via
analyzing molecular profiling in a large cohort of 1,980 breast
cancer samples, found that BLM mRNA overexpression was
linked to a poor breast cancer-specific survival and that high
cytoplasmic BLM indicated aggressive phenotypes (62). Our
current research has revealed that BLM expression is increased
in CCA tissues compared with paracancerous samples, which
has been further verified in assays in vitro, and high BLM
expression is correlated with the tumor progression and adverse
prognosis. Moreover, we found that BLM silencing represses the
CCA cell proliferation and migration in vitro. More recently,
the dysregulation of DNA methylation patterns has been
increasingly perceived as a pivotal cellular procedure during
both the initiation and progression of oncogenesis (63, 64).
DNA hypomethylation of genome-wide regions, especially CpG
islands, is a common epigenetic remodeling in CCA and is in
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FIGURE 8 | BLM silencing inhibited the proliferation and migration of cholangioca-rcinoma cells and induced cell cycle arrest. (A) qRT-PCR validation of BLM

knockdown. (B) WB validation of BLM knockdown. (C,D) CCK8 assay analysis of the proliferation of QBC-939 cells (C) and RBE cells (D) transfected with BLM small

interfering RNA (siRNA) (si-RNA1 and si-RNA2) or control siRNA (scramble). (E–H) The effects of BLM knockdown on QBC939 cell and RBE cell migration ability were

assessed by wound-healing assay; representative photographs of wound-healing assay (E,G), and quantitative results shown as relative migration rates (F,H). (I) The

effects of BLM knockdown on QBC939 cell and RBE cell migration were evaluated by Tanswell assay. Representative photographs of the transwell assay (upper

(Continued)
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FIGURE 8 | panel) and quantitative results shown as number of migrated cells per field (lower panel). (J) Flow cytometric analysis of the cell cycle with BLM

knockdown and control group in RBE cells. (K) Flow cytometric analysis of the cell cycle with BLM knockdown and control group in QBC-939 cells. (L) G2-phase

analysis of the cell cycle with BLM knockdown and control cells. Data are represented as the mean ± SEM of 3 independent experiments. *p < 0.05 vs. control group.

correlation to the activation of some proto-oncogenes and the
existence of chromosomal instability (65, 66). By using the online
tools DiseaseMeth 2.0 and MEXPRESS, we also investigated the
DNA methylation status that possibly resulted in the abnormal
expression of BLM in CCA. BLM methylation was reduced
in cancer tissues compared with the adjacent normal samples,
which was in accordance with the observed upregulation of this
real hub gene in CCA. Then, GSEA was executed to explore the
possible pathogenesis of BLM in CCA. The results showed that
various cell cycle-related KEGG pathways, such as the CELL
CYCLE pathway, MISMATCH REPAIR pathway, and DNA
REPLICATION pathway, were enriched in the high-expression
group of BLM, indicating their contribution to CCA cell
proliferation, and in vitro experiments results further confirmed
the vital role of BLM in regulating the cell cycle of CCA.

CONCLUSION

In summary, our present study attempted to explore potential
molecular mechanisms in CCA by employing a range of
bioinformatics analyses. We identified a real hub gene (BLM)
that might cause the progression and poor prognosis of CCA,
and BLM might affect these biological processes by regulating
the cell cycle process. All these findings contribute to the
clinical diagnosis, treatment, and prognostic evaluation of
CCA. Next, we will perform experimental research to explore
the specific molecular biological mechanisms underlying the
involvement of BLM in modulating the CCA occurrence
and development.
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