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Background: Accumulating evidences indicate significant alterations in the aerobic
glycolysis in clear cell renal cell carcinoma (ccRCC). We aim to develop and validate a
glycolysis-related genes signature for predicting the clinical outcomes of patients with ccRCC.

Methods:mRNA expression profiling of ccRCCwas obtained fromTheCancer GenomeAtlas
database. Univariate Cox regression analysis and lasso Cox regression model were performed
to identify and construct the prognostic gene signature. The protein expression levels of the core
genes were obtained from the Human Protein Atlas database. We used four external
independent data sets to verify the predictive power of the model for prognosis, tyrosine
kinase inhibitor (TKI) therapy, and immunotherapy responses, respectively. Finally, we explored
the potential mechanism of this signature through gene set enrichment analysis (GSEA).

Results: Through the GSEA, glycolysis-related gene sets were significantly different
between ccRCC tissues and normal tissues. Next, we identified and constructed a
seven-mRNA signature (GALM, TGFA, RBCK1, CD44, HK3, KIF20A, and IDUA), which
was significantly correlated with worse survival outcome and was an independent
prognostic indicator for ccRCC patients. Furthermore, the expression levels of hub genes
were validated based on the Human Protein Atlas databases. More importantly, the model
can predict patients’ response to TKI therapy and immunotherapy. These findings were
successfully validated in the external independent ccRCC cohorts. The mechanism
exploration showed that the model may influence the prognosis by influencing tumor
proliferation, base mismatch repair system and immune status of patients.

Conclusions: Our study has built up a robust glycolysis-based molecular signature that
predicts the prognosis and TKI therapy and immunotherapy responses of patients with
ccRCC with high accuracy, which might provide important guidance for clinical assessment.
Also, clinical investigations in large ccRCC cohorts are greatly needed to validate our findings.
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INTRODUCTION

Renal cell carcinoma (RCC) is one of the top ten cancers in the
world, with about 65,000 new cases occurring each year in the
United States (1). The most common and aggressive subtype is
clear cell RCC (ccRCC), which accounts for about 80% of all
RCC (2). ccRCC is usually asymptomatic in the early stages, with
metastases occurring in about 25–30% of patients at the time of
diagnosis (3). Because of the tumor heterogeneity, patients with
the same degree of progression can show different prognosis and
treatment responses (4). Therefore, it is necessary to find effective
biomarkers to assess prognosis and identify potential patients at
high risk for ccRCC.

One of the features of the cancer is metabolic reprogramming
(5). Cancer cells have a high degree of glycolysis. It can convert
glucose to lactic acid with or without oxygen, which called
“Warburg effect” (6). Studies have shown that tumor glycolysis
is a promising target for the treatment of cancer (7). Therefore,
elucidating the relationship between glycolysis and tumor will
help to better understand the mechanism of tumor formation
and the development of ccRCC.

In this study, we used the database of The Cancer Genome
Atlas (TCGA) to develop a seven-glycolysis-related genes
signature to predict prognosis and therapeutic responses in
ccRCC patients. The predictive power of the signature was
successfully validated using four external ccRCC cohorts.
These findings reveal the close relations between glycolysis and
tumor prognosis and open up new ideas for the treatment
of ccRCC.
MATERIALS AND METHODS

Public Data Source
The transcriptome and clinical data of ccRCC patients were
acquired from project of TCGA (https://cancergenome.nih.gov/).
Five hundred thirty-nine ccRCC cases and 72 normal control
samples were included for subsequent analysis. The datasets of
GSE22541 from the Gene Expression Omnibus were used to
validate the model’s prediction of prognosis. The datasets of E-
MTAB-3267 (8) and E-MTAB-3218 (9) from ArrayExpress were
used to validate the model’s prediction of response to tyrosine
kinase inhibitor (TKI) and immunotherapy, respectively. The
Human Protein Atlas (HPA) database was used to observe the
immunohistochemistry of genes with prognostic values (http://
www.proteinatlas.org/). The flow chart of this study is shown in
Figure 1.
Abbreviations: ccRCC, Clear cell renal cell carcinoma; RCC, Renal cell carcinoma;
GSEA, Gene set enrichment analysis; TCGA, The Cancer Genome Atlas; FDR,
False discovery rate; TCGA, The Cancer Genome Atlas; FDR, False discovery rate;
DEGs, Differentially expressed genes; OS, Overall survival; PPI, Protein-protein
interaction; PCA, Principal component analysis; t-SNE, t-distributed stochastic
neighbor embedding; ROC, Receiver operating characteristic; AUC, The area
under the ROC curve; HPA, Human Protein Atlas database; DFS, Disease-free
survival; MMRs, Mismatch repair system; TKI, Tyrosine kinase inhibitor; TME,
Tumor microenvironment; ssGSEA, Single sample Gene Set Enrichment Analysis.
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Gene Set Enrichment Analysis
We downloaded five glycolysis-related gene sets from the
Molecular Signatures Database (“BIOCARTA GLYCOLYSIS
PATHWAY” , “HALLMARK GLYCOLYSIS” , “KEGG
GLYCOLYSIS GLUCONEOGENESIS” , “REACTOME
GLYCOLYSIS ” , and “REACTOME REGULATION
OF GLYCOLYSIS BY FRUCTOSE 2 6 BISPHOSPHATE
METABOLISM”). Gene set enrichment analysis (GSEA) was
used to determine if these five gene sets were significantly
different between the ccRCC and normal group. Total 1,000
times gene set permutations were performed to finally get the
normalized enrichment score, normalized P-value and false
discovery rate (FDR). Two hundred eighty-eight genes from
these five glycolysis-related gene sets were identified as core
genes. After constructing the prognosis model, we also used
GSEA based on the gene sets of hallmarks and KEGG to identify
enriched biological process significantly altered in high-
risk cohort.

Screening of Candidate Genes
Firstly, differentially expressed genes (DEGs) analysis was
performed by “limma” package. Genes with a | log2 (FC) | >1
and FDR <0.05 were defined as DEGs. Then, we used
univariate Cox regression analysis to identify overall
survival (OS) associated genes. The genes, if P <0.05, were
selected as candidate genes for subsequent construction of
prognostic model.

Establishing a Protein-Protein Interaction
Network and Genes Expression
Correlation Network
We used STRING (STRING: http://www.string-db.org/) to
conduct the PPI network to illustrate the direct interaction of
proteins among the proteins coding by the candidate genes. The
network was presented by the Cytoscape software (https://
cytoscape.org/). In addition, we also explored whether these
candidate genes were correlated at the transcriptional level.
The “igraph” and “reshape2” package in R software was used
to conduct correlation network of candidate genes.

Construction of Risk Prognostic Model
Then, Lasso regression was performed to eliminate the genes that
were over-fitting with the model and further screen the potential
hub genes. Finally, multivariate Cox regression was used to
construct the prognostic risk models. We calculated each
patient’s risk score according to the following formula: Risk
 score  ¼Sn

j=1 Coefj � Expj, where Coef j and Exp j representing
the coefficient and the gene relative expression. The median risk
value was used as the cutoff value to divide 539 patients into high
and low risk subgroups.

The Validation Patient Cohort
Ethical approval was passed in Xiangya Hospital, Central South
University about the validation cohort. The study specimens
comprised of 78 patients with ccRCC. All of them signed
informed consent forms. Tissues were collected within 10 min
after surgical resection and rapidly protected in RNAlater and
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kept in liquid nitrogen for long-term storage. Additional clinical
and transcriptome information is available in Supplementary
Materials. Using TRIzol reagent (Vazyme, Nanjing, China), we
got the total RNA from patients’ tissues, and then used
SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA) to reverse transcribed into cDNA. qRT-PCR was
performed using SYBR-Green Premix (Vazyme) and specific
PCR primers (Sangon Biotech Co., Ltd, Shanghai, China).
GAPDH was selected for internal reference. The fold-changes
value was got using 2−DDCt method. When the mRNA expression
of the hub genes was obtained, the validated ccRCC cohort was
divided into high- and low-risk groups based on the calculated
risk score. Then the difference in OS was calculated, and we also
evaluated the associations between risk score and the
clinicopathologic factors of the validated ccRCC cohort.
Finally, we also performed the univariate and multivariate Cox
regression analyses to determine whether the risk score was an
independent prognostic factor.

Immune Infiltration and Tumor
Microenvironment
Single sample Gene Set Enrichment Analysis (ssGSEA) was
performed to quantify the immune infiltration levels using
Frontiers in Oncology | www.frontiersin.org 3
GSVA package (10). The annotated gene set file was obtained
from the study of Jie-Ying Liang et al. (11). We finally quantified
the enrichment levels of the 16 immune cells and 13 immune-
related pathways in each ccRCC sample, and the results were
expressed as immune scores. The boxplot would show the level of
immune infiltration in the high and low risk group. Besides that, we
used the ESTIMATE package to calculate immune/stromal/ESTIM
scores to predict the tumor microenvironment (TME) in ccRCC
(12). The Spearman rank test was used to analyze correlations
between the risk score and immune/stromal/ESTIM scores.

Statistical Analysis
All analyses were carried out by R software (version 3.6.1) and
corresponding packages. Wilcoxon Rank-Sum test was used to
detect the difference of gene expression between tumor and
normal tissues. Kaplan-Meier curves and a log-rank test were
used to check the significant difference in OS. The Receiver
Operating Characteristic (ROC) analysis was used to examine
the sensitivity and specificity of survival prediction. The area
under the ROC curve (AUC) served as an index for prognostic
efficacy. Univariate and multivariate analysis by COX regression
show the independent prognostic factors. The difference
significance was defined by P <0.05.
FIGURE 1 | Flowchart for analyzing glycolysis-related gene in ccRCC.
March 2021 | Volume 11 | Article 633950
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RESULTS

Initial Screening of Candidate Gene Genes
We firstly performed GSEA to explore whether five glycolysis-
related gene sets were significantly different between ccRCC and
normal samples. The results showed that all these five gene sets
were significantly enriched in ccRCC samples (FDR <0.25),
especially in BIOCARTA GLYCOLYSIS PATHWAY gene set
and REACTOME REGULATION OF GLYCOLYSIS BY
FRUCTOSE 2 6 BISPHOSPHATE METABOLISM gene set
(P < 0.05) (Figure 2A). Then we collected 288 participating
genes on the Glycolysis pathway and finally found total 90 DEGs,
in which 37 were downregulated and 53 were upregulated in
ccRCC tissues compared with normal renal tissues (Figures 2B,
C). Next, univariate Cox regression analysis was performed for
preliminary screening and obtained 45 genes associated with OS
from the 90 DEGs (p < 0.05) (Figure 3A). We uploaded these 90
OS-related genes s to STRING to construct a PPI network
(Figure 3B). In terms of the mRNA expression levels of these
genes, correlation analysis showed that these genes were strongly
correlated at the transcriptional level (Figure 3C).

Construction of the Seven-mRNA
Signature to Predict Patient Outcomes
As these 45 OS-related genes may be collinear rather than
independently, we performed the LASSO Cox regression to
determine the real OS-affecting factors and finally identified a
prognostic panel of seven glycolysis-related genes. The
calculation formula of risk score is: Risk score = GALM *
(-0.364) + TGFA * (-0.134) + RBCK1 * (0.194) + CD44 *
(0.139) + HK3 * (0.2) + KIF20A * (0.359) + IDUA * (0.428).
Among them, RBCK1, CD44, HK3, KIF20A and IDUA were risk
factors and GALM, TGFA were protective factors (Figures 4A,
B). We calculated each patient’s risk score and divided them into
high- and low-risk group based on the median of risk score.
Patients in the high-risk group had a higher risk of death
(Figure 4C).

According to the expression of these seven hub genes, we
performed dimensionality reduction in all patients and presented
them with the methods of principal component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE). Both
PCA and t-SNE analysis suggest that different risk subgroups
show significant discrete tendency directly in the two-
dimensional plane (Figures 4D, E).

Traditional clinical indicators, such as age, grade, stage and
TNM stage, can also distinguish high and low-risk patients
(Figures 4F–K). When evaluating survival prediction, we
found the 5-year AUC of our signature was 0.767, which was
obviously higher than age (AUC = 0.601), grade (AUC = 0.659),
stage (AUC = 0.690), T stage (AUC = 0.678), N stage (AUC =
0.559), and M stage (AUC = 0.619) (Figure 4L).

The patients were arranged in ascending order according to
the risk score (Figure 5A). Figure 5B showed the survival time of
each patient. High-risk patients had a higher mortality than
those in the low-risk group. Additionally, a heatmap displayed
the expression profiles of nine mRNAs (Figure 5C). We further
Frontiers in Oncology | www.frontiersin.org 4
explored the relationship between the risk signature and other
clinical features including age, grade, stage and TNM stage. We
noticed that the higher the risk score, the higher the tumor grade
and stage (Figures 5D, E). Not only that, we found that clinical
indicators were significantly related with the hub genes of
signature except GALM (Table 1 and Supplemental Materials).

Univariate and multivariate Cox regression analyses were
conducted to assess whether the model was an independent
predictor among other clinical factors including age, gender,
grade and stage. We found the risk score remained
independently associated with OS not only at univariate but
also multivariate analysis when combined with all the clinical
features (P < 0.05) (Figures 5F, G).

Validation of the Prognostic Signature
Through Internally Stratified Clear Cell
Renal Cell Carcinoma Cohorts
In order to verify the predictive efficiency in stratified cohorts, we
stratified patients with ccRCC into two subgroups according to
age (≤ 60 or >60 years), gender (female or male), grade (G1&G2
or G3&4), stage (Stage I&II or Stage III&IV), T stage (T1&T2 or
T3&T4), N stage (N0 or N1) and M stage (M0 & M1). Kaplan–
Meier curves showed that the high-risk group had shorter OS
than the low-risk group in all subgroups except N1 stage
subgroup. There were only 16 patients in the N1 subgroup, so
differences in survival could not be obtained (Figures 6A–G).

Validation of the Prognostic Signature
Through HPA Database and External Clear
Cell Renal Cell Carcinoma Cohorts
We used the HPA database to confirm the protein expression
between ccRCC and normal tissues. The protein expression of
CD44, HK3, KIF20A, and IDUA was higher in the tumor tissues
compared to the normal tissue, and the protein expression of
GALM and TGFA was lower in tumor tissues than normal,
which was consistent with our results in TCGA. However,
RBCK1 was not found in the database (Figure 7).

A total of 78 cases were included in the external validated
ccRCC cohort. We found that the expression levels of these seven
core genes were significantly different between ccRCC samples and
paired adjacent normal samples by qRT-PCR (P < 0.05) (Figures
8A–G). Based on the cut-off value of the risk scores, all patients
were categorized into high-risk group and low-risk group. Survival
analysis showed that OS in high-risk group was significantly
shorter than that in low-risk group (P < 0.05) (Figure 8H).
Univariate and multivariate Cox regression analyses showed that
the risk score had prominent prognostic values (Figures 8I, J).
The International Metastatic RCC Database Consortium (IMDC)
model is the most widely used risk assessment tool in metastatic
RCC assessment, assisting in treatment decision-making and
predicting prognosis (13). Hannah et al. constructed a modified-
IMDC risk classification system, which can be applied for patient
with non-metastatic ccRCC (14). Through the modified-IMDC
risk classification system, 33 patients were classified as favorable-
risk group, 23 as intermediate-risk group, and 22 as poor-risk
group. The prognosis of the three groups was different, although
March 2021 | Volume 11 | Article 633950
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P value was not significant. (Figure 8K). In order to evaluate the
predictive power of our model compared to modified-IMDC, we
calculated the AUC values for different survival time predictions.
The AUC value of our model was more accurate than modified-
IMDC in predicting any survival time (Figure 8L). Moreover, our
risk grouping system was significantly correlated with tumor grade
Frontiers in Oncology | www.frontiersin.org 7
and stage, TNM staging, and modified-IMDC risk classification
system (Figure 8M).

In addition, we verify the predictive ability of the model in
another external independent dataset (GSE22541). GSE22541
contains complete transcriptome and clinical information of 24
patients with ccRCC. Based on the cut-off value of the risk scores
A B

D E

F G

I

H

J K

L

C

FIGURE 4 | Construction and evaluation of the seven-mRNA signature. (A, B) A seven-mRNA signature was constructed by LASSO Cox regression. (C) The
survival analysis of the two subgroups stratified based on the median of risk scores calculated by the risk model. (D, E) PCA and t-SNE analysis of the TCGA cohort.
(F–K) Kaplan–Meier analysis of subgroup patients based on some clinicopathological features including age, grade, stage and TNM stage. (L) ROC curve of model
and clinical characteristics predicting 5-year survival based on TCGA training set.
March 2021 | Volume 11 | Article 633950

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lv et al. Glycolysis-Related Signature in ccRCC
in TCGA cohort, all patients were also categorized into high-risk
group and low-risk group (Figure 9B). Survival analysis showed
that disease-free survival (DFS) time in high-risk group was
significantly shorter than that in low-risk group (P <0.05)
(Figure 9A). All patients in the high-risk group had disease
progression, while all patients without disease progression were
classified into the low-risk group (Figure 9C). It was also
observed that GALM and TGFA were highly expressed as
protective factors in the low-risk group, while RBCK1, CD44,
HK3, KIF20A, and IDUA were highly expressed as risk factors in
the high-risk group (Figure 9D). At the same time, we observed
that many clinicopathological features were significantly
different between the high and low risk groups. The high-risk
group had more disease progression, higher grade tumor, more
male patients, and higher TNM stage than the low-risk group
(Figure 9E).

Prediction of Tyrosine Kinase Inhibitor
Therapy and Immunotherapy Response
TKI therapy and immunotherapy are important treatments for
metastatic RCC and are strongly recommended by guidelines.
We tried to explore whether our prognostic model has potential
predictive value for response to both therapies. Firstly, we
detected the expression of targeted drug-related genes and
immune checkpoint genes in high and low risk patients. We
found that the expression of many TKI-related genes (VEGFR,
EGFR, BRAF, RAF1, KIT, and FLT3) in high-risk patients was
significantly lower than that in the low-risk group (except
PDGFR), potentially suggesting that high-risk patients may
Frontiers in Oncology | www.frontiersin.org 8
have a poor response to TKI therapy (Figure 10A). On the
contrary, almost all of the immune checkpoint genes (CTLA-4,
PD-1, LAG-3, TIGIT, Galectin-9, and BTLA) were expressed
higher in the high-risk group than in the low-risk group, which
potentially suggests that the high-risk group may have a better
response to immunotherapy (Figure 10B).

To test our conjecture, we chose two external independent
data sets E-MTAB-3267 and E-MTAB-3218. The former
included 53 patients with metastatic ccRCC treated with
sunitinib, while the latter included 59 patients with metastatic
ccRCC treated with nivolumab. Both studies have detailed
transcriptome information, drug response information, and
prognosis information. The verification results are highly
consistent with our conjecture. The high-risk population
predicted by our model has worse PFS than the low-risk
population in receiving TKI therapy (Figure 10C). The lower
the risk score, the higher the likelihood of a response to TKI
treatment (Figure 10D). Compared with the high-risk group, the
low-risk group has a higher proportion of treatment response
rate (64 vs. 24%) (Figure 10E). On the contrary, the high-risk
population predicted by our model has better PFS than the low-
risk population in receiving immunotherapy (Figure 10F). The
higher the risk score, the higher the likelihood of a response to
immunotherapy (Figure 10G). Compared with the low-risk
group, the high-risk group has a higher proportion of
treatment response rate (19 vs. 9%) (Figure 10H). These
validation results fully demonstrate that our predictive model
a l so has the ab i l i t y to pred ic t TKI therapy and
immunotherapy response.
A

B

D E

F

G

C

FIGURE 5 | Prognostic analysis of seven-gene signature in the training set. The dotted line represented the median risk score and divided the patients into low- and
high-risk group. (A) The curve of risk score. (B) Survival status of the patients. More dead patients corresponding to the higher risk score. (C) Heatmap of the
expression profiles of the seven prognostic genes in low- and high-risk group. (D, E) The higher the risk score, the higher the tumor grade and stage. (F, G)
Univariate and multivariate Cox regression analysis identified the indicators that significantly correlated with OS and revealed the independent prognostic factors.
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Further Analysis of High- and
Low-Risk Cohorts
To explore the mechanisms underlying our risk model, we
subsequently conducted biological process and pathway
analysis using GSEA. GSEA analysis revealed significant
enrichments in the base mismatch repair, immune related and
inflammation related pathways in high-risk cohort (Figure 11A)
(P < 0.05, FDR < 0.25). The mismatch repair system (MMRs) is
an intracellular mismatch repair mechanism, in which the loss of
key gene function leads to DNA replication errors leading to the
production of higher somatic mutations, which may lead to the
development of tumors. We compared the expression differences
offive MMRs genes (MLH1, MSH2, MSH6, PMS2, and EPCAM)
in high and low risk populations, and found that four MMRs
genes (MSH2, MSH6, PMS2, and EPCAM) were low expressed
in the high-risk cohort, suggesting that the mismatch repair
mechanism in high-risk populations may be inhibited by tumors
(Figures 11B–F). In addition, we also compared the Ki67
expression levels in high- and low-risk patients, and found that
the Ki67 expression level was higher in high-risk patients (Figure
11G), indicating the more active tumor cell proliferation, the
faster tumor growth, and the poorer tissue differentiation in
high-risk patients.

Immune Infiltration and Tumor
Microenvironment
In view of the GSEA results showing that immune and
inflammatory processes were significantly enriched in the high-
risk cohort, we compared the differences in immune infiltration
between the high and low risk cohorts by the method of ssGSEA.
The results showed that the high-risk cohort had higher levels of
immune cells infiltration (except for B cells, DCs, iDCs, Maste
cells, Neutrophils, and NK cells) and more active immune-
related functions (except for MHC class I and Type II IFN
Response) than the low-risk cohort (Figures 12A, B). We used
the ESTIMATE package to assess the TME and came to similar
results. With the increase of risk score, the immune/stromal/
ESTIM scores as prediction of TME have also increased (Figures
12C–E).
DISCUSSION

As the first step in the catabolism ofmost carbohydrates, glycolysis
of cellular respiration is a complex reaction. Most glycolysis occurs
in the cytoplasm, which is characterized by the absence of any
oxygen molecules. As the main energy source of cancer cells,
increased glycolysis can produce ATP for cancer cells, which
contributes to the growth and metabolism of cancer cells (15,
16). More and more evidence showed that tumor glycolysis also
played a key role in stimulating immunosuppressive networks,
which are crucial for cancer cells to escape immune surveillance
(17). So, the application of small molecules to inhibit key enzymes
in the glycolytic pathway provides a new field for cancer research
(18). Therefore, glycolysis may be an emerging marker and a
potential prognostic indicator of malignant tumors.
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shorter OS than the low-risk group in almost all subgroups.
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FIGURE 6 | Validation of the prognostic signature through internally stratified ccRCC cohorts. (A–G) Kaplan–Meier curves showed that the high-risk group had
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It is really the fact that several glycolysis-related mRNAs have
been identified as biomarkers of tumor prognosis. Lei Zhang
et al. developed a nine-gene glycolysis-related risk signature that
can predict prognosis in lung adenocarcinoma patients (19).
Chen Zhang et al. constructed a four-mRNA glycolysis-based
signature with bladder cancer (20). Zihao Wang et al. identified a
nine-gene risk profile associated with glycolysis which predicts
the prognosis of endometrial cancer (21). Longyang Jiang et al.
also developed a glycolysis-related gene signature in
hepatocellular carcinoma patients (22). So far, no studies have
attempted to construct a glycolysis-related prognostic model of
ccRCC. Morphologically, ccRCC cells are rich in lipids and
glycogen, suggesting changes in fatty acid and glucose
metabolism during ccRCC development (23). Indeed, more
significant glycolysis dependence is observed in ccRCC (24),
which provides an opportunity worth exploring for the
development of new and more effective prognostic model (25).

The rapid development of high-throughput gene sequencing
technology makes large-scale biodata research possible. In this
study, we aimed to explore a new genetic marker to predict the
prognosis of ccRCC. Firstly, we conducted GSEA and identified
that glycolytic gene sets were significantly enriched in ccRCC
tissues compared with paired normal tissues, which laid a
theoretical foundation for the subsequent model construction.
Subsequently, we identified a combination of seven genes instead
of a single gene with prognostic value for ccRCC by univariate
Cox-Lasso-multivariate Cox regression analyses. Furthermore,
through comparison with some clinicopathological features such
as age, histological grade and pathological stage, we found
Frontiers in Oncology | www.frontiersin.org 11
that our identified risk signature can strongly predict the
prognosis. Univariate and multivariate Cox regression analyses
demonstrated that the risk score calculated by the signature was
an independent risk factor for ccRCC prognosis. We also
analyzed the relationship between genes in the model and
certain clinical variables (age, sex, histological grade, and
pathological stage). We found that most genes in the model
correlated positively with the progression of ccRCC. Consistent
results of these hub genes at the protein expression level were
also obtained by the HPA database. Not only that, we found that
this model has a strong predictive efficacy through the validation
of internally stratified ccRCC cohorts and two external
ccRCC cohort.

TKI targeting the VEGF/VEGFR axis and immunotherapy
targeting PD-1/PD-L1 have become the referral standard
treatment of metastatic ccRCC. These combinations are now
recommended in first line setting for metastatic ccRCC,
according to the last European recommendations (26). Despite
the encouraging activity and tolerable toxicity of the two
therapies, the clinical benefits of individual patients are highly
unpredictable, and sustained complete remission still exists in
minority of cases. Therefore, many studies were devoted to
finding biomarkers that can predict the response of these two
therapies. Several studies have identified promising predictive
biomarkers for TKI therapy, including tumor-infiltrating
neutrophils (27), tumor-infiltrating CD19(+) B lymphocytes
(28), circulating CD45(dim) CD34(+) VEGFR2(+) progenitor
cells (29), expression of HLA class I (30), Carbonic anhydrase 9
(31), Serum amyloid alpha (32), genetic polymorphism in
FIGURE 7 | Validation the expression of the signature genes between ccRCC and normal tissues on translational level by the HPA database. When compare tumor
samples to paired adjacent normal samples, the expression difference of these seven core genes were consistent in external ccRCC cohort.
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CTLA-4 (33) and so on. Similarly, immunotherapy also has some
response biomarkers, including Polybromo 1 mutation, PD-L1
expression, tumor microenvironment, circulating T cells,
neutrophil to lymphocytes ratio, IMDC classification and so on
Frontiers in Oncology | www.frontiersin.org 12
(34, 35). However, so far, it seems that no biomarker can
accurately identify the efficacy of immunotherapy and/or TKI
therapy, as many patients with negative biomarkers may respond
to these treatments. Some critics think that a single biomarker is
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FIGURE 8 | Validation of the prognostic signature through external ccRCC cohort. (A–G) When compare tumor samples to paired adjacent normal samples, the
expression difference of these seven core genes were consistent with the TCGA cohort results. (H) Kaplan–Meier curves also showed that the OS was significantly
shorter in the high-risk group compared to that in the low-risk group. (I, J) Univariate and multivariate Cox regression analyses showed that the risk score had
prominent prognostic values. (K) Kaplan-Meier curves for OS by modified-IMDC subgroups. (L) Comparison of AUC values for predicting long-term survival between
the two prognostic models. (M) Correlations between risk model and clinicopathological features.
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not enough to guide the choice of treatment, we need a
comprehensive combination of biomarkers. Therefore, mRNA
panel signatures or molecular subsets, reflecting the tumor as
well as its microenvironment and the host, was given particular
attention (35, 36).

In this study, we found that there were significant differences in
TKI related genes and immune checkpoint genes between high-risk
and low-risk groups, suggesting that the model has the potential to
predict TKI and immunotherapy response. This conjecture was
confirmed by two external datasets of metastatic ccRCC
patients receiving sunitinib and nivolumab therapy respectively.
We found that high-risk patients had a poor response to TKI
therapy, but a better response to immunotherapy. So, the risk
model may help to guide appropriate treatment in metastatic
RCC patients.

In order to clarify the potential rational mechanism of this
prognostic model, we performed GSEA analysis to identify the
enriched biological process and pathway in high-risk cohort
compared with low-risk cohort. The GSEA showed that the
base mismatch repair, immune related and inflammation related
pathways were significantly enriched in high-risk cohort. In view
of this, we analyzed the differences in Ki67, MMRs genes,
immune infiltration and tumor microenvironment between the
high and low risk groups. We found that the Ki67 expression was
Frontiers in Oncology | www.frontiersin.org 13
higher, MMRs genes expression was lower in high-risk patients.
This illustrated more active tumor cell proliferation (37) and
inhibition of DNA repair mechanisms (38, 39) exist in high-risk
patients. Metabolic recombination and immune evasion, two of
the hallmarks of cancer, are distinct processes, but new research
suggests a strong link (17, 40, 41). Metabolic competition
between tumor and immune cells may lead to tumor
immunosuppression (40). We did confirm this, the higher the
patient’s risk score, the higher infiltration of immune cells, the
more active immune-related functions and higher immune/
stromal/ESTIM scores. The highly glycolytic tumors presented
an immune-stimulatory tumor microenvironment, which has
been proposed to predict immunotherapy response (42). This
further supports our findings that high-risk patients respond
better to immunotherapy despite poor prognosis.

By reviewing the existing studies, we found that these seven
genes are indeed closely related to cancer in the field of basic or
clinical medical research. For example, X Liu et al. found that
knockdown of TGFA led to the suppression of proliferation in
non-small cell lung cancer cell (43). Junfeng Zhang et al. found
the formation of gastric cancer was related to TGFA gene
polymorphisms (44). RBCK1 contributes to chemoresistance
and stemness in colorectal cancer. RBCK1 can regulate
ERalpha-positive breast cancer cell cycle progression and
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FIGURE 9 | Validation of the prognostic signature through GSE22541 cohort. (A) Kaplan–Meier curves also showed that the DFS was significantly shorter in the
high-risk group compared to that in the low-risk group. (B) The curve of risk score. (C) Disease progression status of the patients. More progressive patients
corresponding to the higher risk score. (C) Heatmap of the expression profiles of the seven prognostic genes in low- and high-risk group.
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proliferation by supporting transcription of ERalpha and cyclin
B1 (45), and could be a predictive marker of response to
endocrine therapy in breast cancer (46). The role of CD44 and
KIF20A in tumors has been well studied, and they are
upregulated in a variety of cancers. The function of CD44 can
induce EMT, alter cytoskeleton, and promote drug resistance
and anti-apoptosis (47). A meta-analysis of 25 studies showed
that patients with high KIF20A expression tended to have
shorter OS than patients with low KIF20A expression (HR =
1.77, 95%CI = 1.57–1.99, P < 0.001) (48). Elena A Pudova et al.
found that the overexpression of HK3 was associated with EMT
in colorectal cancer (49). HK3 is also correlated with immune
infiltrates and can predict immunotherapy response in non-
small cell lung cancer (50). GALM and IDUA have not been
thoroughly studied in tumors and it is worth studying in
the future.

Inevitably, our study also had some shortcomings. This
study cannot avoid the selection bias caused by retrospective
characteristics. The sample size of validation data set is too
Frontiers in Oncology | www.frontiersin.org 14
small. Therefore, the prediction model needs to be further
verified in large prospective clinical trials. The mechanism of
glycolysis related genes affecting the occurrence and
development of ccRCC needs further study in vivo and
in vitro.
CONCLUSION

We developed a seven-gene risk profile (GALM, TGFA, RBCK1,
CD44, HK3, KIF20A, and IDUA) associated with glycolysis to
predict the prognosis of ccRCC patients. The higher the risk
parameters, the worse the prognosis. The higher the risk score,
the worse the response to TKI therapy, but the better the
response to immunotherapy. This signature can be used as a
novel tool for predicting the clinical outcome of ccRCC, but also
help to understand the mechanism of cell cellular glycolysis in
carcinogenesis. Of course, the model still needs to be validated in
prospective clinical trials with large sample sizes in the future.
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FIGURE 10 | Prediction of TKI therapy and immunotherapy response. (A) The difference of TKI target genes expression between high and low risk group. (B) The
difference of immune checkpoint genes expression between high and low risk group. (C–E) The predictive power of risk scores in response to TKI therapy.
(F–H) The predictive power of risk scores in response to immunotherapy. CR, complete response; PR, partial response; SD, stable disease; PD, progressive
disease; NE, Not Evaluated. (***p < 0.001; **p < 0.01; *p < 0.05).
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FIGURE 11 | Exploration of potential mechanisms of this signature. (A) The GSEA showed that the base mismatch repair, immune related and inflammation related
pathways were significant enriched in high-risk patients. (B–F) Four of five MMRs genes (MSH2, MSH6, PMS2, and EPCAM) were low expressed in the high-risk
cohort (P < 0.05). (G) The Ki67 expression level was higher in high-risk patients (P < 0.05).
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