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Objective: Metabolic reprogramming is an important biomarker of cancer. Metabolic

adaptation driven by oncogenes allows tumor cells to survive and grow in a complex

tumor microenvironment. The heterogeneity of tumor metabolism is related to survival

time, somatic cell-driven gene mutations, and tumor subtypes. Using the heterogeneity

of different metabolic pathways for the classification of gynecological pan-cancer is of

great significance for clinical decision-making and prognosis prediction.

Methods: RNA sequencing data for patients with ovarian, cervical, and endometrial

cancer were downloaded from The Cancer Genome Atlas database. Genes related

to glycolysis and cholesterol were extracted and clustered coherently by using

ConsensusClusterPlus. The mutations and copy number variations in different subtypes

were compared, and the immune scores of the samples were evaluated. The limma

R package was used to identify differentially expressed genes between subtypes, and

the WebGestaltR package (V0.4.2) was used to conduct Kyoto Encyclopedia of Genes

and Genomes pathway and Gene Ontology functional enrichment analyses. A risk score

model was constructed based on multivariate Cox analysis. Prognostic classification

efficiency was analyzed by using timeROC, and internal and external cohorts were used

to verify the robustness of the model.

Results: Based on the expression of 11 glycolysis-related genes and seven

cholesterol-related genes, 1,204 samples were divided into four metabolic subtypes

(quiescent, glycolysis, cholesterol, and mixed). Immune infiltration scores showed

significant differences among the four subtypes. Survival analysis showed that the

prognosis of the cholesterol subtype was better than that of the quiescent subtype.

A nine-gene signature was constructed based on differentially expressed genes

between the cholesterol and quiescent subtypes, and it was validated by using

an independent cohort of the International Cancer Genome Consortium. Compared

with existing models, our nine-gene signature had good prediction performance.
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Conclusion: The metabolic classification of gynecological pan-cancer based on

metabolic reprogramming may provide an important basis for clinicians to choose

treatment options, predict treatment resistance, and predict patients’ clinical outcomes.

Keywords: glycolysis, gynecological pan-cancer, cholesterol, immune infiltration, prognosis

BACKGROUND

Ovarian cancer, cervical cancer, and endometrial cancer are
the most common cancers of the female reproductive system.
Ovarian cancer is the deadliest, killing about 150,000 women
each year (1). Due to a lack of typical clinical symptoms in early
ovarian cancer, 75% of ovarian cancer patients are diagnosed with
advanced cancer, and more than 70% relapse after treatment (2).
The survival rate of ovarian cancer patients in most countries,
which is about 30–50%, has not changed much in the past 20
years (3). In 2019, the number of new endometrial cancer cases
in the United States was 61,880, and the number of deaths due
to endometrial cancer was 12,160 (4). Among these gynecological
cancers, its mortality rate is second only to ovarian cancer. Eighty
percent of cervical cancer cases occur in developing countries,
and there are about 570,000 new cases and 311,000 deaths per
year worldwide (5). Distant metastasis is present in at least 59% of
ovarian cancer patients, 15% of cervical cancer patients, and 9%
of endometrial cancer patients (6–8). Therefore, seeking a reliable
early diagnostic index and potential effective therapeutic targets
is the best strategy to conquer gynecological malignant tumors.

Abnormal cell metabolism is an important feature

of malignant tumors (9, 10). On one hand, oncogene
activation or tumor suppressor gene inactivation, the tumor

microenvironment, and metabolic gene mutations lead to
the metabolic adaptation of tumor cells to meet the energy

supply and macromolecular synthesis needs to maintain
malignant biological behavior. On the other hand, abnormal

cell metabolism can be used as an upstream event to drive

the occurrence and development of tumors, and metabolism-
related proteins and metabolites can affect tumor-related signal

transduction and malignant biological behavior (11). As early
as the early 20th century, Otto Warburg confirmed that even
under the condition of sufficient oxygen, tumor cells metabolize

glucose by glycolysis. This characteristic mode of metabolism
by tumor cells is named the Warburg effect, or glycolysis

(12). Glycolysis not only meets tumor cells’ rapid growth and

proliferation needs for ATP, macromolecular raw materials, and
NADH/NADPH reduction equivalents, but it also provides an

ideal target for tumor drug development and therapy (13). At
the same time, tumor cells show high affinity for cholesterol,
which not only influences the synthesis of cholesterol from
scratch, but also the uptake and outflow of cholesterol, leading to
reconnection of the cholesterol homeostasis pathway. However,
like gene heterogeneity, the metabolism of tumor cells is highly
heterogeneous. That is, there is no single universal change in
tumor cell metabolism. Moreover, tumor cells produce different
genetic variations during their occurrence, development, and
treatment. Pan-cancer analysis of global metabolic pathways

has shown that tumor metabolic heterogeneity is associated
with survival, somatic cell-driven gene mutations, and tumor
subtypes, but whether the heterogeneity of different metabolic
pathways can be used to classify gynecological small tumors into
clinically relevant subtypes has not been studied.

Based on glycolysis- and cholesterol-related gene expression
patterns, we divided gynecological pan-cancer (ovarian,
endometrial, and cervical) into four subtypes in order to further
analyze differences in survival time, molecular mutations, and
other clinical features among different metabolic subtypes. In
this study, we proposed a clinically feasible classification scheme
for gynecological pan-cancer. Our metabolic subtypes may
provide a new approach for prognosis prediction and targeted
therapy of gynecological pan-cancer.

METHODS AND MATERIALS

Sources and Preprocessing of Data
RNA sequencing (RNA-Seq) expression data, single nucleotide
variant (SNV)/InDel mutation data, copy number variation
(CNV) data, and clinical follow-up information of ovarian
cancer, cervical cancer, and endometrial cancer were downloaded
from The Cancer Genome Atlas (TCGA) database. RNA-Seq
data and clinical follow-up information of ovarian cancer
were also downloaded from the International Cancer Genome
Consortium (ICGC) database. Glycolysis- and cholesterol-
related genes were derived from REACTOME_GLYCOLYSIS (29
genes) and REACTOME_CHOLESTEROL_BIOSYNTHESIS
(24 genes) from the c2.cp.reactome.v6.2.symbols.gm
files of the MSigDB database, for a total of
53 genes.

The RNA-Seq data of the TCGA database were processed
according to the following steps: (1) retain the expression
spectrum of the primary solid tumor sample; (2) convert the
ensemble into the gene symbol; (3) take the median value
of the expression of multiple gene symbols; and (4) convert
the expression spectrum from FPKM to TPM and perform
log2 transformation.

The following steps were performed for the ICGC database:
(1) remove normal tissue samples; and (2) remove samples
with no clinical follow-up information. After data preprocessing,
91 ICGC samples were obtained (Supplementary Table 1),
in addition to 372 TCGA-OV samples, 291 TCGA-CESC
samples, and 541 TCGA-UCEC samples, for a total of 1,204
TCGA samples (Supplementary Table 2). The batch effect was
eliminated by using the ComBat function in the R package,
and principal component analysis was used to analyze the
data before and after the elimination of the batch effect
(Supplementary Figure 1).
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FIGURE 1 | (A) Consistent clustering of glycolysis and cholesterol genes; (B) Classification of samples according to glycolysis and cholesterol gene expression; (C)

PFS curve of four molecular subtypes in TCGA ovarian cancer samples; (D) PFS curve between cholesterol and quiescent subtype; (E) Cluster heatmaps of 18

related genes.
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Identification of Molecular Subtypes of
Gynecological Pan-Cancer
A total of 46 genes, including 25 glycolysis-related genes
and 21 cholesterol-related genes, were obtained after the
TCGA expression profile data were filtered by removing genes
with zero expression in all samples (Supplementary Table 3).
ConsensusClusterPlus V1.48.0 (parameters: reps = 100, pitem =

0.8, pfeature = 1, distance = “Spearman”) was used to cluster
glycolysis- and cholesterol-related genes. The Z-score was used
to classify the TCGA dataset (n= 1,204) using the median values
of glycolysis- and cholesterol-related gene expression.

Analysis of MPC1/2 Expression
To identify the genes positively and negatively related to
MPC1/2 expression, the correlations between MPC1/2 and all
other detected genes were analyzed. The Spearman correlation
coefficients and corresponding P-values between MPC1/2
and other genes were calculated, and the false discovery
rate (FDR) was calculated by using the Beyer-Hardwick
method. After filtering, 961 (Supplementary Table 4) and 1,143
genes (Supplementary Table 5) were positively and negatively
correlated with MPC1/2 expression, respectively (Spearman
correlation, FDR < 0.05).

To further explore the enrichment pathways of genes with
positive and negative correlations with MPC1/2 expression,

Gene Ontology (GO) enrichment analysis of the genes with
positive and negative correlations with MPC1/2 expression was
performed by using theWebGestaltR package (V0.4.2) in R (FDR
< 0.05).

Identification of Differentially Expressed
Genes and Functional Enrichment
The differentially expressed genes (DEGs) between cholesterol
subtype and quiescent subtype were calculated by using the
limma R package (14) and filtered according to the threshold:
FDR < 0.05 and | FC | > 1.2. Then, the DEGs were selected for
functional enrichment by using Goplot package.

Construction and Evaluation of Prognostic
Risk Model Based on Differentially
Expressed Genes
Random Grouping of Training Dataset Samples
The 372 ovarian cancer samples with expression spectrum data
in the TCGA database were divided into the training cohort and
verification cohort. To avoid the influence of random assignment
bias on the stability of subsequent modeling, all samples were
randomly grouped 100 times before being put back, and grouping
was carried out according to the training cohort-to-verification
cohort ratio of 1:1. The most suitable training and verification
cohorts were selected according to the following conditions: (1)

FIGURE 2 | (A) Comparison of the distribution of TP53, FLG, PTEN, and SYNE1 in different cancer subtypes. (B) The distribution of copy number status of TP53

gene in different subtypes. (C) The distribution of the copy number status of the FLG gene in different subtypes. (D) Distribution of copy number status of PTEN gene

in different subtypes. (E) The distribution of copy number status of SYNE1 gene in different subtypes.
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the two groups were similar in age distribution, follow-up time,
and patient death ratio; and (2) the sample sizes of the two groups
were close to each other after gene expression profile clustering.

Univariate and Multivariate Cox Analyses of Training

Cohort Samples
In the training cohort, univariate Cox proportional hazard
regression was carried out by using the survival coxph function,
and p < 0.01 was selected as the threshold value. To reduce the
number of genes, we used the Akaike information criterion (AIC)
algorithm to analyze the genes. The step AIC method in the
MASS package starts from the most complex model and removes
one variable to reduce the AIC; the smaller the value is, the better
the result is, and themore superior themodel is, meaning that the
fitting degree of the model is better with fewer parameters. Nine
differential genes were obtained.

Validation of Risk Score Model
The robustness of the model was further verified by using
internal datasets (TCGA validation sets and all datasets) and
external datasets (ICGC datasets). Using the same model and
the same coefficients as the training set, the risk score of
each sample was calculated according to the expression of the

sample, and the risk score distribution of the sample was plotted.
Receiver operating characteristic (ROC) analysis of risk score
prognostic classification was performed by using timeROC, and
the predictive classification efficiency was calculated for 1, 3, and
5 years.

Gene Enrichment Analysis
Gene set enrichment analysis was carried out by using the GSVA
software package in R to calculate the scores of different functions
for each sample, then the single-sample gene set enrichment
analysis scores of each function for each sample were obtained.
Features with a correlation greater than 0.35 were selected.

RESULTS

Analysis of Glycolysis- and
Cholesterol-Related Gene Expression to
Identify Four Subtypes of Gynecological
Pan-Cancer
The RNA-seq data for ovarian, cervical, and endometrial cancer
in the TCGA database were integrated, and a total of 1,204
samples were obtained for analysis after all samples were stripped
of batch effects. Under K = 4, glycolysis- and cholesterol-related

FIGURE 3 | (A) Comparison between metabolic subtypes and existing subtypes; (B) Comparison of distribution of immune subtypes among different metabolic

subtypes; (C) Comparison of distribution of immune subtypes among different cancer types. (D) The prognostic difference of metabolic molecular subtypes in C1-C6

immune subtypes. (E) The prognostic difference of metabolic molecular subtypes in OV, UCEC, CESC tumor types.
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genes were clustered by using consensus clustering (Figure 1A).
Based on the median expression of glycolysis- and cholesterol-
related genes in each sample, the samples were divided into
four subtypes. The samples of glycolysis ≤ 0 and cholesterol
≤ 0 were defined as the quiescent subtype; the samples of
glycolysis > 0 and cholesterol ≤ 0 were defined as the glycolysis

subtype; the samples of glycolysis ≤ 0 and cholesterol > 0
were defined as the cholesterol subtype; and the samples of
glycolysis ≥ 0 and cholesterol ≥ 0 were defined as the mixed
subtype (Figure 1B). Detailed information on grouping were
presented in Supplementary Table 1. Further analysis of the
relationships between the four subgroups and progression-free

FIGURE 4 | (A) Mutations and CNV distribution of MPC1/2 in different metabolic subtypes; (B) Comparison of MPC1/MPC2 expression between different metabolic

subtypes; (C) Scatter plot of MPC1/MPC2 related genes; (D–F) GO Functional annotation of genes positively related to MPC1/2; (G–I) GO Functional annotation of

genes negatively associated with MPC1/2.
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survival time showed that there were significant differences in
prognosis among the four subtypes (p < 0.05; Figure 1C). At
the same time, there was a significant difference between the

cholesterol subtype and quiescent subtype (p < 0.05; Figure 1D),
There were no significant differences between the other subtypes
(Supplementary Figure 2). The expression of glycolysis- and

FIGURE 5 | (A) The volcano map of the differentially expressed genes in cholesterol and quiescent subtype in the TCGA data set; (B) The heatmap of the differentially

expressed genes in cholesterol and quiescent subtype in the TCGA data set. (C) Biological process enrichment of differentially expressed genes. (D) KEGG pathway

enrichment of differentially expressed genes.
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cholesterol-related genes in the four subgroups is shown in
Figure 1E, Supplementary Table 6. The expression levels of
glycolysis- and cholesterol-related genes were different in the
four subtypes.

Association of Metabolic Subtypes With
Molecular Mutations and Copy Number
Variations
Molecular events, such as carcinogenic mutations, including
MYC amplification,TP53mutations, and PIK3CAmutations, can
drive metabolic reprogramming in cancers, including ovarian,
cervical, and endometrial cancer. To determine the carcinogenic
events among the different metabolic subtypes, we studied the
frequency distribution of mutant genes between the metabolic
subtypes affected by SNVs and CNVs (Figure 2A). In the samples
with TP53 loss, the proportion of the cholesterol subtype was
significantly higher than that of the quiescent subtype, and in
the samples with TP53 gain, the proportion of the cholesterol
subtype was significantly lower than that of the quiescent
subtype (Figure 2B). In the samples with FLG gain and loss,
the proportion of the cholesterol subtype was significantly lower
than that of the quiescent subtype (Figure 2C). In the samples
with PTEN loss, the proportion of the quiescent subtype was
significantly higher than that of the mixed group (Figure 2D).
In the samples with SYNE1 loss, the proportion of the
glycolysis subtype was significantly lower than that of the mixed
group (Figure 2E).

Comparison of Metabolic Subtypes and
Existing Immune Molecular Subtypes
Previous studies have classified tumors into six subtypes
according to their cellular immune status: C1 (wound healing),

TABLE 1 | TCGA training set and validation set sample information.

Clinical features training testing P

OS

0 48 53 0.641

1 138 133

Stage

I 0 1

II 11 10 0.6516

III 141 149

IV 32 25

X 2 1

Grade

G1 1 0

G2 23 19 0.4086

G3 159 159

G4 0 1

GX 3 7

Age

≤ 60 96 107 0.2977

> 60 90 79

C2 (INF-r dominance), C3 (inflammation), C4 (lymphocyte
depletion), C5 (immunologically silent), and C6 (transforming
growth factor-beta dominance) (15). The majority of ovarian
cancer patients in the TCGA database belonged to the C1,
C2, and C4 subtypes; the majority of cervical cancer patients
belonged to the C1 and C2 subtypes; and the majority of
endometrial cancer patients belonged to the C1 and C2 subtypes.
The survival curve analysis results showed that there were
significant differences in progression-free survival time among
the six immune subtypes and OV, UCEC, CESC tumor types
(P < 0.05; Figures 3D,E). We further compared the distribution
among metabolic subtypes, immune subtypes, and tumor types
Figures 3A–C, and the results showed that the immune subtypes
contained in the cholesterol subtype were significantly different
from those in the quiescent subtype. The proportion of the C1
and C3 immune subtypes in the quiescent subtype was higher
than in the cholesterol subtype, while the proportion of the C2
immune subtype in the quiescent subtype was lower than in the
cholesterol subtype.

Mitochondrial Pyruvate Carrier Complex as
Potential Regulator of Tumor
Glycolysis-Cholesterol Synthesis Axis
The mitochondrial pyruvate carrier (MPC) complex regulates
mitochondrial pyruvate flux, inhibits the expression ofMPC1 and
MPC2 in cancer cells, and promotes tumor glycolysis activity and
lactate production. To explore the relationships between MPC1
andMPC2 expression and glycolysis and cholesterol production,
we compared the mutation frequency and expression of these
two genes in the metabolic subtypes. There was a contradictory
relationship between the two genes in terms of CNV; the CNV
that affected MPC1 was mainly deleted, while the CNV that
affected MPC2 was mostly amplified (Figure 4A). Among the
metabolic subtypes, there was a difference in MPC1 and MPC2
expression (Figure 4B). The expression levels of MPC1 and
MPC2 in the Cholesterol group were higher than other subtypes.
Study have shown thatMPC deletion is an effective biomarker of
malignant invasion of cancer. Cancer cells re-expressing MPC1
andMPC2 will damage their growth characteristics (16), thereby
affecting the patient’s prognosis.

At the same time, because the expression ofMPC1 andMPC2
are significantly different among the metabolic subtypes, they
may be used as subtype diagnostic markers.

To find pathways related to the expression of MPC1/2,
we analyzed the correlation between MPC1/2 and all other
genes. A total of 961 genes were positively correlated with
MPC1/2, and 1,143 genes were negatively correlated with
MPC1/2 (Spearman correlation, FDR < 0.05; Figure 4C).
GO functional enrichment analysis of these genes (FDR <

0.05) showed that genes positively related to MPC1/2 were
related to ATP synthesis-coupled electron transport, oxidative
phosphorylation, and NADH dehydrogenase (quinone) activity
(Figures 4D–F); the genes negatively related to MPC1/2 were
related to extracellular structure organization, cell-cell signaling
by wnt, focal adhesion, and transcription coactivator activity
(Figures 4G–I). These results suggest that theMPC1/2 genes are
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involved in the cell network related to the malignant progression
of gynecological pan-cancer.

Analysis of Differentially Expressed Genes
Between Cholesterol and Quiescent
Subtypes
Among our metabolic subtypes, the prognosis of the cholesterol
subtype was the best, while that of the quiescent subtype was
the worst, suggesting that for the pan-cancer samples, patients

with high expression of cholesterol-related genes had better
prognoses, while patients with low expression of glycolysis-
and cholesterol-related genes had poor prognoses. To identify
the effects of glycolysis- and cholesterol-related gene expression
on cancer, we identified the DEGs of the cholesterol and
quiescent subtypes and drew a volcano map (Figure 5A,
Supplementary Table 7). A total of 1,325 DEGs were obtained,
including 562 upregulated genes and 763 downregulated genes.
The 100 genes with the largest upregulation and downregulation
differences were selected and mapped (Figure 5B). Kyoto

FIGURE 6 | Nine gene KM curves on TCGA training set.
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FIGURE 7 | (A) The distribution of risk score, survival time, and the expression of 9-gene in TCGA training cohort; (B) The ROC curve of 9-gene signature in training

cohort; (C) The KM survival curve of 9-gene signature in training cohort.

Encyclopedia of Genes and Genomes (KEGG) pathway analysis
and GO enrichment analysis were performed on the 1,325 DEGs,
and the top 10 annotation results were visualized (FDR < 0.05;
Figure 5C). The results showed that the p53 signaling pathway,
extracellular matrix-receptor interactions, the cell cycle, prostate
cancer, focal adhesion, and pathways in cancer were significantly
enriched (FDR < 0.05; Figure 5D, Supplementary Table 8).

Construction and Evaluation of Prognostic
Risk Model Based on TCGA-OV
The 372 ovarian cancer samples in the TCGA database were
divided into the training set and validation set, with 186 samples
in each (Table 1). The training and validation samples were tested
by using the chi-square test. The results showed that there was no
preference and no significant difference between the groups (p >

0.05). Univariable Cox proportional hazard regression was used
to analyze the training set, and 12 prognostic genes were obtained
(Supplementary Table 9).

To further reduce the number of genes, the Akaike
information criterion (AIC) was used for stepwise regression.
The AIC takes into account both a model’s goodness-of-fit and

its simplicity in terms of the number of parameters needed to
achieve this fit. The stepAICmethod in theMASS package started
with the most complex model and successively deleted variables
to reduce the AIC. The smaller the value, the better the model. It
made the model obtain sufficient fit with fewer parameters. Using
this algorithm, we eventually reduced the number of genes from
12 to 9.

Nine genes, including RASD1, DLL1, PJA2, N4BP3, ACE2,
FAH, BNC1, MUC20, and GJB6, were identified. Prognostic
Kaplan-Meier (KM) curves of the nine genes are shown in
Figure 6. PJA2, MUC20, and GJB6 could not divide the TCGA
training set samples into high- and low-risk groups (p > 0.05),
while the other genes could. The nine-gene signature formula is
as follows: RiskScore = 0.136 ∗ Rasd1 + 0.124 ∗ DLL1 + 0.242 ∗

PJA2 + 0.21 ∗ N4BP3 − 0.231 ∗ ACE2 − 0.297 ∗ FAH + 0.22 ∗

BNC1+ 0.143 ∗ MUC20+ 0.082 ∗ GJB6.
Risk scores were calculated for each sample based on their

gene expression levels, and the risk score distribution was
plotted (Figure 7A). The samples with high risk scores had
significantly shorter survival times than the samples with low
scores, suggesting that the samples with high risk scores had
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FIGURE 8 | (A) The distribution of risk score, survival time, and the expression of 9-gene in TCGA testing cohort; (B) The ROC curve and AUC curve of 9-gene

signature in testing cohort; (C) The KM survival curve of 9-gene signature in testing cohort.

worse prognoses. The 1-, 3-, and 5-year predictive classification
efficiency was assessed (Figure 7B). Risk scores greater than zero
were divided into the high-risk group (94 samples), and those less
than zero were divided into the low-risk group (92 samples). The
KM survival curve showed a significant difference between the
high- and low-risk groups (p < 0.0001; Figure 7C).

Robustness of Nine-Gene Signature in
Internal Validation Cohorts
The risk score distributions of the internal validation cohorts
(testing cohort, all TCGA cohort), are shown in Figures 8A,
9A, respectively. The ovarian cancer samples with high risk
scores had shorter survival times than those with low risk
scores, which is consistent with the trend of the training
cohort, suggesting that samples with high risk scores had worse
prognoses. The predictive classification efficiencies at 1, 3, and 5
years are shown in Figures 8B, 9B, respectively. The 5-year area
under the curve reached 0.79 in the testing cohort, 0.68 in all
TCGA cohort.

Risk scores greater than zero were divided into the high-risk
group, and those less than zero were divided into the low-risk

group. In the testing cohort, 96 samples were divided into the
high-risk group and 90 into the low-risk group. In all TCGA
cohort, 187 samples were classified into the high-risk group and
185 into the low-risk group. The KM survival curve showed
significant differences between the high- and low-risk groups in
internal validation cohorts (Figures 8C, 9C, p < 0.05).

Robustness of Nine-Gene Signature in
External Validation Cohort
The risk score distributions of the ICGC cohort was shown
in Figure 10A. The samples with high risk scores had worse
prognose than those with low risk scores, which is consistent
with the trend of the training cohort. The predictive classification
efficiencies at 1, 3, and 5 years are shown in Figure 10B. The
5-year area under the curve reached 0.71.

Risk scores greater than zero were divided into the high-
risk group, and those less than zero were divided into the low-
risk group. In the ICGC datasets, 44 samples were divided into
the high-risk group and 47 into the low-risk group. The KM
survival curve showed significant differences between the high-
and low-risk groups (Figure 10C, p < 0.05).
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FIGURE 9 | (A) The distribution of risk score, survival time, and the expression of 9-gene in TCGA-OV cohort; (B) The ROC curve and AUC curve of 9-gene signature

in TCGA-OV cohort; (C) The KM survival curve of 9-gene signature in TCGA-OV cohort.

Correlation Analysis Between Risk Model
and Clinical Features
Based on the nine-gene signature risk score, age, stage, and grade
could be significantly divided into high- and low-risk groups
with different prognoses (p < 0.05; Figures 11A–D). The nine-
gene signature model thus had good predictive ability in terms
of different clinical features. The risk score was significantly
correlated with the clinical feature score, and the risk score of
the older group was significantly higher than that of the younger
group. Regarding the subtypes, the risk score of the quiescent
subtype with poor prognosis was higher, while the risk score of
the cholesterol subtype with good prognosis was lower (p < 0.05;
Figures 11E,F).

The relationships between the risk scores and
biological functions of 372 ovarian cancer samples
(Supplementary Table 10) were further analyzed by gene
set enrichment analysis, and the first 26 KEGG pathways with
correlations greater than 0.35 were selected. Cluster analysis
results based on the enrichment scores are shown in Figure 11G.
It can be seen that tumor-related pathways, including
KEGG_NOTCH_SIGNALING_PATHWAY KEGG_WNT_

SIGNALING_ PATHWAY, KEGG_TGF_ BETA_ SIGNALING_
PATHWAY, KEGG_ FOCAL_ ADHESION, and KEGG_MAPK_
SIGNALING_ PATHWAY activated with increased
risk score.

Prognostic Independence Analysis of Risk
Signature
Both univariate (HR = 1.64, p < 1e−5) and multivariate
Cox regression analyses (HR = 1.68, p < 1e−5) showed
that the nine-gene signature was significantly associated with
prognosis. However, age, grade, stage were not significant
in both univariate and multivariate Cox regression analyses.
This further showed that in predicting the prognosis of
patients with ovarian cancer, the nine-gene signature
had better performance comparing with other clinical
variables (Figures 12A,B).

Comparison of Risk Model With Other
Models
Three published prognosis-related risk models were selected for
comparison with our nine-gene signature: a nine-gene signature
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FIGURE 10 | (A) The distribution of risk score, survival time, and the expression of 9-gene in ICGC cohort; (B) The ROC curve and AUC curve of 9-gene signature in

ICGC cohort; (C) The KM survival curve of 9-gene signature in ICGC cohort.

(17), a seven-gene signature (18), and a five-gene signature (19).
Kaplan Meier curves and ROC curve were performed to make
models comparable. First, we used the same method to calculate
every risk score in the TCGAdata according to the corresponding
genes in the three models, then the Z-score of the risk score
was calculated, and the risk scores were divided into high- and
low-risk groups.

The KM survival curve showed no significant prognostic
differences between the high- and low-risk groups between these
datasets (Figures 13B,D,F). Moreover, the ROC curve at 1, 3, and
5 years in the three models were all lower than in our signature
(Figures 13A,C,E).

Furthermore, to compare the prediction performance of
these models in ovarian cancer more intuitive, we used the
rms package in R to calculate the concordance index (C-
index) of the different models. We calculated the C-index
of the 4 models in the TCGA cohort. It showed that our
signature had a significantly higher average C-index than
the other models (Figure 13G), indicating that the overall
performance of our gene signature outweighed that of the other
3 signatures.

DISCUSSION

Epithelial ovarian cancer is one of the deadliest gynecological
malignancies in the western world. Most patients with advanced
epithelial ovarian cancer develop recurrence and chemotherapy
resistance (20, 21). There are many metabolic pathways in
tumor cells, such as fatty acid, glutamine, serine, and cholesterol
metabolism (22). Aerobic glycolysis is closely related to tumor
growth and chemotherapy resistance (23–25). Previous study
has shown that the tumorigenicity of epithelial ovarian cancer
cells depends on their glycolytic phenotype and that cells
with a greater glycolytic phenotype are more aggressive (26).
Meanwhile, studies have shown that the metabolites involved
in fatty acid metabolism are increased in both primary and
metastatic ovarian cancer (27). Changes in lipid metabolism
can lead to increased proliferation, invasion, and migration
of cancer cells, resulting in tumor metastasis (28). There is
increasing evidence that obesity is a significant risk factor for
ovarian cancer, and elevated low-density lipoprotein cholesterol
levels, which are a common complication of obesity, may also
indicate poor prognoses in patients with ovarian cancer (29–31).
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FIGURE 11 | (A,B) Comparison of prognosis of different Age groups based on Riskscore. (C) Comparison of prognosis of Stage III-IV based on Riskscore; (D)

Comparison of prognosis of Grade 3+4 based on Riskscore; (E) Correaltion of RiskScore between samples in Age groups; (F) Correaltion of RiskScore between

samples in molecular subtype groups; (G) Heat map of the relationship between risk score and biological function.

FIGURE 12 | (A) Clinical features and results of univariate analysis by RiskScore; (B) Clinical Features and results of multivariate analysis by RiskScore.

Pyruvic acid is an intermediate metabolite of the tricarboxylic
acid cycle and provides the precursor citrate for fat formation,
including the biosynthesis of cholesterol and free fatty acids.
The activation of the mevalonate pathway induced by oncogenes
is very important for the synthesis of cholesterol from scratch.
Simvastatin belongs to the family of statins and is widely
used in the treatment of hypercholesterolemia. Statins inhibit

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, which is
essential for the synthesis of mevalonate (32). Studies have shown
that long-term use of statin derivatives, such as cholesterol
synthesis inhibitors, can improve the prognoses of patients with
ovarian cancer (33, 34). Therefore, metabolic pathways play
an important role in the malignant progression and targeted
therapy of tumors. Thus, it is of great significance to elucidate the
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FIGURE 13 | (A,B) ROC analysis of 9-gene signature (Yue) and KM curve of High/Low samples; (C,D) ROC analysis of 7-gene signature (Sabatier) and KM curve of

High/Low samples; (E,F) ROC analysis of 5-gene signature (Ye) and KM curve of High/Low grouping sample. (G) The C-index comparison curve among four

prognostic signature.

metabolic pathways of gynecological malignant tumors for their
prevention and treatment.

In this study, 46 cholesterol- and glycolysis-related genes were
used for gene clustering, and 11 glycolytic co-cluster genes and
seven cholesterol co-cluster genes were obtained. The TCGA data
including ovarian, endometrial, and cervical cancer samples were
divided into four subtypes: quiescent, glycolysis, cholesterol, and
mixed. The survival analysis results showed that the prognosis
of the cholesterol subtype was better than that of the quiescent
subtype, suggesting that the prognoses of patients with high
expression of cholesterol-related genes were better than those
with low expression of cholesterol- and glycolysis-related genes.
These results suggested the presence of metabolic phenotypes
related to glycolysis, cholesterol production, and prognosis in
gynecological pan-cancer. By comparing the mutations and copy
number variations among the four subtypes, we found that the
proportion of the cholesterol subtype was higher than that of the
quiescent subtype in the TP53 loss samples, and in the samples
with FLG gain, the proportion of the cholesterol subtype was
lower than that of the quiescent subtype. These results suggested
that abnormal expression of TP53 and FLG could promote
the malignant progression of tumors by promoting cholesterol
synthesis and changing cholesterol metabolism.

Pyruvate is the hub of carbohydrate, fat, and amino acid
metabolism, and the overall metabolic state of cells determines
the metabolism of pyruvate. Under aerobic conditions, a carrier
transports pyruvate from the cell matrix to the mitochondrial
matrix, and it is then converted by the pyruvate dehydrogenase
complex into acetyl-coenzyme A and carbon dioxide. Under
anaerobic conditions, the glycolysis of pyruvic acid in cytoplasm
produces lactic acid, which is transferred from the cell. MPC is
a protein that plays an important role in the passage of pyruvate
through the mitochondrial membrane. MPC consists of MPC1
andMPC2 subunits (35–37). Inactivation of any of these subunits

leads to the loss of activity of the MPC complex and a decrease
in mitochondrial pyruvate transport and utilization (38). MPC
deficiency can lead to metabolic disorders and changes in tumor
metabolism (16, 39, 40). In most tumor cells, MPC1 and MPC2
levels are low or not present, and patients with low MPC1 levels
usually have poor prognoses (41). The expression of MPC1/2 in
different metabolic subtypes was also analyzed in this study. The
results showed that there were significant differences in MPC1/2
expression among different metabolic subtypes, suggesting that
abnormal changes in MPC complex regulation of pyruvate flux
may participate in the malignant progression of gynecological
pan-cancer by affecting metabolic pathways.

We focused on analyzing the cholesterol subtype with good
prognosis and the quiescent subtype with poor prognosis.
We identified DEGs between the two subtypes and conducted
functional enrichment analysis. The results showed that
DEGs between the two subtypes were significantly enriched
in the p53 signaling pathway, extracellular matrix-receptor
interactions, the cell cycle, prostate cancer, focal adhesion, and
pathways in cancer, suggesting that the cholesterol subtype
may affect the malignant progression of gynecological pan-
cancer through the above pathways. In addition, there was a
significant correlation between tumor-related transforming
growth factor and the quiescent subtype, and there were also
correlations between the cholesterol subtype and metabolism
pathways, such as CHOLESTEROL_HOMEOSTASIS and
FATTY_ACID_METABOLISM. Cholesterol homeostasis plays
an important role in the progression of cancer. In ovarian
cancer, cholesterol homeostasis may modulate the sensitivity
of ovarian cancer patients to platinum-based drugs (42). Our
results suggested that cholesterol-related genes may be involved
in drug resistance through cholesterol homeostasis, fatty acid
metabolism, and other pathways in gynecological pan-cancer,
but these are rarely studied in cervical and endometrial cancers.
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Based on the DEGs of the cholesterol and quiescent
subtypes, we constructed a nine-gene signature prognostic
model including Rasd1, DLL1, PJA2, N4BP3, ACE2, FAH,
BNC1, MUC20, and GJB6 in the ovarian cancer samples,
and we compared it with existing prognostic models [a nine-
gene signature (17), a seven-gene signature (18), and a five-
gene signature (19)]. Our model was robust in both the
training and verification datasets, and it also had excellent
prediction performance.

CONCLUSION

In conclusion, the metabolic classification of gynecological pan-
cancer based on metabolic reprogramming may provide
an important basis for clinicians to choose treatment
options, predict treatment resistance, and predict patients’
clinical outcomes.
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