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Background: Colon adenocarcinoma (COAD) is one of the most common malignant
tumors in the world. The histopathological features are crucial for the diagnosis,
prognosis, and therapy of COAD.

Methods:We downloaded 719 whole-slide histopathological images from TCIA, and 459
corresponding HTSeq-counts mRNA expression and clinical data were obtained from
TCGA. Histopathological image features were extracted by CellProfiler. Prognostic image
features were selected by the least absolute shrinkage and selection operator (LASSO)
and support vector machine (SVM) algorithms. The co-expression gene module
correlated with prognostic image features was identified by weighted gene co-
expression network analysis (WGCNA). Random forest was employed to construct an
integrative prognostic model and calculate the histopathological-genomic prognosis
factor (HGPF).

Results: There were five prognostic image features and one co-expression gene module
involved in the model construction. The time-dependent receiver operating curve showed
that the prognostic model had a significant prognostic value. Patients were divided into
high-risk group and low-risk group based on the HGPF. Kaplan-Meier analysis
indicated that the overall survival of the low-risk group was significantly better than the
high-risk group.

Conclusions: These results suggested that the histopathological image features had a
certain ability to predict the survival of COAD patients. The integrative prognostic model
based on the histopathological images and genomic features could further improve the
prognosis prediction in COAD, which may assist the clinical decision in the future.
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INTRODUCTION

Colon adenocarcinoma (COAD) is the second most frequent
malignancy in developed countries (1). In recent years, the
incidence of COAD has been rising around the world.
Although the survival rate of COAD has been improved
greatly in the recent years, even in the European countries
with the highest survival rate, the 5-year survival rate is no
more than 60% (2). Currently, the most effective and recognized
therapy of COAD is radical resection. Adjuvant treatment is
designed to assist radical surgery, reduce the risk of recurrence,
and improve the survival rates (3). Among the potential factors
affecting the prognosis of COAD, the depth of tumor infiltration
into the intestinal wall and the involvement of lymph nodes are
the most important, which are also the basis of the clinical
staging system (4). Therefore, accurate pathological diagnosis
based on histopathological sections is critical for the prognostic
prediction and therapy strategies of COAD.

Histopathological images contain a great deal of information
about tumors, including the nature of the lesions, histological
classification, and grade of malignancy. Therefore, histopathological
diagnosis is often regarded as the gold standard, and has an
irreplaceable status in clinical practice (5). Nevertheless, in many
regions of the world, the number of pathologists and the services they
are able to provide may not meet the needs of an adequate
pathological diagnosis (6). The research and development of the
digital whole slide imaging (WSI) system enable pathological sections
to be read digitally, breaking the limitations of traditional
microscopes. In addition, the application of computer aided
diagnosis (CAD) based on the histopathological images promotes
the intellectuality of pathological diagnosis, and thereby improves the
diagnostic efficiency and accuracy (7). The computerized intelligent
histopathologic image analysis system has been applied to breast (8),
lung (9, 10), colon (11), and prostate (12) cancers due to its potential
to identify novel tumor biomarkers.

The advantages of histopathological images in the prediction
of tumor prognosis have been widely recognized. However,
considering the complexity of molecular mechanisms affecting
tumor prognosis, single-source predictors are far from adequate
in prognostic modeling. Researchers have attempted to combine
predictors from multiple sources to improve tumor prognostic
models. For the past few years, the widespread application of
high-throughput sequencing technology has promoted the
research of serial analysis of gene expression, so that gene
expression characteristics can be used for the prognosis
prediction in cancers (13, 14). The information revealed by the
cancer omics profile and histopathological images is not only
relatively independent but also has commonality to a certain
extent. The morphological features of tumor cells and
histological structure of the tumor microenvironment can be
influenced by molecular changes, individual immune function,
and environment (15–17). For instance, a previous study (18)
has found that there is a significant correlation between the TP53
mutation and pathological characteristics of tumor cells in lung
adenocarcinoma. Another study demonstrated the correlation
between the amplifications of PDGFRA, EGFR, MDM2, and
specific image features in glioblastoma (19). Some researchers
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have combined radiomics and genomics to predict the clinical
outcomes of cancers (20–22). For example, Schiano C. et al.
integrated imaging parameters from hybrid 18F-FDG-PET/MRI
with the expression level of Yin Yang 1 to predict early
metastases of breast cancer (20). It is also feasible to combine
the histopathological features with cancer omics to optimize the
prognostic models. At present, the prognostic models based on
the genomic data and histopathological image features have
obtained a superior prediction performance in renal cell
carcinoma (23), breast cancer (24), and other early-stage
cancers (25), etc.

In this study, all of the whole-slide histopathological images
were downloaded from The Cancer Imaging Archive (TCIA,
http://www.cancerimagingarchive.net/) database and cropped
into 1,000 x 1,000 pixel sub-images. TCIA collects, provides, and
manages affluent cancer image data supported by 28 agencies, and
can provide researchers with publicly available imaging data and
unique imaging resources (26, 27). The mRNA expression profiles
and clinical data of COAD patients were attained from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)
database. TCGA is one of the largest and richest publicly funded
projects designed to build a comprehensive genetic map of the
cancer genome (28). We extracted the histopathological image
features through CellProfiler, an open-source modular image
analysis software. CellProfiler can convert color image into
grayscale and extract a number of features from identified cells
or subcellular regions, including size, shape, intensity, and texture.
We used the least absolute shrinkage and selection operator
(LASSO) and support vector machine (SVM) models to identify
the pathological features correlated with prognosis. Totally, five
prognostic features were obtained by taking the intersection of the
pathological features filtrated by the two algorithms. To further
explore the potential correlation between the pathological and
genomic features of COAD, we performed weighted gene co-
expression network analysis (WGCNA) to identify the co-
expression gene module that correlated most with the
prognostic pathological image features. Finally, we utilized the
random forest (RF) method to integrate the pathological features
and genomic data to establish an integrative prognostic model and
validated the model by the test set.
MATERIALS AND METHODS

Data Source and Downloads
Totally, 719 whole slide histopathological images of 218 patients
were downloaded from TCIA. The histopathological tissue slides
were all formalin-fixed and paraffin-embedded to preserve the
cell morphology as much as possible, ensuring that they were
suitable for image feature recognition.

The mRNA expression data of HTSeq-count and clinical
information of COAD patients were downloaded from TCGA.
In total, we obtained 478 samples with mRNA sequencing data
from TCGA, and 459 of them had clinical information. There
were 19,754 genomic features in each sample (Table S1).
Variance-stabilizing transformation (VST) was used to
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normalize the mRNA sequencing data with the R package
DESeq2 for further analysis in WGCNA.

Extraction of Histopathological
Imaging Features
The flowchart of processing histopathological images, extracting
imaging features, and establishing an integrative prognostic
model is shown in Figure 1.

In order to extract the image features from the whole slide
histopathological images, the image processing procedure consisted
of three steps. Firstly, since the size of each pathological image was
too large to be used directly for feature extraction, we cropped each
image evenly into 1,000 × 1,000 pixels sub-images and saved them
in tiff image format using Openslide Python library (29). In this
process, sub-images containing more than 50% white background
were excluded. To eliminate the sample selection bias and reduce
computing amount, we randomly selected 20 sub-images from the
remaining sub-images for the next step. Cropping and random
selection of images have been widely used in the processing of the
whole slide images (9, 18, 24).

Secondly, we applied CellProfiler (30) to extract features from
each sub-image. The hematoxylin-eosin staining makes the cell
nuclei and cytoplasm appear different colors in the histopathological
images. A total of 656 features were the output for each sub-image.
These features were different from the well-known classical
pathological characteristics such as cellular basophilic,
eosinophilic, nuclear atypia, and mitotic counts, which cannot be
recognized by visual inspection. After further removing irrelevant
features such as file sizes and execution information, 590 features
were used in the following workflow.

Thirdly, we calculated the average value of 590 features
extracted from 20 sub-images for each slide. When a patient
had more than one slide, the mean values over those slides were
further calculated.

It should be emphasized that the purpose of our study was not
to concretely explain the relationship between these image
features and COAD, but to quest the optimal combination of
features to establish an integrative prognostic model of COAD.
Therefore, the lack of definite biological interpretations would
not prevent us from conducting further reasonable analysis.

Acquisition of Prognosis-Related Features
By using the R package “e1071” and “glmnet” on the R version
3.6.3 software, the support vector machines recursive feature
elimination (SVM-RFE) and LASSO-Cox algorithms were
employed to filtrate the prognostic image features most
correlated with the prognosis of COAD. Here, we used 5-fold
cross-validation in both the LASSO-Cox and SVM-RFE
algorithms. LASSO constructs a penalty function, and
compresses the insignificant variable coefficient to 0 to achieve
the purpose of variable selection. By customizing the optimal value
of the parameter lambda (l), the user can control the balance
between the sparsity (how many features are produced) and high
prediction accuracy and minimum cross validation error. Image
features with nonzero coefficients were finally regarded as the
prognostic features and used to fit the regression model.
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SVM-RFE is a backward feature selection machine learning
method on the basis of SVM. In the training set, SVM-RFE
ranked the pathological image features in a descending order of
importance, iteratively eliminated the minimum features, and
trained the model with the remaining features until all features
were removed. When running the 5-fold cross-validation on
SVM-RFE, feature selection was performed by defining the high-
risk (survival time less than 12 months) and low-risk patients
(survival time more than 60 months) as the training samples. In
the SVM-RFE model, the maximal cross-validated accuracy was
adopted as the evaluation index to confirm the optimal feature
subset related to the prognosis. The optimal subset of features
obtained by SVM-RFE was intersected with the results of LASSO
regression to obtain the pathological features most relevant to
the prognosis.

Co-Expression Gene Module Analysis
WGCNA is an effective means to identify the co-expression gene
modules by clustering the highly correlated genes, and perform
correlation analysis between the modules and phenotypes to
explore the potential marker genes of cancer (31). Based on the
normalized mRNA profiles, WGCNA was employed to construct
the co-expression gene network and explore the co-expressed
gene module most correlated with the pathological prognostic
features defined by machine learning algorithms. We calculated
the interaction coefficient between genes and then computed the
topological overlap measure (TOM) using the adjacency matrix.
The co-expression network was constructed based on the W
matrix to determine the co-expression gene modules. During this
process, modules with statistical significance (p < 0.05) were
regarded as prognosis-related modules. To further explore the
interrelationship among the genes in the prognosis-related
modules, we performed Gene Ontology (GO) enrichment
analysis with Metascape (http://metascape.org). In this process,
default thresholds were applied for pathway analysis.

Establishment of an Integrative
Prognostic Model
Based on the histopathological features and genomic data of COAD
patients, we applied random forest algorithms with 1,000 decision
trees by the R “randomForestSRC” package to construct an
integrative prognostic model. RF is a classifier containing multiple
decision trees and each tree is built on an independent bootstrap
training set. The output category is determined by the mode of the
output category of individual trees. RF has great advantages over
other algorithms in high-dimensional data processing. It can process
high-dimensional data without deleting variables, and can evaluate
the predictive ability of each feature. Meanwhile, the unbiased
estimation of the generalization error generated by internal cross
validation ensures high accuracy. The randomness of training
samples for each decision tree and the selection of variables for
splitting at each node can reduce overfitting.

The samples were randomly divided into 10 parts, including 7
parts of the training set (n = 140) and 3 parts of the test set (n = 59).
The ratio of 7:3 is commonly used in machine learning algorithms
(32–34). The 10-fold cross-validation was used during model
constructing. Based on the training set, we constructed the
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http://metascape.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Integrative Prognosis Model
FIGURE 1 | The workflow chart of key steps in this study. The whole-slide histopathological images of colon cancer were evenly cropped into sub-images of
1000×1000 pixels. After processing and selecting these sub-images, several image features were extracted by CellProfiler for further analysis. Then, LASSO-COX
regression and SVM-RFE were performed to acquire prognosis-related image features. And WGCNA was used to identify co-expression gene modules associated
with prognostic features. Histopathological features and genomic data were integrated into histopathological-genomic prognosis factor (HGPF) by random forest
method with 10-fold cross-validation (the sample ratio of training set and test set is 7:3). Performance of the prediction model was evaluated.
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integrative prognostic model with the pathological image features
and mRNA expression profiles, which was defined as the
histopathological-genomic prognosis factor (HGPF) model. The
test set was then used to validate the prediction performance of the
HGPF model. Afterwards, time-dependent receiver operating
characteristic (ROC) curve was plotted and the 1-, 3-, and 5-year
area under curves (AUCs) were calculated according to the average
accuracies of the 10-fold cross-validation. We then used the RF
model to estimate the survival risk of each patient and obtain the
risk score of each patient. Based on themedian of the risk score, the
training set and test set can bedivided into the high-risk score group
and low-risk score group, respectively. Kaplan-Meier analysis and
the log-rank test was used to compare the survival difference
between the two groups.

After univariate Cox regression, we incorporated meaningful
results (p < 0.05) into the multivariate Cox regression analysis.
Two predictive factors, HGPF and tumor stage of patients, were
used in the development of the prognostic nomogram. In the
nomogram, scores were assigned to the predictive factors
according to the impact of the predictors on the survival
outcome (the value of regression coefficient). Finally, the total
score of each patient was associated with the survival probability
through the function conversion.

RESULT

Patient Characteristics
A total of 199 COAD patients (112 male and 87 female) were
included in this study. Histopathological images, mRNA
expression data, and clinical information were downloaded from
TCIA and TCGA. Themedian age of patients at first diagnosis was
71.0 years old (range 36–89 years). There were 167 patients who
Frontiers in Oncology | www.frontiersin.org 5
survived and 32 patients who died at the last follow-up. The
median survival time was 24.5 months. Patient characteristics are
shown in Table 1 and detailed clinical information of patients are
shown in Table S2.

Acquisition of Histopathological
Images Features
CellProfiler transforms color images into grayscale images and
measures image features from 10 aspects, including the
correlation between intensities in different images, image area
occupied, image granularity, image intensity, image quality,
object intensity, object neighbors, object radial distribution,
object size, shape, and texture. Texture reflects the degree and
nature of the image or object textures through measuring the
intensity variations in grayscale images. Image granularity is a
texture measurement that outputs the spectra of the fitting
degree between the size measures of the structure elements and
image texture. Object size shape measures several area and shape
features of each identified object in the image, such as area,
perimeter, formfactor, solidity, Euler’s number, and orientation.
For example, form factor measures the object shape with the
formula “4*p*Area/Perimeter2”. Zernike shape features contain
a series of 30 shape features based on Zernike polynomials from
order 0 to order 9.

Finally, we extracted 590 image features from each sub-image
and calculated the average value of representative sub-images for
each corresponding slide.

Prognosis-Related Features Identification
and Co-Expression Gene Module Selection
The results of data dimension reduction through LASSO-Cox
and SVM-RFE are shown in Figure 2. The optimal subset of
TABLE 1 | Demographic and clinical characteristics of patients.

Characteristic Total (n = 199) Train (n = 140) Test (n = 59) P-value

Age: median (range) 71.0 (36–89) 72.0 (36–89) 68.0 (41–86) 0.599
Gender
Male 112 (56.3%) 78 (55.7%) 34 (57.6%)
Female 87 (43.7%) 62 (44.3%) 25 (42.4%) 0.876

T classification
T1–T2 39 (19.6%) 25 (17.9%) 14 (23.7%)
T3–T4 160 (80.4%) 115 (82.1%) 45 (76.3%) 0.336

N classification
N0 124 (62.3%) 84 (60.0%) 40 (67.8%)
N1–N2 75 (37.7%) 56 (40.0%) 19 (32.2%) 0.339

M classification
M0 151 (75.9%) 105 (75.0%) 46 (78.0%)
M1 29 (14.6%) 20 (14.3%) 9 (15.3%)
Mx 15 (7.5%) 12 (8.6%) 3 (5.1%) 0.690
NA 4 (2%) 3 (2.1%) 1 (1.7%)

TNM stage
I–II 115 (57.8%) 78 (55.7%) 37 (62.7%)
III–IV 78 (39.2%) 57 (40.7%) 21 (35.6%) 0.523
NA 6 (3.0%) 5 (3.6%) 1 (1.7%)

OS(d): median 735.0 737.5 731.0 0.448
Event
Alive 167 (83.9%) 114 (81.4%) 53 (89.8%) 0.204
Dead 32 (16.1%) 26 (18.6%) 6 (10.2%)
S
eptember 2021 | Volume 11 | Article
 636451

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Integrative Prognosis Model
features determined by the maximal cross-validated accuracy
contained 19 features after feature elimination by the SVM-RFE
algorithm. The LASSO-Cox regression identified eight
prognostic features. We then intersected the results of the two
algorithms to obtain five features (two Zernike shape features,
two Granularity features, and one formfactor feature), which
were defined as the prognostic image features of COAD. The
examples of selected histopathological sub-images in both high-
risk and low-risk groups are presented in Figure 3. To identify
the co-expression gene modules with prognostic significance,
WGCNA was applied to evaluate the relationship between the
five prognostic image features and co-expression gene modules.
The strength of association was represented by different colors
(Figure 4). Obviously, the brown module containing 372
genes had the most outstanding association with the image
features. Therefore, the brown module was selected as the key
module with prognostic significance to build the integrative
prognostic model.
Frontiers in Oncology | www.frontiersin.org 6
Enrichment Analysis of the Key
Gene Module
Figure 5A lists the top 20 GO terms that were significantly
enriched. The interrelationship among the 372 genes and their
respective pathways is shown in Figure 5B. The results indicated
that there were significant intrinsic associations among the
biological function of these genes. In addition, most of them
were enriched in biological processes such as blood vessel
development, heart development, skeletal system development,
and tissue morphogenesis. Several cellular components were also
related, such as extracellular matrix (ECM) organization, ECM
proteoglycans, and supramolecular fiber organization. Detailed
enrichment results of 372 genes are shown in Table S3.

Construction and Validation of the
Integrative Prognostic Model
The COAD patients were randomly divided into the training set
(n = 140) and test set (n = 59). We next established a prognostic
FIGURE 2 | LASSO and SVM-RFE algorithms for the identification of prognosis-related features. The LASSO-COX regression screened out 8 prognostic features
while the SVM-RFE algorithm identified 19 features at the point highlighted, which indicated the maximal cross-validated accuracy. Taking the intersection of the two
result to obtain the 5 prognosis-related features.
September 2021 | Volume 11 | Article 636451

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Integrative Prognosis Model
model using the prognostic image features and gene module in
the training set, and validated its predictive value in the test set.
The development of a random forest model and the importance
of six variables are shown in Figure 6. Since the survival results
include both the survival state and survival time, the time-
Frontiers in Oncology | www.frontiersin.org 7
dependent ROC curve can more comprehensively describe the
predictive ability of the model over time. In the training set, the
1-, 3-, and 5-year AUCs were 0.948, 0.916, and 0.933 respectively
(Figure 7A). In the test set, the 1-, 3-, and 5-year AUCs were
0.913, 0.894, and 0.924, respectively (Figure 7B). The predictive
FIGURE 3 | Example of selected histopathological sub-images in both high- and low-risk groups.
FIGURE 4 | Selection of the co-expression gene module related with the prognostic features. Heat map of the relationship between the five prognosis-related
features and co-expression gene modules by WGCNA. Brown module shows the most outstanding correlation with the imaging features.
September 2021 | Volume 11 | Article 636451
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accuracy of the test set remained at a high level. Whereafter,
patients were divided into the high-risk group and low-risk
group by the median value of HGPF. The detailed results of
random forest for the training set and test set are shown in the
Supplementary Material (Tables S4, S5). The results of the
Kaplan-Meier analysis demonstrated that the overall survival
rate of low-risk score patients was significantly better than that of
high-risk score patients in both the training set (p < 0.0001,
Figure 7C) and test set (p = 0.00018, Figure 7D).

A nomogram scoring system incorporating the HGPF and
tumor stage of patients was constructed using the Cox regression
model (Figure 8A). Patients were scored according to the
weights of the two predictors, and the 3- and 5-year overall
survival probabilities were predicted. The calibration curve
demonstrated that the nomogram had a high fitting degree for
the prediction of the 3- and 5-year overall survival compared to
Frontiers in Oncology | www.frontiersin.org 8
the actual outcomes (Figure 8B). Moreover, decision curve
analysis (DCA) was used to evaluate the clinical benefit of each
model, including the integrative prognostic model (HGPF risk
score combined with tumor stage), HGPF model, and clinical
model. The integrated model had a better net benefit than others
in the DCA analysis (Figure 8C).
DISCUSSION

In this study, we extracted image features from whole-slide
histopathological images by CellProfiler and identified five
prognostic image features with machine learning algorithms.
We also identified a prognosis-related module by establishing a
gene co-expression network. We detected significant intrinsic
associations among the biological function of the genes in a
A

B

FIGURE 5 | Gene Ontology enrichment analysis of the key gene module. (A) The top 20 GO terms which were significantly enriched. (B) The interrelationship and
intrarelationship among the cluster of enriched terms. Each dot represents one term, and the color annotates its cluster identity.
September 2021 | Volume 11 | Article 636451
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FIGURE 6 | Survival prediction of the integrated model with the prognosis-related features and genomic data using random forest.
A B

C D

FIGURE 7 | Prognostic model of the histopathological-genomic prognosis factor (HGPF). (A) The training group 1-, 3-, and 5-year area under the curve (AUC) of a
time-dependent receiver operating curve (ROC). (B) The test group 1-, 3-, and 5-year area under the curve (AUC) of a time-dependent receiver operating curve (ROC).
(C) Survival analysis of the training cohort separated into high- and low-risk groups. (D) Survival analysis of the test cohort separated into high- and low-risk groups.
Frontiers in Oncology | www.frontiersin.org September 2021 | Volume 11 | Article 6364519
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prognosis-related module through enrichment analysis.
Furthermore, the prognostic image features, co-expression gene
module, and clinical information were integrated to construct a
prognosis prediction model, which had a better prediction
performance than other models. In summary, it is suggested
that histopathological image features have a certain ability to
predict patient survival, and multi-omics combination could
further improve the prognosis prediction in COAD.

Our study identified five image features associated with the
prognosis of COAD patients, including two Zernike shape features
of the nuclei, two Granularity features, and a formfactor feature.
Frontiers in Oncology | www.frontiersin.org 10
It can be inferred that the differences in the texture andmorphology
of the pathological images may influence the prognosis of COAD.
In addition to prognosis prediction, the discrepancies in the cell
structure revealed by these image features may lead to the
differences in the invasion activity of tumor cells. In bladder
cancer, a staging diagnostic model based on tumor invasiveness
were developedwith the histopathological image features (35). This
approach can also be applied to the accurate grading of other
cancers (36). It was difficult for pathologists to distinguish these
image features by the naked eye. Therefore, the application of
computer algorithms to identify the histopathological features
A

B C

FIGURE 8 | Evaluation of the predictive performance of the integrated prognostic model. (A) The prognostic nomogram incorporates the histopathological-genomic
prognosis factor (HGPF) and tumor stage of patients. (B) Assessment of nomogram prediction accuracy. (C) Decision curve analysis (DCA) shows the predictive
effects of different models. The integrated model has a better prediction ability than others.
September 2021 | Volume 11 | Article 636451
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related to prognosis could reveal more underlying biological
mechanisms of tumor development and progression in COAD.

After defining the prognostic image features, we constructed a
gene co-expression network to identify the prognosis-related gene
module and performed enrichment analysis to further explore the
potential molecular pathways and mechanisms of genes in the
brownmodule. Among the enriched signaling pathways, pathways
associatedwith the tumormicroenvironmentwere dominated such
as ECM organization and blood vessel development. ECM is a key
regulatory factor in the initiation of the TGF-b signaling pathway,
and can determine the outcomes of cytokine action, such as
inducing the epithelial-mesenchymal transition (EMT) (37, 38).
EMT was regarded as a pivotal step for cancer cells to acquire the
ability ofmigration and invasion (39, 40).Moreover, the changes of
ECM organizationmay play a crucial role in tumor recurrence and
therapeutic resistance (41, 42). The rapid proliferation of cancer
cells leads to the formationofhypoxicareas in the tumorcenter. The
tumors facilitate angiogenesis for further growth, which, in return,
increases the need for new blood vessels (43). Epithelial cells with
EMT will lead to the reduction of cell junctions, recombination of
the cytoskeleton structure, and changes in the cell polarity and cell
shape, which may lead to characteristic changes in the
histopathological images (44). Considering the correlation
between the five prognosis-related features and co-expression
gene module, these enriched signaling pathways may be potential
biological mechanisms correlated with the prognosis-related
histopathological image features.

Our research further established a robust prognostic model
using prognostic image features, prognosis related co-expression
gene module, and clinical characteristics of COAD patients.
Many previous studies have conducted extensive investigation
and modeling using single omics, such as genomic signatures of
COAD (45–47). In this study, we integrated the pathological
image features and genomics of COAD for the first time and
improved the prediction performance of single-source prognostic
models. This method of combining the pathological images with
genomics to predict survival has been applied in other tumors (23,
48). Some studies also found that integrative models could
improve the prediction performance of genomics and other
images modalities, such as magnetic resonance imaging and
computerized tomography (49–51). However, on account of the
changes in tumor molecular mechanisms are often reflected in
cell morphology, pathological images may have a better insight,
interpretability, and sensitivity than radiomic images.

To our best knowledge, this was the first time that
histopathological images and genomics were integrated to predict
the prognosis of COAD patients. Our research exploited a new
feasibility for establishing prognostic models of COAD with multi-
Frontiers in Oncology | www.frontiersin.org 11
omics data, and conducted more utilization and excavation of
histopathological image information. In addition, the analysis of
signaling pathwaysmay put forward a newdirection for the potential
biological mechanism of pathological morphological changes, which
may provide a reference for the clinical prognosis and treatment
strategies in COAD. However, this study still had some limitations
and required further investigation. Although a significant prognostic
value of the integrative model has been demonstrated in our
validation, its accuracy and practicability still need to be verified by
multi-center and large-scale studies. Secondly, the specificmolecular
mechanisms of the connection between the enriched signaling
pathway and the prognostic model are still unclear and need
further study.
CONCLUSION

In conclusion, our study constructed a robust integrative model
based on multi-omics features to predict the survival outcomes of
patients with colon adenocarcinoma. This model deepened the
cognition about the histopathological image information and
may contribute to the clinical decision and treatment of colon
adenocarcinoma. Moreover, the potential biological mechanisms
of the histopathological image features affecting the survival
outcomes need further exploration.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

HZ and HL are responsible for the conception and design of the
research. LC is responsible for data downloading and sorting. HZ
conducted the data processing. HL is responsible for editing
the article and formatting. QL is in charge of the interpretation
of data. JJ is in charge of submission and manuscript revision.
All authors contributed to the article and approved the
submitted version.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
636451/full#supplementary-material
REFERENCES

1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM,
et al. Cancer Treatment and Survivorship Statistics, 2019. CA Cancer J Clin
(2019) 69(5):363–85. doi: 10.3322/caac.21565

2. Labianca R, Beretta GD, Kildani B, Milesi L, Merlin F, Mosconi S, et al. Colon
Cancer. Crit Rev Oncol Hematol (2010) 74(2):106–33. doi: 10.1016/j.
critrevonc.2010.01.010
3. Dienstmann R, Salazar R, Tabernero J. Personalizing Colon Cancer
Adjuvant Therapy: Selecting Optimal Treatments for Individual
Patients. J Clin Oncol (2015) 33(16):1787–96. doi: 10.1200/JCO.2014.
60.0213

4. Steinberg SM, Barkin JS, Kaplan RS, Stablein DM. Prognostic Indicators of
Colon Tumors. The Gastrointestinal Tumor Study Group Experience. Cancer
(1986) 57(9):1866–70. doi: 10.1002/1097-0142(19860501)57:9<1866::aid-
cncr2820570928>3.0.co;2-t
September 2021 | Volume 11 | Article 636451

https://www.frontiersin.org/articles/10.3389/fonc.2021.636451/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.636451/full#supplementary-material
https://doi.org/10.3322/caac.21565
https://doi.org/10.1016/j. critrevonc.2010.01.010
https://doi.org/10.1016/j. critrevonc.2010.01.010
https://doi.org/10.1200/JCO.2014.60.0213
https://doi.org/10.1200/JCO.2014.60.0213
https://doi.org/10.1002/1097-0142(19860501)57:9%3C1866::aid-cncr2820570928>3.0.co;2-t
https://doi.org/10.1002/1097-0142(19860501)57:9%3C1866::aid-cncr2820570928>3.0.co;2-t
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Integrative Prognosis Model
5. Wilson ML, Fleming KA. Global Cancer Care: The Role of Pathology. Am J
Clin Pathol (2016) 145(1):6–7. doi: 10.1093/ajcp/aqv030

6. Nelson AM, Milner DA, Rebbeck TR, Iliyasu Y. Oncologic Care and
Pathology Resources in Africa: Survey and Recommendations. J Clin Oncol
(2016) 34(1):20–6. doi: 10.1200/JCO.2015.61.9767

7. Hipp J, Flotte T, Monaco J, Cheng J, Madabhushi A, Yagi Y, et al. Computer
Aided Diagnostic Tools Aim to Empower Rather Than Replace Pathologists:
Lessons Learned From Computational Chess. J Pathol Inform (2011) 2:25.
doi: 10.4103/2153-3539.82050

8. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ,
et al. Systematic Analysis of Breast Cancer Morphology Uncovers Stromal
Features Associated With Survival. Sci Transl Med (2011) 3(108):108ra113.
doi: 10.1126/scitranslmed.3002564

9. Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, et al. Predicting non-
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