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Adaptive MR-guided radiotherapy (MRgRT) is a new treatment paradigm and its role as a
non-invasive treatment option for renal cell carcinoma is evolving. The early clinical
experience to date shows that real-time plan adaptation based on the daily MRI
anatomy can lead to improved target coverage and normal tissue sparing. Continued
technological innovations will further mitigate the challenges of organ motion and enable
more advanced treatment adaptation, and potentially lead to enhanced oncologic
outcomes and preservation of renal function. Future applications look promising to
make a positive clinical impact and further the personalization of radiotherapy in the
management of renal cell carcinoma.

Keywords: MR-guided radiotherapy, renal cell carcinoma, stereotactic body radiotherapy, MR-linac, image-
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INTRODUCTION

Renal cell carcinoma (RCC) is the seventh most common malignancy in the world, where an
estimated 400 000 people are diagnosed per year (1). North America has the highest worldwide
incidence (age-standardized rate [ASR]: 12 per 100 000) followed byWestern Europe (ASR: 9.8) and
Australia/New Zealand (ASR: 9.2) (1). The rise in incidence of RCC since the 1980’s has been
estimated at approximately 0.5-1% per year, partly attributable to both the increased utilization of
cross-sectional imaging leading to incidental findings of small renal masses, and a parallel increase
in obesity in Western societies (2, 3). There has also been an increase in the median age of diagnosis
(age 65), with the largest increase in patients 70 years or older (4).

Surgical resection remains the gold standard of care in patients with localized RCC. Oftentimes
surgery is not possible in an elderly population with other competing medical comorbidities, such as
chronic kidney disease (CKD), and carries significant risks of morbidity and/or mortality (5). As a
result, options such as active surveillance (AS), or thermal ablation including radiofrequency
ablation (RFA) and cryotherapy are considered viable strategies, as demonstrated by their inclusion
within the American and European Urological Association guidelines (6, 7). However, tumor size,
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location and proximity to the renal hilum/vasculature may
limit surgical options and percutaneous ablative techniques
that require anesthesia. Stereotactic body radiotherapy (SBRT)
has emerged as a potential non-invasive option for inoperable
patients. A pooled analysis from the International Radiosurgery
Oncology Consortium for Kidney (IROCK) has demonstrated
SBRT, on conventional conebeam CT (CBCT) linacs or robotic
radiosurgery platforms, to be effective in terms of local control
(98%), cancer-specific (92%), and progression-free survival
(65%) at four years (8). Reported late toxicity (grade ≥3 less
than 2%) is minimal, and the impact on renal function (average
decrease of 5.5 mL per minute) is comparable to other nonsurgical
strategies (9, 10). SBRT has been demonstrated to be effective
regardless of tumor size (a limitation of thermal ablative
techniques) (11), in patients with solitary kidneys (a limitation
for CN or PN) (12), and is well tolerated in an older, medically
frail population (13). Prospective trials of RCC SBRT including
FASTTRACK II from the Trans-Tasman Radiation Oncology
Group (TROG) and the Australian and New Zealand Urogenital
and Prostate Cancer Trials Group (ANZUP) (NCT02613819) and
RADSTER from Canada (NCT03811665) are ongoing or have
completed patient recruitment with results forthcoming in the
next few years.

A closer look at the existing pooled analyses suggests there
may be further gains to be made. Limitations of these analyses
include the absence of pre- and post-treatment comorbidity
assessment, retrospective data collection with possible under-
reporting of toxicity, and short follow-up. Single fraction SBRT
was associated with better progression-free and cancer-specific
survival and distant control compared to multi-fraction SBRT,
however, patients experienced more nausea. Patients who
received a single fraction had better baseline renal function,
but demonstrated a trend toward a greater decline compared to
patients receiving multiple fractions (8). A further analysis of
patients treated with large tumors (>4cm) showed a mean
decline in renal function of -7.9 mL per minute; of which a
significant proportion of patients had pre-existing stage 3 CKD
(11). Could MRgRT permit more utilization of single fraction
SBRT (for large tumors in particular) with the potential of
further improving oncologic outcomes beyond local control
and minimizing the impact on renal function in medically
comorbid and inoperable patients?
TECHNICAL CHALLENGES OF
IRRADIATING RCC

RCC is traditionally perceived to be radioresistant to
conventionally fractionated radiation; however, studies using
hypofractionated doses of radiotherapy (RT) demonstrated
exponential cell kill (14, 15). Historically large margins were
used to ensure that the tumor was irradiated, thus limiting the
escalation of dose that could achieve tumor control. This is in
part due to large and complex kidney motion (16–19), and highly
radiosensitive tissues that surround the kidney and tumor itself,
such as the small and large bowel, duodenum and the renal
parenchyma. With advances in pretreatment imaging, treatment
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planning, and implementation of image-guided radiotherapy
(IGRT), SBRT was introduced and allowed for delivery of high
doses to the tumor. On conventional CBCT-linacs, the internal
target volume (ITV) is typically estimated from 4D computed
tomography (4DCT) and is the most common passive motion
management technique. It represents the treatment volume
delineated on all phases of the 4DCT, and is incorporated
within the planning target volume (PTV). ITV is based on the
assumption that tumor motion estimated during pre-treatment
4DCT acquisition is representative of the motion throughout RT
treatment. However, this approach is limited by the inherent low
soft-tissue contrast of 4DCT (which may lead to visualization
and delineation errors of renal tumors) and on-board CBCT
[potentially underestimating intrafraction motion due to
respiratory variations (20) and drift (21)], which impacts the
reliability of IGRT. As such, larger PTV margins, implanted
fiducial markers, or rigid/deformable image registration with
multiphasic CT/MRI are options to decrease these uncertainties.
Cusumano et al. (22, 23) analyzed the respiratory-induced
motion of thoracic and abdominal lesions based on 2D cine-
MR (4 images/second) acquired with a 0.35T MR-linac
(Viewray, Oakwood Village, OH). In a subset of four kidney
patients, the range of 4D-CT motion was 2-9mm craniocaudal
(CC) and 1-5mm anteroposterior (AP); the range of MR
simulation motion was 5-10mm (CC) and 2-3mm (AP); and
4-9mm (CC) and 2-3mm (AP) during treatment delivery. The
data suggests that reliability of the ITV approach may be lower in
the abdominal region due to limitations of low soft-tissue
contrast and target delineation with 4DCT, and that additional
margins of 3mm CC and 2mm AP are required to ensure that
renal lesions remain within the ITV for greater than 95% of the
time during treatment.
THE POTENTIAL OF ADAPTIVEMR-GUIDED
RADIOTHERAPY FOR RCC

MR-guided radiotherapy (MRgRT) is a new treatment paradigm
that provides high-definition soft-tissue contrast which permits
direct visualization of tumors and adjacent radiosensitive organs-
at-risk (OAR). MRgRT offers real-time, online monitoring of
tumor motion through the different phases of the respiratory
cycle and the opportunity for daily adaptation – optimization of
tumor targeting and OAR sparing, and dose delivery based on
the anatomy from the daily acquired MRI. This may potentially
lead to PTV margin reduction and improving the therapeutic
ratio. The advantages of online adaptive MRgRT and in which
clinical case scenarios maximum benefit will be achieved is yet to
be determined.

The MRIdian 0.35T Co-60 MR-linac (Viewray, Oakwood
Village, OH) workflow entails patients undergoing both a
high-resolution volumetric MR scan and a planning computed
tomography (CT) scan with a breath-hold. The CT scan is used
for dose calculation purposes and to verify tumor size and shape.
The GTV and OARs are delineated on the planning MR image. A
PTV is generated by adding a 3 to 5mm margin to the GTV.
Daily MRIs are fused with the planning MRI for online
May 2021 | Volume 11 | Article 634830
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adaptation and reoptimization. The system utilizes cine imaging
at 4 frames per second in a sagittal plane for real-time anatomic
tracking, deformable registration and respiratory-gated, visual
patient feedback beam control. The tracking algorithm deforms
the anatomical contour on every cine frame and compares it to
the gating boundary contour, typically the PTV. Radiation
delivery is stopped if the target moves outside the gating
boundary, and resumes when it returns to treatment portal
(24–27). Early work with lung and abdominal tumors with this
system demonstrates at least 95% geometric coverage of GTV
(28), and plan adaptation to enhance OAR sparing or to increase
PTV coverage on a fraction-by-fraction basis without an increase
in acute toxicity (29).

Recently Timmeren et al. (30) retrospectively examined
treatment plan quality during the online adaptive re-planning
process with a 0.35T Co-60 MR-linac. The MR-guided online
adapted plans (n=238) to various targets were compared to the
reference plans. The re-optimized plans achieved comparable
dosimetric quality to the reference treatment plans, and OAR
doses were either comparable or decreased across various tumor
sites. The average adaptation time was 24 ± 6 minutes.

Members of the Elekta MR-Linac consortium contribute to the
Momentum study (NCT04075305) (31) which is a prospective
registry to capture all patient-related data aswell as technical data to
facilitate the development and implementation of MRgRT. Some
patient selection and workflow criteria have been outlined by Hall
et al. (32) in their treatment of liver and pancreas cancers using
the Unity 1.5T system (Elekta, Stockholm, Sweden). A patient
may be a potential candidate for MR-Linac radiotherapy if their
lesion isdifficult or impossible to visualizeonanon-contrastCT, the
lesion is in close proximity (within 1 cm) of a radiosensitive
normal structure, and the patient is amenable to clinical
trial participation. The 1.5T MR-linac provides two workflow
solutions, namely, the adapt-to-position (ATP) or adapt-to-shape
(ATS) workflows as previously described (33). The ATP workflow
is a dose re-calculation after an image fusion based on the daily
MRI, but it does not involve re-contouring on the daily MRI. It is
ideal for those scenarios where there is minimal inter-fractional
variation, a low chance of size variations and a reasonable distance
between a mobile OAR and the target. The ATS workflow involves
re-contouring and re-optimization of a new treatment plan based
on the daily MRI. The ATS workflow may be ideal in a scenario
where inter-fractional variations could be significant, such as a
rapidly changing tumor size or close proximity to air cavities or
mobile gastrointestinal structures.

Hall et al. (32) recently reported on ten patients (13 targets)
treated withMRgRT for primary and secondary tumors of the liver
and pancreas with a 1.5TMR-linac. Patients underwent 4DCT and
MRI simulation, and an ITVmethod for motion management was
usedbasedon the4DCT imagedataset. PTVmargins ranged from3
to5mm.Daily adaptationwas accomplishedwith the acquisition of
pretreatment 4D MRIs, where motion-averaged or mid-position
images were reconstructed and used for plan optimization, with
either anATPorATS approach. The decision to useATSwas based
on tumor proximity (3-5mm) to a mobile OAR (luminal GI
structure) with variable daily position, proximity to an air cavity,
Frontiers in Oncology | www.frontiersin.org 3
and variable tumor size and position. Real-time monitoring of the
target during treatment was done with cine MRIs in three
perpendicular planes through the centre of the PTV. The median
treatment time for the ATS workflow was 64 minutes. Currently,
only free-breathing methods of motion management (with or
without abdominal compression) are clinically feasible on the
1.5T MR-linac, while gating solutions are in preparation.

It is a natural evolution to apply MRgRT for kidney tumors
alongside other abdominal/pelvic targets that share the same
adjacent radiosensitive OARs (duodenum, small bowel, large
bowel). The high-definition soft-tissue contrast of MRgRT
permits better visualization of kidney substructures — such as
the renal hilum (vasculature and collecting system) and
parenchyma — that are hard to differentiate with conventional
cone beam CT-guided radiotherapy, which may lead to increased
tissue sparing and preservation of renal function.
EARLY CLINICAL EXPERIENCE WITH MR-
GUIDED RADIOTHERAPY FOR RCC

Rudra et al. (34) published the first case report of a RCCpatient that
was treated with a 0.35T Co-60 MR-linac utilizing an end-
expiration gating technique to deliver a dose of 40 Gy in 5
fractions. The treatment target was the GTV surrounded by a
5 mm gating boundary. The larger gating boundary resulted in less
beam-on interruptionandshorter treatment times, at the expenseof
irradiatingmorenormal tissue. Typical gatingmargins ranged from
3 to 5 mm. For treatment planning 4D CT andMRI data sets were
fused for contouring anddose calculation. The patient had lung and
brain metastases, declined cytoreductive nephrectomy and
continuation of nivolumab, and was treated with SBRT for the
purpose of cytoreduction. No acute or late toxicities were reported,
and the tumor and renal function remained stable 6 months
after SBRT.

Tetar et al. (35) are the first group to report the outcomes of
36 primary RCC patients treated to a dose of 40Gy in 5 fractions on
a 0.35TCo-60MR-linac. Themean age of the cohort was 78.1 years
and tumor diameter was 5.6cm (T1a: 5 patients; T1b: 23 patients;
T2a: 8 patients). With a median follow-up of 16.4 months, the
1-year local control was 95.2%, freedom from progression was
91% and overall survival was 91.2%. One patient experienced
acute grade ≥2 nausea, and no other acute or late toxicities
were reported. Baseline mean eGFR was 55.3 mL/min/1.73 m2

(SD ±19.0), and the mean decline in eGFR post-MRgRT was 6.0
mL/min/1.73 m2. While the follow-up interval is short, oncologic
outcomes and preservation of renal function in this cohort of
mainly large tumors are favorable and consistent with a recent
analysis of RCC SBRT (8, 11).

Prior to the delivery of each treatment fraction patients
completed a short breath-hold MR scan, rigid registration was
performed on the GTV and the OAR contours were propagated to
the daily MRI scan using deformable registration. Routine plan re-
optimization was undertaken where the treating radiation
oncologist adjusted the GTV and OAR contours within 2 cm of
the PTV. A baseline IMRT plan was recalculated on the new
May 2021 | Volume 11 | Article 634830
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anatomy from the daily MRI (predicted plan), and then re-
optimized using the target and OAR optimization objectives of
the baseline plan (re-optimized plan). The priority of plan re-
optimization was to minimize high dose to OARs, even at the
expense of decreased PTV coverage. The re-optimized plan was
used for treatment delivery. MRgRT was delivered with
respiratory gating where the gated structure was either the
kidney itself, or the primary tumor if visible. Gating was
augmented by visual and/or auditory feedback where patients
were able to visualize the gated structure and the gating boundary,
generally corresponding to the PTV (3mm). Treatment times for
these patients ranged from 30–45 minutes for real time contour
propagation, plan re-optimization and treatment delivery. Figure
1A shows a predicted and re-optimized plan and DVH for one
treatment fraction of a right-sided RCC that highlights the
improvement in GTV coverage and sparing of the duodenum
and large bowel with plan adaptation.

The University of Texas MD Anderson Cancer Center is
building experience in the treatment of primary kidney tumors
and metastatic lesions within the kidney parenchyma on a 1.5T
MR-linac. In collaboration with the urology department, non-
Frontiers in Oncology | www.frontiersin.org 4
operable RCC patients are currently being enrolled into the MRI-
MARK trial evaluating the feasibility and effectiveness of MRI-
based SBRT at a dose of 42 Gy in 3 fractions to the gross tumor
volume (NCT04580836). An ITV method for motion
management is employed and daily adaptation is done with
the acquisition of pretreatment free-breathing T2 MRIs, followed
by an adapt-to-position (ATP) or adapt-to-shape (ATS)
workflow. Monitoring is achieved using real-time cine MRI
with 3 orthogonal planes through the PTV during beam-on.
Figure 1B shows the dose distribution for a left mid-upper pole
RCC, and a DVH demonstrating the ability to achieve equivalent
target coverage and OAR sparing with a MR-linac and standard
VMAT treatment plan. With ATS plan adaption, GTV and PTV
coverage can be improved while maintaining OAR sparing.
FUTURE OPPORTUNITIES

Therapies maximizing nephron-sparing is a priority for RCC
patients in whom the prevalence of CKD is high (36). More
efficacious and safer SBRT can be achieved with dose escalation
A B

FIGURE 1 | Representative MRgRT treatment plans for RCC patients with (A) 40 Gy in 5 fractions on a 0.35T MR-linac (MRIdian, ViewRay, Oakwood Village, OH)
and (B) 42 Gy in 3 fractions on a 1.5T MR-linac (Unity, Elekta, Stockholm, Sweden). (A) Top panel showing axial MRIs of a predicted and re-optimized plan of a
right-sided RCC: GTV (green contour), duodenum (blue contour) and large bowel (orange contour); Bottom panel showing the corresponding DVH of the predicted
(solid line) and re-optimized (dotted line) plans with improved GTV (green) coverage, and sparing of the duodenum (Duo - blue) and large bowel (LB - orange).
Reproduced with permission from AME Bruynzeel (Amersterdam UMC). (B) Axial (left) and coronal (right) MRI treatment plan of a left-sided RCC showing ITV (brown
color wash) and PTV (light green color wash) with isodose lines: 42Gy (red) and 36Gy (blue); Middle panel showing a DVH of VMAT (dotted line) and 1.5T MR-linac
treatment plans (solid line); Bottom panel showing a DVH of an ATS adaptive (solid line) and reference plan (dotted line) with improved ITV (dark red) and PTV (light
green) coverage, and equivalent sparing of the left kidney (LK – orange), spleen (Spl – purple), bowel bag (BB – brown) and spinal cord (SC - bright red).
Reproduced with permission from C Tang (MD Anderson Cancer Center) (31).
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and a reduction in margins, and requires MRgRT systems to
advance with enhanced MRI sequences, intrafraction tracking
and gating, and treatment adaptation. Developmental work in
these areas is ongoing.

Al-Ward et al. (37) evaluated and quantified the potential
radiobiological advantages of tumor tracking using the 1.5T MR-
linac (Unity, Elekta, Stockholm, Sweden) for abdominal tumors (3
liver, 3 pancreas, 3 kidney). The investigators applied two planning
methods, the conventional ITV method and a simulated tracking
method (STT). The STT method was developed initially for lung
tumor tracking in an MR-Linac and accounts for 8 phases of the
breathing cycle, where more weight is applied to those phases
where more time is spent. Similar methodology was then applied
to the abdominal/pelvic targets. The average reduction in normal
volume irradiated for kidney tumor patients due to tracking was
26.9%. The authors report that a normal tissue complication
probability (NTCP) benefit due to tracking, was observed in
26% of the data. For all three disease sites, the maximum NTCP
improvements were for the normal kidney, the bowels and the
duodenum, with reductions in associated toxicities of 79%
(radiation nephropathy) (38, 39), 69% (stricture/fistula) (38, 40)
and 25% (ulceration) (38, 41), respectively. Even though this was a
simulation study using a well-validated planning system, it
indicates the potential benefits, in a best case scenario, that may
be achieved in the reduction of side effects and/or an increase in
tumor control probability if real-time tumor tracking is
implemented (Figure 2).

Prins et al. (21) evaluated two motion management techniques,
tumor trailing and respiratory tracking, in 15 RCC patients
simulated for single-fraction, MRI-based SBRT within a 25-
minute treatment time with free breathing. The largest
respiratory tumor motion was observed along the CC direction
Frontiers in Oncology | www.frontiersin.org 5
with a median 95%maximum amplitude of approximately 12mm.
Without mechanical immobilization, intrafraction drift accounted
for 75% of the total intrafraction motion margin for online mid-
position-based SBRT treatments. The described study, and a
previous dose accumulation study highlight the importance of
accounting for intrafraction motion and its impact on dose
accumulation. These studies strengthen the case for online
motion monitoring and real-time plan adaptation (21, 42). In a
free-breathing treatment scenario the margin calculations show
that a 6.1mm PTV margin would be required to account for the
systematic and random errors of drift and respiratory motion, and
could be reduced to 1.5mm with tumor trailing.

Further technical development will enable the opportunity to
increase the utilization of single fraction SBRT for RCC (small and
large) and enable future comparative studies to thermal ablative
procedures. The next step in the evolution of MRgRT for RCC will
be the ability to treat: multiple targets in the ipsilateral and/or
contralateral kidney; oligometastatic (43) or oligoprogressive
metastases{Palma, 2020 #677;Cheung, 2020 #687} (44)
simultaneously; and large primary lesions in metastatic RCC
(mRCC) that are not amenable for upfront cytoreductive
nephrectomy (CN). With respect to the last scenario, results
from the SURTIME (45) and CARMENA (46) trials, have led to
a decrease in CN for International Metastatic RCC Database
Consortium (IMDC) intermediate- and poor-risk patients. Based
on the results of the Checkmate-214 trial (47), first-line treatment
of mRCC is now combination immunotherapy with ipilimumab
and nivolumab in intermediate/poor risk patients compared to
sunitinib previously. “Cytoreductive’ SBRT to the primary kidney
lesion may be a novel treatment strategy to induce an enhanced
and synergistic systemic anti-tumor immune response (an
abscopal effect). This has been observed in patients with
A B

FIGURE 2 | Radiobiological impact of RCC motion tracking in (A) and patient treatment in (B) both utilizing a 1.5 T MR-linac Unity system (Elekta, Stockholm,
Sweden). (A) Adapted with permission from Al-Ward et al. (37). On the left are shown DVHs resulting from two different treatment planning methodologies, one
accounting for the ITV method of motion management (solid curve) and the other accounting for tumor tracking (dashed curve) for one of three kidney patients
investigated. The sparing in irradiated normal kidney by using tracking results in a reduction in predicted normal tissue complication probability as shown on the right.
Such reduction can be viewed as a way to reduce normal kidney toxicity or a way to maintain current toxicity but increase the dose delivered. This is simulated data
representative of an ideal case scenario, indicating the potential benefits that could be achieved using an MR-guided motion tracking delivery strategy.
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melanoma receiving anti–CTLA-4 therapy (48) as well as patients
with RCC (49, 50). Putative mechanisms for this response include
immune stimulation by novel neoantigens or pre-existing antigen-
presenting cells, upregulation of calreticulin and CD8+

proliferating T cells and other key immune-modulating
cytokines (51, 52). The combination of nivolumab/ipilimumab
along with cytoreductive SBRT to the primary lesion for mRCC is
currently being evaluated in a randomized, phase II clinical trial
(CYTOSHRINK NCT04090710) (53). MRgRT within this
treatment paradigm may improve the therapeutic ratio by
maximizing tumor coverage (generally large or unresectable
lesions) while minimizing dose to OARs and the risk of
combined radiation-immunotherapy treatment-related toxicities
(for example, acute kidney injury and progression of CKD).
Functional MRI for the diagnosis and prediction of treatment
response for RCC are areas of ongoing investigation (54).
Acquiring functional imaging studies on a 0.35T and 1.5T MR-
linac during treatment is feasible (32, 55, 56). With consensus
guidelines for image acquisition and quantification (57), MRgRT
offers a unique opportunity to assess novel imaging biomarkers of
response and toxicity in conjunction with serological correlates
during SBRT alone or in combination with immunotherapy.
SUMMARY

The role of MRgRT in the treatment of RCC continues to evolve.
MRgRT can potentially facilitate dose escalation and smaller
treatment margins by overcoming the challenge of complex
kidney motion, and reduce treatment-related toxicities by
carefully evaluating and sparing critical OARs in real time. In
the primary setting, this technology will help advance the use of
SBRT for small and large renal tumors with potentially less renal
toxicity, and improve the therapeutic ratio which will facilitate
future comparative effectiveness studies versus other ablative
modalities. In the metastatic setting, the benefits of MRgRT for
oligometastatic or oligoprogressive tumors, and in combination
with immunotherapy, may even be more pronounced where
Frontiers in Oncology | www.frontiersin.org 6
online tumor monitoring and daily adaptation to optimize dose
delivery and OAR sparing may further mitigate toxicity. Such an
approach would allow for potentially more effective combined
modality therapy and brings us closer to realizing the promise of
high-precision and personalized medicine in the field of
radiation oncology.
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