
Frontiers in Oncology | www.frontiersin.org

Edited by:
Hua Tan,

University of Texas Health Science
Center at Houston, United States

Reviewed by:
Matteo Chinello,

Integrated University Hospital Verona,
Italy

Meenakshi Devidas,
St. Jude Children’s Research Hospital,

United States

*Correspondence:
Hua Jiang

jiang_hua18@sina.cn
Ling Xu

luoxul64@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Pediatric Oncology,
a section of the journal
Frontiers in Oncology

Received: 30 November 2020
Accepted: 23 July 2021

Published: 09 September 2021

Citation:
Liu X, Huang L, Huang K,
Yang L, Yang X, Luo A,

Cai M, Wu X, Liu X, Yan Y, Wen J,
Cai Y, Xu L and Jiang H (2021)

Novel Associations Between METTL3
Gene Polymorphisms and Pediatric

Acute Lymphoblastic Leukemia:
A Five-Center Case-Control Study.

Front. Oncol. 11:635251.
doi: 10.3389/fonc.2021.635251

ORIGINAL RESEARCH
published: 09 September 2021
doi: 10.3389/fonc.2021.635251
Novel Associations Between METTL3
Gene Polymorphisms and Pediatric
Acute Lymphoblastic Leukemia:
A Five-Center Case-Control Study
Xiaoping Liu1†, Libin Huang2†, Ke Huang3, Lihua Yang4, Xu Yang1, Ailing Luo1,
Mansi Cai1, Xuedong Wu5, Xiaodan Liu1,6, Yaping Yan1, Jianyun Wen5, Yun Cai7,
Ling Xu1* and Hua Jiang1*

1 Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University,
Guangzhou, China, 2 Pediatrics Department, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China,
3 Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China, 4 Pediatric Center of
Zhujiang Hospital, Southern Medical University, Guangzhou, China, 5 Department of Pediatrics, Nanfang Hospital, Southern
Medical University, Guangzhou, China, 6 Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangzhou, China, 7 Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen
University, Guangzhou, China

Objective: To reveal the contributing role of METTL3 gene SNPs in pediatric ALL risk.

Patients and Methods: A total of 808 pediatric ALL cases and 1,340 cancer-free
controls from five hospitals in South China were recruited. A case-control study by
genotyping three SNPs in the METTL3 gene was conducted. Genomic DNA was
abstracted from peripheral blood. Three SNPs (rs1263801 C>G, rs1139130 A>G, and
rs1061027 A>C) in the METTL3 gene were chosen to be detected by taqman real-time
polymerase chain reaction assay.

Results: That rs1263801 C>G, rs1139130 A>G, and rs1061027 A>C polymorphisms
were significantly associated with increased pediatric ALL risk was identified. In
stratification analyses, it was discovered that rs1263801 CC, rs1061027 AA, and
rs1139130 GG carriers were more likely to develop ALL in subgroups of common
B-ALL, MLL gene fusion. Rs1263801 CC and rs10610257 AA carriers were more
possible to increase the risk of ALL in subgroups of low hyperdiploid, and all of these
three SNPs exhibited a trend toward the risk of ALL. All of these three polymorphisms
were associated with the primitive/naïve lymphocytes and MRD in marrow after
chemotherapy in ALL children. Rs1263801 CC and rs1139130 AA alleles provided a
protective effect on MRD ≥0.01% among CCCG-treated children. As for rs1139130, AA
alleles provided a protective effect on MRD in marrow ≥0.01% on 33 days and 12 weeks
among CCCG-treated children, but provided a risk effect on MRD in the marrow ≥0.01%
among SCCLG-treated children. As for rs1263801 CC and rs1139130 AA, these
two alleles provided a protective effect on MRD in the marrow ≥0.01% among CCCG-
treated children.
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Conclusion: In this study, we revealed that METTL3 gene polymorphisms were
associated with increased pediatric ALL risk and indicated that METTL3 gene
polymorphisms might be a potential biomarker for choosing ALL chemotherapeutics.
Keywords: methyltransferase-like 3, acute lymphoid leukemia, polymorphism, pediatric, susceptibility
INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common type of
pediatric cancer in the world; in China, it accounts for 70–80% of
pediatric leukemia (1). ALL can be classified by immune cell
phenotype as B-cell ALL and T-cell ALL. B-cell ALL is the most
common ALL; T-cell ALL is typically more aggressive (2). As
traditional chemotherapy combined with novel therapies makes
great progress, higher survival rates and reduced morbidities have
been achieved in ALL. Recently, the 5-year overall survival rate of
ALL children younger than 14 years has been achieved >90% (3).
However, recurrence occurs in 15–20% of ALL children, and 15%
pediatric ALL patients were therapeutic failures, which resulted in
early age mortality (4). ALL is characterized by multiple genetic
alterations (5).

Heritable variations in genes are risk factors for ALL and play
a strong role in the development of pediatric ALL (6).
Populations with different races are well distinguished by
genetic polymorphisms. Genome-wide association studies
(GWAS) have identified a number of loci, and single
nucleotide polymorphism (SNP) associations in several genes
are associated with the risk of ALL. Genetic alterations in
pediatric ALL are found to be very different from those in
adult ALL (7).

N6-methyladenosine (m6A) is the most abundant internal
modification of messenger RNAs (mRNAs) in eukaryotic
organisms. Methylation at the sixth N atom on adenine base
is m6A. M6A regulates mRNA expression posttranscriptionally
in a dynamic and reversible manner (8). M6A modification
is regulated by several key regulators, including writers [RNA
methyltransferase complex methyltransferase-like 3 (METTL3)/
methyltransferase-like 14 (METTL14)/Wilms’ tumor 1-
associating protein (WTAP)], erasers [demethylases fat mass
and obesity-associated protein (FTO) and AlkB homolog 5
(ALKBH5)], and readers (YTHD family proteins) (9). It was
reported that dysregulation of m6A is associated with multiple
tumors including acute myeloid leukemia (AML) (10). M6A
methylation writer METTL3 was discovered playing an
oncogenic role in carcinogenesis, such as colorectal carcinoma
(11), bladder cancer (12), breast cancer (13), etc. METTL3
mRNA and protein are expressed abundantly in AML cells,
and their depletion induces cell differentiation and apoptosis and
delays leukemia progression (14). Some genetic variations in
m6A-related gene regions may affect m6A methylation,
subsequently regulating mRNA expression (15). Studies
identified that m6A-associated SNPs were potential functional
variants for periodontitis (16) and coronary artery disease (17).
Genetic alterations in the m6A demethyltransferase FTO gene
were shown to be associated with ALL and AML risk, and there is
2

evidence that indicates dysregulation of m6A methyltransferase
METTL3 in AML (18, 19). However the relationship between
genetic variations of the METTL3 gene and ALL is still unclear.

In the present study, a total of three SNPs were selected to
assess the relationship between METTL3 polymorphisms and
pediatric ALL. The current study was a case-control study
that was performed using samples from five hospitals in
South China.
MATERIALS AND METHODS

Study Subjects
A Southern Chinese population that included 808 pediatric ALL
patients and 1,340 age-matched, gender-matched, and ethnicity-
matched healthy controls is summarized in Table S1. ALL cases
were collected from Guangzhou Women and Children’s Medical
Center (GWCMC), Guangzhou Medical University (n=582),
The First Affiliated Hospital, Sun Yat-sen University (n=74),
Sun Yat-sen Memorial Hospital, Sun Yat-sen University (n=26),
Nanfang Hospital, Southern Medical University (SMU) (n=100),
and Zhujiang Hospital, Southern Medical University (n=26),
from January 2017 to May 2019. All children were diagnosed
with ALL by at least two hematologists. The control subjects were
free from any type of hematological diseases or any other
malignancy or autoimmune disorder and were recruited from
the same hospital.

The major clinical and biological characteristics of the ALL
children, including age, gender, immunophenotype, gene fusion
type, risk level, karyotype, clinical manifestations, rate of
primitive/naive lymphocytes in the marrow, and minimal
residual disease on 19 days, 33 days, and 12 weeks after
chemotherapy and chemotherapy regimen were collected. The
information is summarized in Table S1.

The study was approved by the institutional ethics committee
of every participating hospital, and written informed consent was
acquired from all participants in accordance with the Declaration
of Helsinki.
METTL3 SNPs Selection and Genotyping
The included potentially functional candidate SNPs were
selected as follows: located in the 5’ untranslated region, 3’
untranslated region, 5’ flanking region, and exon of the
METTL3 gene. The NCBI dbSNP database (http://www.ncbi.
nlm.nih.gov/projects/SNP) and the SNPinfo (https://snpinfo.
niehs.nih.gov/snpinfo/snpfunc.html) online software were used
to perform the above selection. Three SNPs (rs1263801 C>G,
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rs1139130 G>A, and rs1061027 A>C) in theMETTL3 gene were
chosen. Genomic DNAwas extracted from peripheral blood. The
reaction system and condition of the Taqman RT-PCR assay was
according to the published reference (20, 21). To ensure the
accuracy of these genotyping results, 10% of the samples were
randomly selected to be genotyped by a DNA sequencing
method. A concordance rate of 100% for the quality control
samples was obtained (21).

Statistical Analysis
The goodness-of-fit c2 test was performed to assess if the selected
METTL3 SNPs deviated from Hardy–Weinberg equilibrium
among controls. The two-sided c2 test was used to compare
demographic variables and genotype frequencies of the cases and
controls. ORs and their corresponding 95% CIs were computed
by unconditional logistic regression analyses with or without
adjustment for age and gender. The SAS statistical package
(version 9.1; SAS Institute, Cary, NC) was used to perform all
statistical analyses. All reported p values were two sided, and a p
value < 0.05 was considered statistically significant.
RESULTS

Population Characteristics
The demographic and clinical characteristics data of ALL cases
and cancer-free controls are summarized in Table S1. No
significant differences were observed between cases and controls
for the Southern Chinese children regarding age (p=0.082)
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and gender (p=0.059). Among ALL cases, 28.22% (228 cases)
were pro B cell ALL, 35.27% (285 cases) were common B cell ALL,
20.67% (167 cases) were pre-B cell ALL, 0.67% (3 cases) were
mature B ALL, 8.54% (69 cases) were T cell ALL, and 6.93% (56
cases) were undefined immunophenotype. Regarding the gene
fusion type, 3.34% (27 cases) had BCR-ABL gene fusion, 16.83%
(136 cases) had TEL-AML, 2.97% (24 cases) had E2A-PBX, 0.99%
(8 cases) had SIL-TAL, 1.98% (16 cases) had MLL, 3.09% (25
cases) had other gene fusions, 68.19% (551 cases) were normal,
and 21 were undefined. A total of 258 patients (33.73%) were
with low risk, 360 cases (47.06%) were with medium risk, 77 cases
(10.07%) were with high risk, and 70 cases (9.15%) were
undefined. Regarding the karyotype, 64.40% (517 cases)
were normal diploid, 5.25% (45 cases) were abnormal
diploid, 2.69% (22 cases) were hypodiploid, 3.46% (27 cases)
were low hyperdiploid, and 7.81% (61 cases) were
high hyperdiploid.

Correlation of METTL3 Gene
Polymorphisms With ALL Risk
The genotype frequencies of METTL3 associated with ALL risk
are shown in Table 1. In the single-locus analysis, carriers of
rs1263801 (CC vs. GG: adjusted OR= 4.18, 95% CI=3.21–5.43,
p<0.001) and rs1061027 (CA vs. CC: adjusted OR=2.42, 95%
CI=2.00–2.94, p<0.001; AA vs. CC: adjusted OR=6.21, 95%
CI=4.38–8.81, p<0.001) variant alleles showed significant
enhanced risk of pediatric ALL. On the contrary, rs1139130
(GA vs. GG: adjusted OR=1.41, 95% CI=1.15–1.73, p=0.001; AA
vs. GG: adjusted OR=1.52, 95% CI=1.81–3.06, p<0.001) variant
alleles contribute to decreased risk of pediatric ALL.
TABLE 1 | Logistic regression analysis of associations between METTL3 polymorphisms and ALL susceptibility.

Genotype Cases (N = 808) Controls (N = 1340) Pa Crude OR (95% CI) P Adjusted OR (95% CI) b Pb

rs1263801 (HWE=0.0971)
GG 269 (33.50) 600 (44.88) 1.00 1.00
GC 304 (37.86) 611 (45.70) 1.11 (0.91-1.35) 0.305 1.12 (0.92-1.37) 0.254
CC 230 (28.64) 126 (9.42) 4.07 (3.14-5.28) 0.001 4.18 (3.21-5.43) 0.001

Additive 0.001 1.82 (1.61-2.07) 0.001 1.84 (1.63-2.09) 0.001
Dominant 534 (66.50) 737 (55.12) 0.001 1.62 (1.35-1.94) 0.001 1.64 (1.37-1.97) 0.001
Recessive 573 (71.36) 1211 (90.58) 0.001 3.86 (3.04-4.90) 0.001 3.93 (3.09-5.00) 0.001

rs1139130 (HWE=0.3401)
GG 220 (28.17) 511 (38.51) 1.00 1.00
GA 383 (49.04) 638 (48.08) 1.39 (1.14-1.71) 0.002 1.41 (1.15-1.73) 0.001
AA 178 (22.79) 178 (13.41) 2.32 (1.79-3.02) 0.001 2.36 (1.81-3.06) 0.001

Additive 0.001 1.51 (1.32-1.71) 0.001 1.52 (1.33-1.73) 0.001
Dominant 561 (71.83) 816 (61.49) 0.001 1.60 (1.32-1.93) 0.001 1.62 (1.34-1.96) 0.001
Recessive 603 (77.21) 1149 (86.59) 0.001 1.90 (1.51-2.40) 0.001 1.92 (1.52-2.42) 0.001

rs1061027 (HWE=0.6433)
CC 319 (39.78) 859 (64.73) 1.00 1.00
CA 364 (45.39) 414 (31.20) 2.37 (1.96-2.87) 0.001 2.42 (2.00-2.94) 0.001
AA 119 (14.84) 54(4.07) 5.93 (4.20-8.39) 0.001 6.21 (4.38-8.81) 0.001

Additive 0.001 2.41 (2.09-2.78) 0.001 2.46 (2.13-2.84) 0.001
Dominant 483 (60.33) 468 (35.27) 0.001 2.78 (2.32-3.33) 0.001 2.85 (2.38-3.42) 0.001
Recessive 683 (85.16) 1273 (95.93) 0.001 4.11 (2.94-5.74) 0.001 4.23 (3.02-5.93) 0.001
Septem
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ac2 test for genotype distributions between ALL cases and cancer-free controls.
bAdjusted for age and gender.
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TABLE 2 | Stratification analysis of METTL3 polymorphisms with ALL susceptibility.

1061027 (cases/controls) Adjusted ORa Pa

CC/CA AA (95% CI)

610/1149 94/48 3.64 (2.53-5.22) 0.001
73/124 25/6 7.10 (2.78-18.1) 0.001

268/462 53/20 4.84 (2.83-8.28) 0.001
415/811 64/34 3.82 (2.47-5.92) 0.001

214/1273 13/54 1.51 (0.80-2.83) 0.201
199/1273 82/54 9.72 (6.67-14.2) 0.001
158/1273 8/54 1.25 (0.58-2.68) 0.570
3/1273 0/54 0.001(0.00-999) 0.982
61/1273 8/54 2.88 (1.29-6.42) 0.010
48/1273 8/54 3.82 (1.71-8.53) 0.002

20/1273 7/54 6.15 (2.32-16.3) 0.001
114/1273 21/54 4.61 (2.67-7.94) 0.001
23/1273 1/54 1.05 (0.14-7.93) 0.965
7/1273 1/54 3.27 (0.39-27.2) 0.274
10/1273 6/54 14.8 (5.15-42.6) 0.001
16/1273 9/54 13.2 (5.56-31.3) 0.001
474/1273 72/54 3.63 (2.50-5.25) 0.001

20/1273 2/54 2.29 (0.52-10.1) 0.274
434/1273 80/54 4.44 (3.08-6.39) 0.001
40/1273 5/54 2.87 (1.09-7.58) 0.034
20/1273 7/54 7.83 (3.17-19.5) 0.001
57/1273 4/54 1.81 (0.63-5.22) 0.271

441/1273 55/54 3.07 (2.07-4.56) 0.001
55/1273 14/54 5.69 (2.96-10.9) 0.001

30/1273 17/54 13.1 (6.80-25.3) 0.001
378/1273 79/54 5.18 (3.58-7.49) 0.001

460/1273 51/54 2.72 (1.82-4.05) 0.001
30/1273 2/54 1.61 (0.37-6.95) 0.523

262/1273 30/54 2.83 (1.77-4.52) 0.001
209/1273 26/54 3.02 (1.84-4.92) 0.001

312/1273 23/54 1.90 (1.14-3.16) 0.014
13/1273 0/54 0.001 (0.00-999) 0.980

299/1273 19/54 1.67 (0.97-2.88) 0.066
25/1273 1/54 0.95 (0.13-7.16) 0.962
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Variables rs1263801 (cases/controls) Adjusted ORa Pa rs1139130 (cases/controls) Adjusted ORa Pa rs

GG/GC CC (95% CI) GG/GA AA (95% CI)

Age, month
<120 513/1095 192/110 3.69 (2.85-4.77) 0.001 534/1036 154/159 1.87 (1.46-2.40) 0.001
≥120 60/116 38/16 4.65 (2.39-9.05) 0.001 69/113 24/19 2.07 (1.06-4.05) 0.034

Gender
Females 227/435 96/50 3.72 (2.55-5.44) 0.001 226/426 85/60 2.62 (1.81-3.78) 0.001
Males 346/776 134/76 4.06 (2.97-5.54) 0.001 377/723 93/118 1.53 (1.13-2.06) 0.005

Immunophenotyping
Pro B 198/1211 29/126 1.47 (0.95-2.28) 0.083 181/1149 41/178 1.51 (1.04-2.21) 0.032
Common B 149/1211 133/126 8.59 (6.37-11.6) 0.001 177/1149 98/178 3.58 (2.67-4.81) 0.001
Pre B 136/1211 30/126 2.22 (1.43-3.44) 0.001 140/1149 22/178 1.04 (0.65-1.68) 0.863
Mature B 3/1211 0/126 0.001 (0.00-999) 0.973 3/1149 0/178 0.001 (0.00-999) 0.968
T ALL 49/1211 20/126 3.78 (2.15-6.63) 0.001 58/1149 8/178 0.86 (0.40-1.83) 0.688
Mix 38/1211 18/126 4.41 (2.43-7.99) 0.001 44/1149 9/178 1.31 (0.63-2.73) 0.474

Gene fusion type
BCR-ABL 15/1211 12/126 6.05 (2.66-13.7) 0.001 20/1149 6/178 1.63 (0.62-4.26) 0.319
TEL-AML 96/1211 39/126 4.08 (2.68-6.21) 0.001 103/1149 30/178 1.89 (1.22-2.93) 0.004
E2A-PBX 21/1211 3/126 1.40 (0.41-4.79) 0.588 21/1149 2/178 0.65 (0.15-2.80) 0.562
SIL-TAL 7/1211 1/126 1.31 (0.16-10.9) 0.797 7/1149 0/178 0.001 (0.00-999) 0.961
MLL 7/1211 9/126 13.1 (4.77-35.9) 0.001 10/1149 6/178 3.95 (1.41-11.0) 0.009
Others 10/1211 15/126 14.2 (6.22-32.3) 0.001 13/1149 11/178 5.53 (2.44-12.6) 0.001
Normal 405/1211 142/126 3.41 (2.61-4.45) 0.001 413/1149 118/178 1.86 (1.43-2.41) 0.001

Karyotype
Hypo-diploid 17/1211 5/126 2.83 (1.02-7.85) 0.046 15/1149 5/178 1.84 (0.67-5.07) 0.236
Normal diploid 371/1211 144/126 3.78 (2.89-4.95) 0.001 389/1149 113/178 1.88 (1.45-2.45) 0.001
Abnormal diploid 34/1211 11/126 2.99 (1.47-6.06) 0.002 35/1149 7/178 1.28 (0.56-2.93) 0.562
Low hyperdiploid 16/1211 11/126 6.16 (2.78-13.7) 0.001 20/1149 5/178 1.58 (0.58-4.27) 0.372
High hyperdiploid 45/1211 16/126 3.66 (1.99-6.71) 0.001 49/1149 12/178 1.67 (0.87-3.22) 0.126

Primitive/naive lymphocytes in marrow(%, 19d)
<5 362/1211 134/126 3.66 (2.79-4.82) 0.001 377/1149 104/178 1.80 (1.38-2.36) 0.001
≥5 45/1211 24/126 4.83 (2.86-8.24) 0.001 50/1149 18/178 2.27 (1.29-4.00) 0.004

MRD in marrow(%, 19d)
<0.01 22/1211 25/126 10.6 (5.81-19.5) 0.001 26/1149 19/178 4.66 (2.52-8.60) 0.001
≥0.01 298/1211 159/126 5.27 (4.03-6.89) 0.001 337/1149 108/178 2.09 (1.60-2.73) 0.001

Primitive/naïve lymphocytes in marrow(%, 33d)
<5 367/1211 144/126 3.90 (2.98-5.10) 0.001 396/1149 104/178 1.72 (1.32-2.26) 0.001
≥5 27/1211 5/126 1.83 (0.69-4.87) 0.223 23/1149 6/178 1.80 (0.72-4.50) 0.211

MRD in marrow(%, 33d)
<0.01 242/1211 50/126 2.06 (1.44-2.95) 0.001 231/1149 48/178 1.36 (0.96-1.94) 0.082
≥0.01 149/1211 86/126 5.64 (4.07-7.80) 0.001 175/1149 59/178 2.19 (1.56-3.06) 0.001

Primitive/naïve lymphocytes in marrow(%, 12w)
<5 288/1211 47/126 1.65 (1.15-2.36) 0.007 269/1149 52/178 1.29 (0.92-1.81) 0.139
≥5 12/1211 1/126 0.88 (0.11-6.92) 0.907 10/1149 3/178 2.14 (0.58-7.96) 0.257

MRD in marrow(%, 12w)
<0.01 282/1211 36/126 1.31 (0.88-1.94) 0.187 262/1149 43/178 1.10 (0.77-1.58) 0.600
≥0.01 20/1211 6/126 2.89 (1.14-7.35) 0.026 18/1149 8/178 2.91 (1.24-6.81) 0.014

aAdjusted for age and gender.
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Stratification Analysis of Identified SNPs
We further analyzed whether the selected METTL3
polymorphisms (rs1263801 C>G, rs1139130 A>G, and
rs1061027 A>C) preferentially predispose to any specific
subtype of ALL (Table 2). A stronger risk effect of rs1263801
was found among children older than 10 years (adjusted OR=
4.65, 95% CI=2.39–9.05, p<0.001), male (adjusted OR= 4.06, 95%
CI=2.97–5.54, p=0.001), common B subtype ALL (adjusted OR=
8.59, 95% CI=6.37–11.6, p<0.001), MLL gene fusion type
(adjusted OR= 13.1, 95% CI=4.77–35.9, p<0.001), low
hyperdiploid (adjusted OR= 6.16, 95% CI=2.78–13.7, p<0.001),
primitive/naive lymphocytes in marrow ≥ 5% on 19 days
(adjusted OR=4.83, 95% CI=2.86–8.24, p<0.001) after
chemotherapy, primitive/naive lymphocytes in marrow < 5%
on 33 days (adjusted OR= 3.90, 95% CI=2.98–5.10, p<0.001) and
12 weeks (adjusted OR=1.65, 95% CI=1.15–2.36, p=0.007) after
chemotherapy, MRD in marrow < 0.01% on 19 days (adjusted
OR=10.6, 95% CI=5.81–19.5, p<0.001), MRD ≥ 0.01% on 33
days (adjusted OR=5.64, 95% CI=4.07–7.80–8.24, p<0.001),
and ≥0.01% on 12 weeks (adjusted OR=2.89, 95% CI=1.14–
7.35, p=0.026). As for the rs1139130 polymorphism, a more
significant risk association was identified with those children age
≥10 years (adjusted OR=2.07, 95% CI= 1.06–4.05, p=0.034),
female (adjusted OR=2.62, 95% CI= 18.1–3.78, p<0.001),
common B subtype (adjusted OR=3.58, 95% CI= 2.67–4.81,
p<0.001), MLL gene fusion type (adjusted OR=3.95, 95%
CI=1.41–11.0, p=0.009), normal diploid (adjusted OR=1.88,
95% CI=1.45–2.45, p<0.001), primitive/naive lymphocytes in
marrow ≥ 5% on 19 days (adjusted OR= 2.27, 95% CI=1.29–
4.00, p<0.001) and <5% on 33 days (adjusted OR=1.72, 95%
CI=1.32–2.26, p<0.001) after chemotherapy, MRD in marrow
<0.01% on 19 days (adjusted OR= 4.66, 95% CI=2.52–8.60,
p<0.001), MRD ≥ 0.01% on 33 days (adjusted OR= 2.19, 95%
CI=1.56–3.06, p<0.001), and ≥0.01% on 12 weeks (adjusted OR=
2.91, 95% CI=1.24–6.81, p=0.014). As for the rs1061027
polymorphism, a stronger risk association was revealed with
those children age ≥10 years (adjusted OR=7.10, 95% CI= 2.78–
18.1, p<0.001), female (adjusted OR=4.84, 95% CI= 2.83–8.28,
p<0.001), common B subtype (adjusted OR=9.72, 95% CI= 6.67–
14.2, p<0.001), MLL gene fusion type (adjusted OR=14.8, 95%
CI= 5.15–42.6, p<0.001), low hyperdiploid (adjusted OR=7.83,
95% CI= 3.17–19.5, p<0.001), primitive/naive lymphocytes in
marrow ≥5% on 19 days (adjusted OR= 5.69, 95% CI=2.96–10.9,
p<0.001) and <5% on 33 days (adjusted OR=2.72, 95% CI= 1.82–
4.05, p<0.001) after chemotherapy, MRD in marrow <0.01% on
19 days (adjusted OR= 13.1, 95% CI=6.80–25.3, p<0.001), and
MRD ≥0.01% on 33 days (adjusted OR= 3.02, 95% CI=1.84–4.92,
p<0.001). No correlation was found between the rs1061027
polymorphism and MRD on 12 weeks.
Association of METTL3 Polymorphisms
With Chemotherapeutics in Southern
Chinese Pediatric ALL Patients
All patients were treated with Chinese Children Cancer Group
chemotherapeutics (CCCG) or South China Children Leukemia
Group chemotherapeutics (SCCLG). We compared the MRD in
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T
A
B
LE

3
|
Th

e
co

rr
el
at
io
n
be

tw
ee

n
M
ET

TL
3
po

ly
m
or
ph

is
m
s
an

d
S
ou

th
C
hi
na

pe
di
at
ric

A
LL

pa
tie
nt
s’

re
sp

on
se

to
di
ffe
re
nt

ch
em

ot
he

ra
pe

ut
ic
s.

S
N
P

V
ar
ia
b
le
s

M
R
D

in
m
ar
ro
w

(%
,1

9d
)

M
R
D

in
m
ar
ro
w

(%
,3

3d
)

M
R
D

in
m
ar
ro
w

(%
,1

2w
)

C
as

e
(%

)
P
a

A
d
ju
st
ed

O
R
a

C
as

e
(%

)
P
a

A
d
ju
st
ed

O
R
a

C
as

e
(%

)
P
a

A
d
ju
st
ed

O
R
a

<
0.
01

≥
0.
01

(9
5%

C
I)

<
0.
01

≥
0.
01

(9
5%

C
I)

<
0.
01

≥
0.
01

(9
5%

C
I)

rs
12

63
80

1
C
C
C
G
-A
LL

-2
01

5
G
G
/G

C
4
(1
.5
4)

25
6
(9
8.
46

)
19

4
(5
9.
88

)
13

0
(4
0.
12

)
23

8
(9
3.
70

)
16

(6
.3
0)

C
C

6
(4
.6
9)

12
2
(9
5.
31

)
0.
09

3.
00

(0
.8
3-
10

.9
)

19
(2
0.
88

)
72

(7
9.
12

)
0

0.
17

(0
.1
0-
0.
30

)
21

(8
0.
77

)
5
(1
9.
23

)
0.
03

0.
30

(0
.1
0-
0.
90

)

S
C
C
LG

-A
LL

-2
01

6
G
G
/G

C
7
(2
3.
33

)
23

(7
6.
67

)
25

(7
1.
43

)
10

(2
8.
57

)
26

(8
9.
66

)
3
(1
0.
34

)
C
C

9
(3
4.
62

)
17

(6
5.
38

)
0.
31

1.
89

(0
.5
5-
6.
48

)
19

(7
3.
08

)
7
(2
6.
92

)
0.
6

1.
39

(0
.4
1-
4.
72

)
9
(9
0.
00

)
1
(1
0.
00

)
0.
64

1.
85

(0
.1
4-
25

.4
)

rs
11

39
13

0
C
C
C
G
-A
LL

-2
01

5
G
G
/G

A
4
(1
.4
1)

27
9
(9
8.
59

)
17

3
(5
3.
07

)
15

3
(4
6.
93

)
21

5
(9
3.
89

)
14

(6
.1
1)

A
A

4
(4
.4
0)

87
(9
5.
60

)
0.
14

2.
88

(0
.7
0-
11

.9
)

27
(3
6.
00

)
48

(6
4.
00

)
0.
01

0.
50

(0
.2
9-
0.
83

)
31

(8
1.
58

)
7
(3
3.
33

)
0.
03

0.
32

(0
.1
2-
0.
87

)

S
C
C
LG

-A
LL

-2
01

6
G
G
/G

A
8
(2
0.
00

)
32

(8
0.
00

)
32

(7
1.
11

)
13

(2
8.
89

)
28

(8
9.
66

)
7
(1
0.
34

)
A
A

8
(5
0.
00

)
8
(5
0.
00

)
0.
02

5.
70

(1
.3
7-
23

.7
)

12
(7
5.
00

)
4
(2
5.
00

)
0.
53

1.
56

(0
.3
9-
6.
31

)
7
(1
00

.0
)

0
(0
0.
00

)
0.
97

99
9
(0
.0
0-
99

9)
rs
10

61
02

7
C
C
C
G
-A
LL

-2
01

5
C
C
/C

A
4
(1
.2
2)

32
4
(9
8.
78

)
20

5
(5
2.
03

)
18

9
(4
7.
97

)
25

1
(9
2.
28

)
21

(7
.7
2)

A
A

6
(1
0.
00

)
54

(9
0.
00

)
0

8.
63

(2
.3
1-
32

.3
)

8
(3
8.
10

)
13

(6
1.
90

)
0.
19

0.
54

(0
.2
2-
1.
35

)
8
(1
00

.0
)

0
(0
.0
0)

0.
98

99
9
(0
.0
0-
99

9)

S
C
C
LG

-A
LL

-2
01

6
C
C
/C

A
9
(2
5.
71

)
26

(7
4.
29

)
31

(7
5.
61

)
10

(2
4.
39

)
28

(9
0.
32

)
3
(9
.6
8)

A
A

7
(3
3.
33

)
14

(6
6.
67

)
0.
4

1.
74

(0
.4
7-
6.
37

)
13

(6
5.
00

)
7
(3
5.
00

)
0.
61

0.
72

(0
.2
1-
2.
51

)
7
(8
7.
50

)
1
(1
2.
50

)
0.
77

1.
50

(0
.1
0-
21

.8
)

a A
dj
us

te
d
fo
r
ag

e
an

d
ge

nd
er
.

C
C
C
G
,C

hi
ne

se
C
hi
ld
re
n
C
an

ce
r
G
ro
up

;S
C
C
LG

,S
ou

th
C
hi
na

C
hi
ld
re
n
Le

uk
em

ia
G
ro
up

.

Sep
te
mbe
r 2
02
1 |
 Vo
lum
e 1
1
 | A
rticle
 63
5251

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. METTL3 Polymorphisms in Pediatric ALL
the marrow of patients with different alleles after being treated
with CCCG and SCCLG (Table 3). As for rs1263801, CC alleles
provided a protective effect on MRD in the marrow ≥0.01% on
33 days (adjusted OR= 0.17, 95% CI= 0.10–0.30, p<0.001) and 12
weeks (adjusted OR= 0.30, 95% CI= 0.10–0.90, p=0.030) among
CCCG-treated children. As for rs1139130, AA alleles provided a
protective effect on MRD in marrow ≥0.01% on 33 days
(adjusted OR= 0.50, 95% CI= 0.29–0.83, p=0.008) and 12
weeks (adjusted OR= 0.32, 95% CI= 0.12–0.87, p=0.030)
among CCCG-treated children but provided a risk effect on
MRD in marrow ≥0.01% among SCCLG-treated children
(adjusted OR=5.70, 95% CI=1.37–23.7, p=0.017). As for
rs1061.27, AA alleles provided a risk effect on MRD in the
marrow ≥0.01% among CCCG-treated children (adjusted
OR=8.63, 95% CI=2.31–32.3, p=0.002). These results indicated
that SCCLG chemotherapeutics is more suitable for rs1263801
CC and rs1139130 AA carriers; CCCG chemotherapeutics is
more efficient for rs1061027 AA carriers.
DISCUSSION

In the current case-control study with 808 pediatric ALL case
and 1,340 healthy controls from Southern Chinese populations,
we explored the potential association between METTL3 gene
polymorphisms and pediatric ALL risk. We certificated that
three polymorphisms, namely rs1263801 C>G, rs1139130
A>G, and rs1061027 A>C, were associated with an increased
susceptibility of pediatric ALL. To our knowledge, this study is
the first to identify the association between METTL3
polymorphisms and pediatric ALL susceptibility.

Epigenetic alterations, including DNA methylation, histone
modifications, and noncoding RNAs, have been reported to
contribute to ALL progression (22). In recent years, another
epigenetic modification, RNA methylation, is considered to play
an important role in carcinogenesis (11). M6A is the most
common modification of RNA on the posttranscriptional level,
mainly in mRNA and long noncoding RNA (lncRNA) (23). The
complex composed of METTL3, METTL14, and WTAP induces
m6A-methylation of mRNA or lncRNA. METTL3 is the essential
component of the complex. Dysregulation of METTL3 was
identified to be a key role in the progression of multiple
malignant tumors, such as endometrial cancer (24), bladder
cancer (25), pancreatic cancer (26), etc. A number of articles
infer that METTL3 can promote tumor progression through
multiple mechanisms. METTL3 can promote growth, survival,
and invasion by interacting with the translation initiation element
to enhance mRNA translation in lung adenocarcinoma (27). Lin
et al. (28) revealed that deletion of METTL3 could impair the
epithelial-mesenchymal transition (EMT). In breast cancer,
METTL3 is upregulated by HBXIP and promotes the cancer
progression by suppressing let-7g (29). METTL3 promotes self-
renewal of glioblastoma stem cells to induce tumorigenesis (30).
METTL3 can directly interact with the eukaryotic translation
initiation factor e subunit h (eIF3h). The interaction between
METTL3 and eIF3h is essential for translation and oncogenic
Frontiers in Oncology | www.frontiersin.org 6
transformation in lung cancer (31). Promoter-bound METTL3
promotes m6A modification within the coding region of mRNA
transcript and enhances translation by inhibiting ribosome
stalling. METTL3 regulates mRNA expression in this way to
facilitate the progression of acute myeloid leukemia (32).
However, the function of METTL3 in ALL is still unknown.

Here in , we invest igated whether METTL3 gene
polymorphisms could influence the susceptibility of ALL in
South China children for the first time. With regard to the
remaining threeMETTL3 gene polymorphisms (rs1263801 C>G,
rs1139130 A>G, and rs1061027 A>C), we identified the
association between these three SNPs and pediatric ALL
susceptibility. The location and predicted function was
analyzed using the online software SNPinfo. The rs1263801
C>G polymorphism was located in intron 1 of the METTL3
gene and was predicted to be the transcriptional factor binding
site. The rs1139130 A>G located in the exon 5 of the METTL3
gene was predicted to affect splicing and protein function. The
rs1061027 A>C polymorphism located in intron 8 was predicted
to be associated with miRNA function. In 2018, Bertero et al.
reported that the interactome of transcriptional factors SMAD2/
3 promoted another transcriptional factor TGFb to control the
METTL3/METTL14/WTAP complex mediated m6A mRNA
methylation in human pluripotent stem cells (33). Xia et al.
reported that Zmettl3 mutation disrupts gamete maturation
and reduces fertility in zebrafish (34). Other studies identified
that METTL3 mRNA could be targeted by miR-600 (35) and
miR-33a (36). However, there was no evidence certifying
that genetic variations of METTL3 could affect the
transcriptional factor or miRNAs binding to METLL3 and the
coding of METTL3 mRNA. Our results suggested that the
rs1263801 CC phenotype, rs1139130 GG phenotypes, and
rs1061027 CA/CC phenotypes are associated with an increased
risk of pediatric ALL in South China. Lin et al. reported that the
combination of rs1139130, rs1263801, rs1061026, and rs1061027
reduced the risk of Wilms tumor in Chinese children (37). Bian
et al. (38) identified that these four polymorphisms were
associated with an increased risk of neuroblastoma. It
suggested that METTL3 polymorphisms function diversely in
different tumors.

We next examined whether the METTL3 SNP genotype
preferentially predisposes to any pediatric ALL subtype,
including immunophenotype, gene fusion type, karyotype,
primitive/naïve lymphocytes, and MRD in the marrow after
chemotherapy. The METTL3 rs1263801 CC phenotype and the
rs1061027 AA phenotype were considered to increase the risk of
ALL in the B-ALL, mature B ALL, and T-ALL subtype. In BCR-
ABL, TEL-AML, and MLL gene fusion types, rs1263801 CC
phenotype and rs1061027 AA phenotype carriers showed a
higher risk for ALL. The rs1139130 GG carriers were revealed
to have a higher risk for ALL in B-ALL, mature B ALL subtype,
and medium risk level subtype. We failed to identify the
association between the FAB subtype and these three
METTL3 polymorphisms.

In stratification analysis, we tried to reveal the relationship
between clinical characteristic, response to different
September 2021 | Volume 11 | Article 635251
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chemotherapeutics, and METTL3 polymorphisms. The results
showed that rs1263801 C>G, rs1139130 A>G, and rs1061027
A>C could remarkably increase the risk of the common B type
and MLL fusion type ALL in Southern Chinese children. All
these three selected polymorphisms were more strongly
associated with the primitive/naïve lymphocytes over 5% and
MRD less than 0.01% on the 19th day, and also with the
primitive/naïve lymphocytes less than 5% and MRD more than
0.01% on the 33rd day after chemotherapy. After chemotherapy
treatment of 12 weeks, rs1263801 C>G and rs1061027 A>C were
identified to increase susceptibility to primitive/naïve
lymphocytes less than 5%; rs1263801 C>G and rs1139130 A>G
may increase susceptibility to MRD more than 0.01% in ALL
patients. And we also identified that SCCLG chemotherapeutics
was more suitable for rs1263801 CC and rs1139130 AA carriers;
CCCG chemotherapeutics was more efficient for rs1061027
AA carriers.

Several limitations should be noted in the current study. First,
the sample size was not large enough. Second, this was a
retrospective study; information bias and selection bias were
inevitable. We have reduced these biases by frequency-matching
of cases and controls by age and gender, and recruiting subjects
from six hospitals in South China. Third, our study focused on
the analysis of genetic factors in pediatric ALL risk. However,
other important information such as environment and dietary
intake was not available for analysis. Finally, the association
between METTL3 gene polymorphisms and prognosis of
pediatric ALL was not analyzed in the current study.

In summary, our results suggest that polymorphisms
rs1263801 C>G, rs1139130 A>G, and rs1061027 A>C in the
METTL3 gene were significantly associated with increased
pediatric ALL risk, and SCCLG chemotherapeutics is more
suitable for rs1263801 CC and rs1139130 AA carriers; CCCG
chemotherapeutics is more efficient for rs1061027 AA carriers in
the Southern Chinese ALL children. Further studies are
necessary to elucidate the biological function of METTL3 gene
risk SNPs in the etiology of pediatric ALL.
CONCLUSION

METTL3 gene polymorphisms were associated with increased
pediatric ALL risk. These three polymorphisms (rs1263801 C>G,
rs1139130 A>G, and rs1061027 A>C) were likely to contribute
to the sensitivity of different chemotherapies in pediatric ALL.
The results indicated that METTL3 gene polymorphisms might
be a potential biomarker for ALL susceptibility and when
choosing chemotherapeutics.
Frontiers in Oncology | www.frontiersin.org 7
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