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The state-of-the-art for melanoma treatment has recently witnessed an enormous
revolution, evolving from a chemotherapeutic, “one-drug-for-all” approach, to a tailored
molecular- and immunological-based approach with the potential to make personalized
therapy a reality. Nevertheless, methods still have to improve a lot before these can reliably
characterize all the tumoral features that make each patient unique. While the clinical
introduction of next-generation sequencing has made it possible to match mutational
profiles to specific targeted therapies, improving response rates to immunotherapy will
similarly require a deep understanding of the immune microenvironment and the specific
contribution of each component in a patient-specific way. Recent advancements in
artificial intelligence and single-cell profiling of resected tumor samples are paving the
way for this challenging task. In this review, we provide an overview of the state-of-the-art
in artificial intelligence andmultiplexed immunohistochemistry in pathology, and how these
bear the potential to improve diagnostics and therapy matching in melanoma. A major
asset of in-situ single-cell profiling methods is that these preserve the spatial distribution of
the cells in the tissue, allowing researchers to not only determine the cellular composition
of the tumoral microenvironment, but also study tissue sociology, making inferences
about specific cell-cell interactions and visualizing distinctive cellular architectures - all
features that have an impact on anti-tumoral response rates. Despite the many
advantages, the introduction of these approaches requires the digitization of tissue
slides and the development of standardized analysis pipelines which pose substantial
challenges that need to be addressed before these can enter clinical routine.
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Van Herck et al. Next Generation Pathology in Melanoma
INTRODUCTION

Next-Generation Pathology and
Personalized Medicine in Melanoma
The oncological treatment of melanoma has radically changed
over the past 10 years: it evolved from a “one-fits-all”
chemotherapeutic treatment with DTIC (1) to a more tailored
setting where therapies are only given when patient- and tumor-
specific features are present. This evolution toward personalized
therapy was ignited by the observation that specific drugs were
only clinically effective in the presence of a specific mutation (2–
10). In addition, following the first successes with IL-2 therapy
(11–13), immunotherapy was re-evaluated leading to the
identification and implementation of checkpoint inhibitor
therapy, a type of immunotherapy based on blocking the
breaks that normally prevent the immune system from
becoming hyperactivated (14–17). While oncology is gradually
moving toward personalized treatments, also pathological
assessments need to progress to cope with the need for in-
depth characterizations of tumor tissues from individual
patients. Salto-Tellez et al. have previously discussed how
pathology, a discipline originally based on the evaluation of
tissue morphology by hematoxylin-eosin (HE) staining,
witnessed 3 main revolutions: first, the introduction of
immunohistochemistry (IHC) in the 80s; second, the adoption
of molecular techniques in pathology (molecular pathology, MP;
mostly next-gen sequencing); and, most recently, the
development of artificial intelligence (AI) tools to support the
pathologist to evaluate and interpret the different features (18).
While tools from the first two revolutions are nowadays fully
embedded in routine clinical work and represent the earliest
steps toward personalized medicine, the third revolution is still
awaiting its breakthrough.

From the available tools, MP is the most advanced as it
reached the required level of specificity to represent the state-of-
the-art. It is mostly based on next-generation sequencing
through which it allows the identification of genetic
aberrations, either by analyzing focused gene panels or whole
genome sequencing. In melanoma, the mutational profile is
nowadays used to support diagnostics but also to select the
most appropriate treatment. For the former, the new WHO Skin
Cancer classification has identified 9 molecular pathways in
which the melanocytic lesions can be classified based on the
type and number of genetic alterations involved (19). Each of
these pathways is further divided in 3 categories with different
biological behavior (benign, intermediate and malignant) that
can also be predicted according to the number of genetic
alterations (≤1, 2 and >2 respectively) (19). The choice of
treatment, on the other hand, is primarily based on the
presence of targetable mutations, such as BRAF V600
mutations, for which specific therapies are available (2–10).

While NGS methods are constantly improving and evolving,
the use of IHC hardly changed over the past 20 years. Indeed, as
opposed to NGS analyses that typically cover 10-100 genes
simultaneously, conventional IHC allows to stain tissue sections
one marker at the time. As such, the analysis of multiple
Frontiers in Oncology | www.frontiersin.org 2
biomarkers typically requires the analysis of serial sections
which may be a limiting step in small biopsies where only small
amounts of materials are available. Moreover, by its inability to
investigate the co-expression of several markers in the same cell,
important information is systematically missed. A workaround
has been to analyze marker expression patterns in serial sections,
but this approach does not achieve sufficient detail to get to a
robust interpretation. As a consequence, conventional IHC has
become largely insufficient to cope with the required level and
depth by which tumor tissues for each individual patients should
be analyzed. A striking example involves the use of PD-L1 as a
single-plex marker for the prediction of immunotherapy
response: even though it has been implemented in routine
pathological assessments, its detection suffers from significant
technical hurdles making it largely insufficient as a good
predictive marker. Moreover, recent research suggests that the
cell types that express PD-L1 and their location in the tissue is also
of major importance. However, gaining such insights cannot be
addressed by old pathological practices where a semi-quantitative
eye-balling interpretation of the staining is used for subjective
evaluation, and therefore requires the implementation of single
cell-technologies that preserve the spatial distribution of the
various cell types and their original state (20). Multiplexed IHC,
a technological approach that harbors the potential to collect
exactly this type of data, has witnessed major progress over the
past 2-3 years, but still requires several adaptations. For instance,
it relies on full image digitalization and extended computational
analysis, a limitation (but also opportunity) that multiplexed IHC
and artificial intelligence (AI) have in common for their further
implementation in a clinical setting.

Even though digital pathology-based AI tools have already
been developed and have shown some diagnostic, prognostic,
and predictive potential comparable to standard molecular and
genomic-based tests, digital pathology (i.e. the process of
digitizing whole-slide images using advanced slide-scanning
techniques) has not yet been introduced in hospitals at large
scale. Recent advancements in multiplexed IHC anticipate an
even more important role for AI in pathology. The plethora of
data generated by multiplexed IHC where tens to hundreds of
markers are measured in thousands to millions of cells in their
spatial context, provides the ideal setting to exploit AI and deep
learning methods in particular. One of the strongest aspects of
deep learning is to discover hidden features (and their
combinations) otherwise invisible by purely visual inspection,
and correlate them with clinical data. The parallel advancement
of multiplexed IHC and AI-based computational models
represent an unprecedented scenario for the introduction of
next-generation pathology in clinical practice, characterized by
the more widespread usage of digital images and the introduction
of artificial intelligence and deep learning tools on
histopathological images.

In this review we discuss the state-of-the-art, the potential
and the challenges linked to the introduction of next-generation
pathology to the clinical practice of melanoma patients.
All the studies considered in this review are summarized in
Table 1.
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TABLE 1 | Overview of recent studies using digital pathology in melanoma. All studies are ordered according to time of publication.

Main finding(s)/results

Optimized workflow of laser microdissection &
stronger expression of five genes (M-MITF, TYR,
STAT3, CCND1 and PAX3) in primary than
metastatic melanoma

20
ns

No relationship between CD3, CD8, CD20,
CD163, FoxP3 both intratumoral (CT) and
peritumoral (IM) with response/benefit; Only a
trend for the CD163 positive PD-L1 positive
population (p = 0.07)

20
ns

Significant higher ratio of peri/intra tumoral CD3
and CD8 in patients without recurrence

ing Predictive model for response to therapy based
on CD8 expression at the invasive margin (after
multivariate analysis)

r
Superior performance in measuring the
melanoma DoI of proposed multi-resolution
approach compared to two closely related
techniques.

Similar inter- and intraobserver discordance
between WSI and TM

Accuracy and reproducibility similar for WSI/TM

e More than 95% accuracy for classifying a
melanocytic image into different categories such
as melanoma, nevus or normal tissue
Increased numbers of CD69+CD103+ tumor-
resident CD8+ T cells were associated with
improved melanoma-specific survival in
immunotherapy-naïve melanoma patients.

)

Model to define metastatic melanoma immune
context into four categories using the presence
or absence of PDL1+ melanoma cells and/or
macrophages, combined with the presence or
absence of IT CD8+ T cells
Accuracy and reproducibility similar for WSI/TM

A detailed landscape of melanoma metastases
was revealed by applying the ST technology to
generate gene expression profiles, not evident
through morphologic annotation
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Study Main Objective Study population Method(s)

Makhzami et al.
2012 (21)

Improve the cell-type purity by performing laser-
microdissection and investigate tissue-based
transcriptomic data

Transgenic mice IHC-guided laser microdissection

Bifulco et al. 2014
(22)

Investigate prognostic and predictive value of
immunoscore in advanced melanoma patients
treated with ipilimumab

190 FFPE metastatic samples from melanoma
patients treated with ipilimumab

IHC expression of CD3, CD8, CD
and FOXP3 on serial tissue sectio

Capone et al. 2014
(23)

Potential prognostic value of CD3, CD8, CD20, and
FOXP3 as an ‘Immunoscore’ for melanoma

150 lymph nodes from 34 melanoma patients IHC expression of CD3, CD8, CD
and FOXP3 on serial tissue sectio

Tumeh et al. 2014
(24)

Investigate adaptive immune resistance as
predictor of response to anti-PD-1 therapy

Discovery cohort of 46 patients with FFPE
material treated with anti-PD1 monotheray;
Validation cohort of 15 patients

multiplex IF triple stainings, includ
S100, CD8, CD4, CD80, Ki67,
pSTAT1, PD-1 and PD-L1

Xu et al. 2017 (25) Technique for measuring melanoma DoI in
microscopic images digitized from MART1 (i.e.,
meleanoma-associated antigen recognized by T
cells) stained skin histopathological sections

29 histopathological melanoma images (1 training,
28 validation images)

Four modules technique, includin
robust Bayesian based method f
skin granular detection and
multiresolution method using
Hausdorff distance to measure
melanoma invasion depth.

Fertig et al. 2017
(26)

Compare concordance in differentiating spongiotic
dermatitis (SD) and mycosis fungoides (MF)
between digital whole-slide imaging (WSI) and
traditional microscopy (TM )

20 cases of subacute SD and 20 cases of MF WSI versus TM

Kent et al. 2017 (27) Compare accuracy/ reproducibility of pathologist in
diagnosing dermatopathology cases between
digital whole-slide imaging (WSI) and traditional
microscopy (TM )

499 dermatopathology cases representing
spectrum of diagnoses seen in the laboratory

WSI versus TM

Xu et al. 2018 (28) computer-aided technique for automated analysis
and classification of melanocytic tumor on skin
whole slide biopsy images.

66 H&E stained skin WSIs including 17 normal
skin tissues, 17 nevi and 32 melanomas

multi-class support vector machi
(mSVM) with extracted epidermis
and dermis features

Edwards et al. 2018
(29)

Prognostic value of tumor-resident CD8+ T cells in
metastatic melanoma patients prior to
immunotherapy and in patients undergoing anti–
PD-1 immunotherapy

52 melanoma patients multiplex IF using OPAL (CD8,
CD103, SOX10, PD-1) & FACS

Halse et al. 2018
(30)

Prospective study explored the heterogeneous
nature of metastatic melanoma using Multiplex
immunohistochemistry (IHC) and flow cytometry
(FACS)

FFPE from 21 melanoma patients FACS & multiplex IF using OPAL
(CD4, CD3, CD8, FOXP3, PD-L1
SOX10, CD20, CD68 and CD11c

Onega et al. 2018
(31)

Compare accuracy/reproducibility of pathologist in
diagnosing melanocytic lesions between digital
whole-slide imaging (WSI) and traditional
microscopy (TM )

180 skin biopsy cases including 90 invasive
melanoma

WSI versus TM

Thrane et al. 2018
(32)

Optimize and apply spatial transcriptomics (ST)
technology for the in situ and quantitative detection
of gene expression in stage III melanoma lymph
node metastases

4 lymph node melanoma metastases Spatial Transcriptomics AB
g
o

n

,
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TABLE 1 | Continued

Main finding(s)/results

D-
&
s

Patients with high PD-1/PD-L1 and/or IDO-1/
HLA-DR more likely to respond (P = .0096) and
have significantly improved progression free
survival (hazard ratio [HR] = 0.36; P = .0004) and
overall survival (HR = 0.39; P = .0011)

g
nd
to

Robust segmentation/nuclei classification with
average error rate less than 0.7%

Segmentation of lymph nodes with more than
90% accuracy & proliferation index calculation
with average error rate of less than 1.5%

Favorable prognostic role of CD3+, CD4+, CD8
+, FOXP3+ and CD20+ TILs in melanoma

D4, Pretreatment lymphocytic infiltration is associated
with anti–PD-1 response in metastatic melanoma

e DNN recurrence prediction is independent
prognostic factor in a multivariable Cox
proportional hazard model

45)
Pretreatment CAF profiles are associated with
melanoma immunotherapy outcome

Best model for 12-month progression-free
survival for anti-PD-1 monotherapy included PD-
L1+ cells within proximity to tumor cells and
intratumoral CD8+ density (AUC = 0.80), and for
combination therapy included CD8+ cells in
proximity to tumor cells, intratumoral PD-L1+
density and LDH (AUC = 0.85)
hTERT mRNA was more abundantly expressed
in melanomas compared with benign naevi and
correlated with the prognostic markers Breslow
thickness and the Ki67 index
Tertiary lymphoid structures have a key role in
the immune microenvironment in melanoma, by
conferring distinct T cell phenotypes & co-
occurrence of tumour-associated CD8+ T cells
and CD20+ B cells is associated with improved
survival

x
,

Potential role of B cells and tertiary lymphoid
structures in the response to ICB treatment

(Continued)

Van
H
erck

et
al.

N
ext

G
eneration

P
athology

in
M
elanom

a

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

M
arch

2021
|
Volum

e
11

|
A
rticle

636681
4

Study Main Objective Study population Method(s)

Johnson et al. 2018
(33)

Quantify immunosupression mechanisms within the
tumor microenvironment by multiparameter
algorithms to identify strong predictors of anti-PD1
response

Discovery cohort of 24 melanoma patients with
FFPE material; Validation cohort of 142 melanoma
patients with FFPE material

multiplex IF using OPAL (PD-1 &
L1, HLA-DR & IDO-1 and CD11b
S100); Analysis using AQUAnalys
™

Alheejawi et al. 2019
(34)

Automatic measurement of proliferation index in Ki-
67 stained biopsy image using deep learning
algorithm

9 melanoma WSI Convolutional neural network usin
SegNet architecture to segment a
classify the Ki-67 stained image in
three classes (i.e., background,
active and passive nuclei

Alheejawi et al. 2019
(35)

Computer Aided Diagnosis (CAD) method to
segment the lymph nodes and melanoma regions
in a biopsy image and measure the proliferation
index

39 WSIs include 9 H&E, 9 MART-1, 9 KI-67, 5
CD-45, and 7 S-100 images

Local frequency features and SVM
classifier for lymph node
segmentation & Thresholding and
SVM classification to determine
active/passive nuclei

Fu et al. 2019 (36) systematic review of articles about the prognostic
roles of TIL responses and CD3+, CD4+, CD8+,
FOXP3+, and CD20+ TIL subsets in the prognosis
of melanoma

41 studies included in final analysis Systematic review & meta-analys

Wong et al. 2019
(37)

Are pretreatment tumor-infiltrating lymphocyte (TIL)
profiles associated with response?

Study cohort of 94 anti-PD-1 treated melanoma
patients; Historical cohort 100 untreated
melanoma

5-plex IF using OPAL (including C
CD8, CD20, Ki67, GZMB)

Robinson et al.
2019 (38)

Deep Neural Network (DNN) for quantitative
prediction of melanoma recurrence from a H&E
stained tissue

Training set of 75 melanoma patients; Validation
cohort of 115 melanoma patients

Deep neural net (DNN) architectu
consisting of convolutional and
recurrent neural networks (CNN,
RNN).

Wong et al. 2019
(39)

Test the hypothesis that CAF profiles in
pretreatment tumor specimens are associated with
response to anti-PD-1

Discovery cohort: 117 anti-PD1 treated melanoma
patients; Control group: 194 melanoma patients

5-plex IF using OPAL (including
Thy1, SMA, FAP, S100 and HMB

Gide et al. 2019 (40) Examine the spatial distribution of immune and
tumor cells to predict response to anti-PD-1-based
therapies and patient outcomes

61 melanoma patients with FFPE material (27
monotherapy anti-PD1 treated; 34 combined anti-
PD1 and anti-CTLA4)

multiplex IF using OPAL (PD-1,
SOX10, PD-L1 and CD8)

Baltzarsen et al.
2020 (41)

Evaluate the diagnostic or prognostic marker of
hTERT mRNA in melanoma

17 melanoma and 13 benign naevi RNAscope

Cabrita et al. 2020
(42)

Investigate the role of B cells in antitumor
responses in melanoma

177 melanoma patients multiplex IF & Nanostring GeoMx
Digital Spatial Profiler

Helmink et al. 2020
(43)

Investigate the role of B cells in antitumour
responses in melanoma

Discovery cohort of 23 melanoma patients;
Validation cohort of 18 melanoma patients

Gene expression profiling, multipl
IF using OPAL (CD20, CD21, CD
P
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TABLE 1 | Continued

ethod(s) Main finding(s)/results

Nanostring GeoMx
rofiler & CytOF

ing MILAN (39 plex),
mics & qPCR

Brisk and non-brisk patterns are heterogeneous
functional categories that can be further sub-
classified into active, transitional or exhausted,
and have an improved prognostic value when
compared to that of the brisk classification

system using a
ee independently-
tional neural networks

Deep-learning-based confidence scoring
classification system with accuracy of up to 98%

neural network:
m

Automated % TIL scoring significantly
differentiated survival using an estimated cutoff of
16.6% TIL, whereas TIL did not associate with
RFS between groups (P > 0.05) when
categorized as brisk, nonbrisk, or absent.

n based deep
onvolutional
eural network
th two semi-
ning stages for the
decoding parts

Segmentation of nests areas with Dice similarity
coefficient 0.81, sensitivity 0.76, and specificity
0.94

oMx Digital Spatial
and mRNA
lysis

Loss of BAP1 expression is associated with an
immunosuppressive microenvironment in uveal
melanoma

anostring GeoMx
rofiler

Transcriptionally profiling of regions of high and
low CTNNB1 expression within melanoma and
prostate tumors and identify genes potentially
regulated by the WNT- b-catenin pathway

ional-neural network
ct viable tumor areas;
ntitative TIL detection
te additional neural

TIL clusters are associated with response to
immunotherapy in BRAF V600E/K mutated MM.

ital (TIL) analysis
convolutional neural

)

After multivariable Cox proportional hazards
analysis, ADTA contributed to DSS prediction
(HR: 4.18, CI 1.51–11.58, p = 0.006).

Cytometry (IMC) (25 Identification of a series of potentially indicative
biomarkers for immunotherapy in metastatic
melanoma, including B2M.
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Study Main Objective Study population M

CD8, FOXP3),
Digital Spatial P

Bosisio et al. 2020
(44)

Characterize the immune landscape in primary
melanoma

29 primary cutaneous melanoma (23 non-brisk, 6
brisk)

multiplex IF us
shotgun proteo

Ianni et al. 2020 (45) deep learning system to classify digitized
dermatopathology slides into 4 diagnostically-
relevant classes (Basaloid, Squamous, Melanocytic
and Other)

Training set of 5070 H&E stained skin biopsies;
Validation set of 13 537 H&E stained skin biopsies

Deep learning
cascade of thr
trained convolu
(CNNs)

Chou et al. 2020
(46)

Compare the prognostic accuracy of an automated
% TIL score using the NN192 algorithm to that of
Clark’s grading

453 melanoma patients TIL-quantifying
NN192 algorith

Kucharski et al.
2020 (47)

semi-supervised solution using convolutional
autoencoders to to segment nests of melanocytes
in histopathological images of H&E-stained skin
specimens

Training set of 70 H&E stained WSIs of selected
melanocytic lesions including 22 lentigo maligna,
20 junctional dysplastic nevi, 13 melanoma in situ
and 15 superficial spreading melanoma (15);
Validation set (of manually labeled ground truth
images) of

Computer-visio
learning tool: C
autoencoder n
architecture wi
supervised trai
encoding and

Figueriredo et al.
2020 (48)

Investigate the mechanisms that supress tumor
infiltrating lymphocyte in uveal melanoma

1 patient with uveal melanoma for Digital Spatial
profiler,

Nanostring Ge
Profiler, CytOF
expression ana

Dikshit et al. 2020
(49)

Develop a novel workflow to combine the single
molecule and single cell visualization capabilities of
the RNAscope in situ hybridization (ISH) assay with
the highly multiplexed spatial profiling capabilities of

the GeoMx™ Digital Spatial Profiler (DSP) RNA
assays

3 melanoma & 3 prostate tumors RNAscope & N
Digital Spatial P

Klein et al. 2021 (50) Evaluate the predictive value of tumor infiltrating
lymphocyte (TIL) clusters in primary MM and its
association to molecular subtypes to predict
response to CPI treatment.

H&E stained slides: Discovery cohort of 90
immune checkpoint therapy treated melanoma
and a validation cohort of 351 patients from
TGCA database

Deep-convolut
(U-Net) to dete
following a qua
using a separa
network

Moore et al. 2021
(51)

Test whether automated digital (TIL) analysis
(ADTA) improves accuracy of prediction of disease
specific survival (DSS) based on current pathology
standards

Training cohort of 80 melanoma patients,
validation cohort of 145 melanoma patients

automated dig
(ADTA) using a
network (CNN

Martinez-Morilla
et al. 2021 (52)

Characterize the tumor microenvironment of
patients with metastatic melanoma to find indicative
factors of treatment response

Not reported Imaging Mass
markers)
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Van Herck et al. Next Generation Pathology in Melanoma
The New Morphological Evaluation:
AI-Based
Historically, the role of the dermatopathologist in malignant
melanoma concerned mainly 3 aspects: (i) find the right
histopathological diagnosis of pigmented lesions; (ii) define the
pathological staging for the primary malignant melanoma on
the basis of Breslow thickness and ulceration; and (iii) list all
the other relevant prognostic parameters not included in the
staging process such as regression, inflammatory infiltrate,
microsatellites, etc. This evaluation has always been done using
a simple hematoxylin-eosin (HE) staining and a visual
interpretation of the morphometric features of the tissue by
the pathologist. The first task listed above is definitely the most
challenging and still impossible to be performed by the machine
autonomously. For the last two monotonous tasks, instead, the
pathologist can be more effectively assisted by digital pathology
where these parameters can be objectively quantified by the
computer on digitized whole-slide images leaving more time to
the pathologist for the diagnostic process.

First of all, finding the right histopathological diagnosis of
pigmented lesions is known to be one of the most challenging
tasks in pathology, requiring extended training and expertise.
This is further highlighted by the fact that there can be a high
degree of discordance when the same lesion gets evaluated by
different pathologists (53). Even though discordance is still
present among the more experienced dermatopathologists (54),
experience and specific training in dermatopathology do
improve the diagnosis of difficult cases (55). In fact, digital
pathology can be used to virtually share slides between
peripheral hospitals and reference centers, facilitating the
process of second opinion and expert review. As such, both AI
and digital pathology can provide a more standardized level of
diagnostic accuracy, ensuring patients get access to the most
reliable diagnostic assessments. Digitized whole scan images of a
histological slide have been found to have similar effectiveness,
both in terms of accuracy and diagnostic workflow, to traditional
microscopy for the evaluation melanocytic lesions (26, 27, 56).
Moreover, artificial intelligence can also bring its experience,
namely its machine learning training, to the side of less
experienced pathologists to assist them with more complex
diagnostics. In this direction, even before the introduction of
machine learning, feature extraction-based algorithms had
already proven to be efficient to distinguish melanocytic lesions
with an accuracy of 95% (28). Even more recently, a first machine
learning algorithm was developed to evaluate the degree of
uniformity and symmetry of melanocytic nests as a first step to
discriminate between benign and malignant lesions (47).
Nevertheless, it is very unlikely that the application of digital
pathology and AI will replace the pathologist in the diagnostic
process, especially for melanocytic lesions. Since the use of deep
learning allows the mining of complex morphometric features
that go beyond mere visual identification, these can be applied in
the form of an augmented reality rather than of an autonomously
working AI, in order to suggest elements in favor and against the
diagnosis of melanoma that will necessarily need to be reviewed
by the pathologist itself. The augmented reality will bring to the
Frontiers in Oncology | www.frontiersin.org 6
attention of the pathologist features that should not be missed,
helping him to recognize the trivial case (all the features pointing
in one direction) from the more complex one (more contrasting/
ambiguous features), speeding up the work of the pathologist,
thanks to a triage process but not substituting him in making the
definitive diagnosis. Therefore, it is also more realistic that the
role of digital pathology and machine learning will be assisting
the general pathologists with less experience in melanocytic
lesions rather than the experienced dermatopathologist
(Figure 1).

Interestingly, artificial intelligence could also be used to
organize collections of digitized tissue slides by image
similarity, and, as such, go far beyond the use of mere text-
based searches. This can have various applications: (i) matching
new cases to archived morphologically similar cases to propose a
putative diagnosis and potentially improve the diagnostic
accuracy; (ii) groups of similar images can more efficiently be
retrieved from the archives for training purposes, not only to
develop new or improved algorithms, but also for pathologists-
in-training (57).

Software packages that are able to apply automated
measurements, can also make diagnostics more efficient by
automatically retrieving the required parameters and adding
them to clinical reports. One of the first studies to use deep
learning in histopathology allowed to recognize and count
mitotic cells in breast cancer with higher accuracy compared to
manual assessment (58). As manual counting mitotic nuclei is a
highly time-consuming tasks, it could be easily replaced by AI in
melanoma reporting as well. Other practical examples involve
the measurement of the Breslow thickness (25), the evaluation of
the proliferation index or the detection of lymph node metastasis
(34, 35), for which deep learning algorithms are already available.
In addition to this, deep learning has been proven useful as an
alternative way to the most traditional pathological report to
predict the risk of melanoma recurrence, on the basis of features
extracted from HE images (38). Moreover, image analysis and
machine learning were also applied to quantify tumor infiltrating
lymphocytes (TILs) on HE, revealing to be a better tool than the
actual semiquantitative classification in brisk, non-brisk and
absent to estimate survival for melanoma patients (46, 50, 51)
and to be associated with response to checkpoint inhibitors in
BRAF V600E/K mutated malignant melanomas (50)

Finally, on top of assisting the pathologist with the diagnostic
process and the definition of the prognosis, there are additional
advantages to the introduction of digital pathology (Figure 1).
The number of cases in dermatopathology has been rising over
the last decade, and as such also the workload of the
dermatopathologists (59). Most of these lesions are benign and
easy to recognize, yet require dedicated time for evaluation. This
reduces the available time for the more challenging/difficult
cases. Software packages have recently entered the market that
can assign a “class” to a skin lesion (e.g. epithelial vs
melanocytic), detect easy, benign lesions, that can be
prioritized and quickly diagnosed, and assign a particular flag
to cases recognized as “complex”, onto which the pathologist can
focus longer (45). In this way, artificial intelligence can help to
March 2021 | Volume 11 | Article 636681

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Van Herck et al. Next Generation Pathology in Melanoma
optimize the flow of the daily work of the pathologist and
improve the robustness and efficiency to come to a
proper diagnosis.

Beyond Morphology: The Spatial Omics
As stated higher, the evolving treatment landscape in malignant
melanoma has resulted in an increased demand for more and
better predictive evaluations on top of the already available
prognostic ones. The combination of both is a prerequisite to
Frontiers in Oncology | www.frontiersin.org 7
move toward personalized approaches in which treatments are
matched to the right patients. Within metastatic melanoma, the
use of checkpoint inhibitor therapy has revolutionized the
outcome for patients with an objective response rate between
33.7-45%. Interestingly, the clinical efficacy of anti-PD1
antibodies as monotherapy (15, 16, 60), was slightly improved
when combined with anti-CTLA-4 antibodies (up to 58%) (60,
61), but at the cost of higher toxicity rates. To avoid the
biological, ethical and economical costs of administering
FIGURE 1 | Digital Pathology and AI for a new morphological evaluation. The limitations related to the visual inspection-based diagnosis made by the pathologist on
HE stained samples can be overcome with digital pathology and the support of AI and image analysis. Thanks to such computational tools it is possible to achieve
more accurate diagnoses, based on a quantitative and more detailed analysis rather than a qualitative assessment, to support pathologists in their work, to automate
time-consuming and repetitive tasks and to also improve the organization and the way cases are stored.
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non-effective treatments to patients, we will need to find
predictive biomarkers that can guide clinicians to make
informed decisions. In this light, several biomarkers have been
described, such as a minimal expression of PD-L1 by
conventional IHC (62), a minimal level of tumor mutational
burden (TMB) (63), and gene expression profiling (GEP) using
the IPRES or IMPRES signatures (64, 65), but none of these have
provided the required sensitivity and/or specificity to be
implemented in the clinic. This could be due to the limited
amounts of information on the tumor and its microenvironment
that are gathered by these assays, and which turned out to be
insufficient to efficiently predict response to therapy. Indeed,
understanding the conditions in which the immune system can
be reinvigorated by ICB turns out to be complex and requires the
integration of multiple parameters and features. Next-generation
pathology using spatially resolved single-cell assessments of a
tissue has the potential to shed more light on the complex role of
the TME in a patient response to therapy, as it integrates
functional information of each individual cell while adding
information about their spatial context (Figure 2) and as such
the interactions between different cell types.

As anticipated in the introduction, conventional IHC cannot
provide a multiparametric in-depth characterization of the tissue
at single cell level. To overcome the limitations of conventional
IHC, multiple approaches have been tested. A first example
involves the use of virtual multiplexing which vertically aligns
digital images from serial sections. Virtual multiplexing has been
made (commercially) available by VisioPharm and HistogGeneX
(66) among others. An example is the Tissuealign™ analysis
module from VisioPharm that has been validated for in vitro
diagnostic use (CE-IVD) in Europe in combination with the CE
IVD APPs from VisioPharm (67, 68). Nevertheless, vertical
registration still does not allow detailed single-cell phenotyping
which requires insights in the co-expression of different markers
in exactly the same cell. In addition, to identify all the
inflammatory subpopulations that are present in a histological
sample, the evaluation of more than 20 markers is needed, ideally
on the same tissue section (“high-plexing”). Nowadays, several
methods for tissue multiplexing are available (69) and any
technique representing a surrogate to investigate co-expression
of markers at single cell level should be replaced by multiplexed
IHC. First investigated in the context of colorectal cancer (70),
the implementation of the concept of an ‘Immunoscore’ or
immunoprofiling into a renewed cancer staging system
incorporating the effects of the host immune response based
on the numeration of specific lymphocyte populations alongside
with the tumor cell-autonomous characteristics has been proven
useful in the context of advanced melanoma as well (23). The
colorectal Immunoscore, which involved a quantitative
assessment of CD3+ and CD8+ T cells both at the invasive
margin and bulk of the tumor, was already published in 2006
and encouraged the adoption of digital pathology tools for
biomarker discovery (70, 71). Specific for melanoma, the
definition of a comparable Immunoscore seems to be a more
difficult challenge (72). In many patients, metastatic lymph
nodes are the only available tissue samples and concerns are
Frontiers in Oncology | www.frontiersin.org 8
raised about the applicability of an Immunoscore in lymph nodes
because they are constitutively rich in CD3 and CD20
lymphocytes. In a first effort, an Immunoscore constructed
based on the expression of CD8, CD3, CD20 and FOXP3, was
applied on a small cohort of stage III melanoma patients showing
significant differences in the peri/intratumoral ratio for both
CD3 and CD8, with the ratio being higher in patients without
recurrence compared to patients with melanoma recurrence,
with similar trends for both FOXP3 and CD20 were observed
(71). In a more recently published systematic review, a favorable
prognostic role of the CD3+, CD4+, CD8+, FOXP3+, and CD20+

TILs on the overall survival of melanoma patients was
confirmed. In addition, in a subgroup analysis, brisk TILs were
associated with overall survival, recurrence-free survival, and
melanoma-specific survival (36). Likewise, the predictive
performance of an alternative Immunoscore, using a digital
image analysis application to characterize immune infiltrate
expression of CD3, CD8, CD20, FOXP3 and CD163 and of
PD-L1, was tested in a metastatic melanoma cohort of patients
treated with Ipilimumab in the MISIPI trial (22, 72).
Unfortunately, this trial was unable to confirm the relationship
between intra/peritumoral expression of CD3, CD8, CD20,
CD163, FOXP3 and a response/benefit to therapy, apart from
a trend for the CD163-PD-L1 double positive population (22).
Another study, using a low-plex with only 6 markers found
instead that the quantity but not the activation of CD8+ TILs was
associated with anti-PD-1 response in metastatic melanoma (37).
In an attempt to categorize the intrinsic heterogeneous nature of
metastatic melanoma, Halse and colleagues used multiplex
immunohistochemistry to provide a model which defines the
immune context into four categories, using the presence or
absence of PD-L1+ melanoma cells and/or macrophages, and
their location within or around the tumor, combined with the
presence or absence of intratumoral CD8+ T cells. This model
values the melanoma TME as a spectrum between tumor escape
and tumor (immune) control within the space of a tissue (30),
encouraging others to investigate the spatial distribution of both
immune and tumoral cells when interpreting the response to
immunotherapy. Confirming the latter, whereas no association
with response or survival could be observed in the expression of
individual biomarkers (PD-1, PD-L1, IDO-1, HLA-DR), a
spatially-resolved low-plex PD-1/PD-L1 interaction score and/
or IDO-1/HLA-DR co-expression was strongly associated with
an anti–PD-1 response, highlighting the importance of
quantitative spatial profiling for multiple features (33).
Furthermore, Gide and colleagues examined the spatial
distribution of immune and tumor cells using a 5-plex
immunofluorescence approach in samples of patients prior to a
treatment with either anti-PD-1 monotherapy or a combination
of anti-CTLA-4 and anti-PD-1. In a multivariate analysis, the
best predictor for a 12-month progression-free survival upon
anti-PD-1 monotherapy involved the quantification of the
proximity of PD-L1+ immune cells to tumor cells and the
density of intratumoral CD8+ T-cell, as such achieving an
AUC of 0.80. For the combination therapy, the authors
identified that a correlation with the proximity of CD8+ T-cells
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to tumor cells, the density of intratumoral PD-L1+ cells and LDH
expression (AUC = 0.85) to response to therapy (40). Similarly,
others have shown that pre-treatment samples obtained from
responders to anti-PD1 therapy showed that increased amounts
of CD8-, PD-1- and PD-L1+ cells resided at the invasive tumor
margins and within the tumor, with close proximity the ligands
PD-1 and PD-L1 (24). In addition, the use of multiplexed
immunofluorescence highlighted a potential predictive role for
Frontiers in Oncology | www.frontiersin.org 9
specific cancer-associated fibroblasts (39) and CD103+ tumor-
resident CD8+ T cells (29) in melanoma patients treated with
anti-PD-1 therapy. Also, the potential contributing role of
tumor-associated B-cells has been studied using multiplexed
immunofluorescence, showing an association between co-
occurrence of tumor associated CD8+ T cells and CD20+ B
cells with improved survival, while revealing the formation of
tertiary lymphoid structures (TLS) in these CD8+CD20+ tumors
FIGURE 2 | Searching for predictive biomarkers in malignant melanoma with spatial multiplexing techniques: advantages and challenges. Predictive evaluation of
malignant melanoma is needed for a more personalized treatment plan, but predictive biomarkers must still be identified. Conventional IHC is a single-plex based
method which does not provide information at single-cell level. On the other hand, multiplexed IHC and spatial -omics methods make it possible to extract
information from multiple markers at single-cell resolution and to investigate cell-cell interactions. However, despite the great advantages, those techniques have not
yet been validated in clinics and it is currently not possible to integrate the information from different -omics on the same section at single-cell level. Moreover, those
methods are strictly dependent on computational techniques for the downstream analysis, hence they carry all the challenges related to image analysis.
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(42) and their potential role in response to immunotherapy (43).
Overall, according to a recently published meta-analyses, the
extended information that could be extracted using multiplexed
IHC/IF appears to be associated with improved relative
diagnostic accuracy in predicting clinical response to anti-PD-1
therapy over the other previously mentioned biomarkers (PD-L1
conventional IHC, TMB, GEP) (73).

Strikingly, most of the research trying to map the melanoma
TME were done using “low-plex”methods (less than 10 markers
on the same section), and yet the majority of them added
interesting insights into the anti-melanoma immune response
and response to immunotherapy. The reason why even a low-
plex approach can be more insightful compared to other
molecular methods (e.g. NGS analysis) which often cover even
more parameters, could be related to the insights gained within
the spatial component. Indeed, the spatial dimension (i.e.
understanding the exact position of each cell type within a
tissue) could be considered as a biomarker itself. Available
analysis methods are now able to generate cell density metrics
for specific tissue regions, assess the distance between various cell
types, among many more. Such higher-order insights grant the
possibility to go beyond mere cytometric analysis of the tissue
(i.e. the overall cellular composition of a tissue) and investigate
“cellular sociology” in order to make assumptions about their
interactions in particular niches. Moreover, already in the early
days of single-cell genomics, it was clear that the success of the
different single-cell technologies would depend, in part, on
the extent to which researchers preserve the states of cells and
the original composition of a tissue (74). After all, most of the
initial single-cell methods required cells to be dissociated from
the tissue, thereby losing all spatial information while potentially
affecting the original cell states. To deal with this flaw, the most
recent single-cell methods aim at preserving the cells in their
original context and state.

Within the available spatial omics methods, we can
distinguish spatial proteomics, transcriptomics and genomics
(Figure 2). Most of the spatial proteomics techniques are
antibody based methods that achieve their plexability from
either multi-spectral imaging and/or iterative imaging of
successive antibody staining cycles combined with fluorophore
bleaching/inactivation/cleaving or antibody stripping (75–80).
Similarly, spatial transcriptomics enable the in-situ visualization
of RNA transcripts within the tissue either by measuring pre-
determined targets or even global expression data (81–86). A
detailed description and comparison of the different available
techniques for spatial -omics, goes beyond the scope of
this review.

Several of the abovementioned technologies have been
applied to melanoma in an attempt to improve prognostic and
predictive performance of potential biomarkers, or as a discovery
tool to unravel mechanistic insights in the TME. Accordingly,
our group previously used MILAN – an imaging/antibody-based
single-cell proteomics method - to functionally study tissue
architecture, thereby redefining the TIL infiltrate in primary
melanoma into a functional classification with an improved
prognostic value as compared to the dogmatic morphological
Frontiers in Oncology | www.frontiersin.org 10
classification (44) and described a higher level of interaction
between melanoma cells with active CD8+ and CD4+ T cells in
patients responding to anti-PD-1 as compared to the non-
responding patients (87). Others have used imaging mass
cytometry (IMC) with a 25-antibody panel to identify tumor
and immune cell markers in melanoma patients treated with
immune checkpoint blockers, revealing significant associations
of MHC-I, CSF1R, IRF1, LAG-3, PD-1, MHC-II and beta2-
microglobulin expression in tumor tissue with progression-free
survival, whereas high levels of TIM-3 and PD-L2 in the stroma
also predicted response to immunotherapy (52). Spatial
transcriptomics have been used to visualize the distribution of
mRNA within the melanoma TME, revealing among others the
complex transcriptional spatial landscape and genetic
heterogeneity in stage III cutaneous melanoma (32).

The Integration of Multi-Omics Within
the Tissue
Most of the methods for spatial omics are limited by their ability
to examine only one type of analyte (protein or nucleic acids).
One step closer toward a complete understanding of the TME of
melanoma and the drivers of response to immunotherapy will
require the integration of information retrieved from several
-omics approaches, each providing complementary information.
The integration of information from different omics technologies
and particularly those integrating information from the same
section at single-cell level while preserving the spatial context
represents the ultimate goal for next-generation pathology. In
spite of major progress in the development of methodologies that
simultaneously extract various features from the same cell, a
genuine, spatially integrated multi-omics approach, enabling the
simultaneous analysis of proteome, transcriptome, genome- and
epigenome within the spatial coordinates is still not available.
Therefore, while the development of such combinatory
technologies is ongoing, other approaches are being evaluated,
including the computational integration of spatially resolved
assays (which typically rely on a predefined, but limited set of
features), and an unbiased method, such as single-cell RNA-
sequencing (scRNAseq) which requires cells to be removed from
the tissue. Another simplified approach consists of performing
various spatially resolved omics analyses on serial sections, and
integrating the findings in a comprehensive framework. As
discussed earlier, the use of multiplex immunofluorescence
confirmed the importance of tumor-associated B cells and TLS
in metastatic melanoma (42, 43), a finding that was further
corroborated by spatial transcriptomics, indicating that T cells in
TLS-negative tumors had a dysfunctional molecular phenotype
(42) whereas TLS-positive tumors are associated with markers of
T cell activation and B cell proliferation (43). Alternatively,
combining multiple omics on serial sections can be integrated
at the tissue level by making use of vertical registration. For
example, digitally superimposing a melan-A classical IHC on 1
section and RNAscope probing for hTERT on the adjacent
section, allowed these researchers to show a higher expression
of hTERT mRNA in melanoma as compared to benign naevi
(41). Yet another approach is to laser-microdissect regions from
March 2021 | Volume 11 | Article 636681

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Van Herck et al. Next Generation Pathology in Melanoma
a tissue for gene-expression analysis, while being guided by
classical IHC staining on the adjacent section. Such approach
has been used to compare expression profiles of IHC-positive
and IHC-negative areas, thereby improving cell-type purity in
the different samples as compared to classical tissue-based
transcriptomic data (21). With the development of Spatially-
resolved Transcriptomics via Epitope Anchoring (SvEA) in
pivotal work done by Govek and colleagues, this has recently
been made possible (88). In this approach, the transcriptomic
data acquired via CITE-seq (89) can be mapped to spatially
resolved CODEX mIHC data (77), while retaining the single cell
spatial resolution by making use of measurements of the same
antigens in both methods (88). In spite of the obvious
translational potential of this novel approach, it has not yet
been applied within the melanoma field. More recently, the
GeoMx® DSP (Digital Spatial Profiling) platform has been
made commercially available (90). This platform allows protein
or RNA quantification within user-defined regions-of-interest
(ROI), with the possibility of single-cell resolution ROI selection
(The UV laser can be focused as narrow as 10 µm in diameter).
This ROI selection is achieved by combining regular, low-plex IF
staining together with dozens of primary antibodies or mRNA
hybridization probes each covalently attached to indexing
oligonucleotides that can be collected for quantification using a
UV-photo cleavable linker (91). Using this method, Dikshit and
colleagues recently transcriptionally profiled regions with high and
low Beta-catenin expression in melanoma, showing a significant
correlation with several immune-regulatory targets such as CTLA-
4 and PD-1 (49). Similarly, the method was used to show a specific
expression profile in fibrotic areas with high macrophage and T
cell infiltration in BAP-1 negative uveal melanoma, suggestive of
T-cell exhaustion other than PD-1/CTLA-4 engagement, as well as
mechanisms of immune exclusion, supporting the clinical
observation of immunotherapeutic failure in this subgroup and
the need for development of specific treatment approaches (48).
Two other studies have used DSP to characterize the tumor
expression profile of melanoma patients treated with immune
checkpoint blockade in a neoadjuvant setting, showing that
baseline immune infiltration was correlated with response to
treatment (92, 93). Although offered as an easy applicable
method, a detailed understanding of its composition, function
and chemistry is advisable to guide experimental design and data
interpretation (94).

Finally, AI will have a predominant role in the integration of
all the different data types. In the previous section we have
discussed how AI has already outperformed pathologists on
evaluating morphological features such as mitotic counts (58),
Breslow thickness (25) or at detecting lymph node metastases
(34, 35) - routine tasks that could significantly enhance the
throughput and efficiency of pathologists while ensuring
sufficient can be spent on complex cases. However, the
strongest ability of AI, and in particular deep learning, is to
identify unknown patterns or features that are too complex for
pathologists to merely assess by visual eyeballing but which could
be of important diagnostic, prognostic, or predictive relevance.
This is already true in the case of morphometric features (95).
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In the case of spatially-resolved, single-cell multi-omics data, the
feature space is still significantly larger and the number of hidden
associations that could be used as biomarkers is virtually endless.
For their translatability to clinical practice however, these
complex features require first to be re-engineered to simpler
biomarkers or simpler algorithms that identify the specific
discriminant features which might be more easily accepted by
clinicians (96).
DISCUSSION: NEXT-GENERATION
PATHOLOGY AND ITS CHALLENGES

Even though next-generation pathology is becoming gradually
more prominent and qualifies as a necessity in research, very few
of the previously discussed developments have yet been validated
for clinical use. With the increasing importance of understanding
the immune contexture and the possible development of panels
of prognostic/predictive biomarkers across multiple diseases, we
foresee that the implementation of next-generation pathology in
clinical practice will be mandatory. However, there are still a lot
of hurdles and challenges that need to be overcome before
multiplexed IHC and digital pathology will be implementable
in clinical practice.

The main difficulty of implementing multiplexed IHC is to
overcome the common thinking that it is based on the repetition
of multiple conventional IHC assays. Indeed, multiplexed IHC is
a complex process and there are various challenges that need to
be considered. The first challenge is about choosing the most
appropriate method. This choice should consider several factors.
First of all, the type of samples to be analyzed: some methods
require FFPE materials while others can be performed on frozen
samples. In a standard clinical pathology lab, FFPE remains the
method of choice to preserve tissue specimen, even though
multiple methods (mainly multi-omics) require the availability
of frozen materials. The second choice will be to related to the
actual staining procedure: this can be achieved either by (i) a
cyclic method, in which slides are stained multiple times with
low-plex antibody cocktails while between every cycle the signal
is removed via antibody stripping or bleaching of the
fluorophore; or (ii) an all-at-once acquisition, where a cocktail
containing all the antibodies of choice are applied on the tissue
section in a single step. In the first case the acquisition will be
slower, while in the second case the increased speed of
acquisition will increase technology costs. For instance, several
methods require modified/engineered/conjugated antibodies
(e.g. with nucleotide barcodes or metal ions) that are more
expensive than conventional clones typically used in routine
across clinical pathology labs. On top of this, the instruments
that are used to detect the signals are often a factor 2-3 more
expensive than conventional autostainers typically used for
classical IHC. These machines are generally closed systems that
have the advantage to be completely automated, requiring less
work by the lab technician being therefore less prone to errors.
Nevertheless, these methods may be limited to the acquisition of
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regions of interest rather than whole slides; depending on the
number of antibodies to be detected the acquisition time could
require even hours per square mm. A final parameter to consider
on the wet-lab part is the number of samples that should be
analyzed simultaneously: while some methods allow the analysis
of a single slide at the time, others are compatible with
batch processing.

The second big challenge of implementing multiplexed IHC
in hospital routine relates to data analysis. At the moment, most
of the wet-lab methods are not paired with a system to analyze
the data. Importantly, multiplexed IHC can no longer be
evaluated through mere visual inspection (as opposed to
conventional IHC where it is common practice), but requires
specific methods for quantitative, spatially resolved analysis.
Therefore, until ad hoc software packages will be introduced
for specific predictive/prognostic analyses, experts in image
analysis and bioinformaticians will remain required for the
downstream analysis. In addition, a simple panel of 10 markers
will generate 100 digital images when analyzing 10 samples, an
amount that will steadily increase when increasing numbers of
markers and samples are processed. This is where the hurdles to
implement multiplex IHC converge with those of implementing
digital pathology.

As described above, digital pathology bears the potential to
revolutionize dermatology and dermatopathology. To achieve its
implementation, though, multiple challenges have to be
overcome, and typically involve hurdles that are cultural,
involve validation, available infrastructure and GDPR-related
issues. From a cultural point of view, in spite of the advantages
listed in the first chapter of this review, pathologists still show
some reservations about the use of digital slides for diagnosis,
mainly regarding the time needed to evaluate whole digital slides
during routine work, with a preference to reserve the digital
format for teaching, second opinions and dissemination
purposes (31). Second, appropriate validation remains an
absolute requirement for any new technique that get
implemented for diagnostic purposes. Such validation does not
solely happen at the level of a company trying to sell a diagnostic
tool, but can also happen directly at a local level, for instance in a
pathology department that is willing to introduce a new
technique in its workflow. Validation itself will mainly require
side-by-side comparisons of manually and digitally interpreted
tissue slides (97). Validation is also required for deep learning
algorithms, which have the danger to be based on overfitted or
miscorrelating data from training sets. In particular, on one side
algorithms have to be strictly disease-specific and exclude any
other disease that may be encountered during analysis (e.g.,
algorithms developed for the analysis of melanoma should
recognize and revoke the analysis of any other skin tumor). On
the other side, since they are extremely dependent on their
training, it is important to be aware that if important
differences are introduced in time that may artificially change
the features of the prospectively collected diagnostic data set,
high rates of misclassification can be registered (98). Next to
these first two challenges, there are also important infrastructural
challenges to be considered that can hamper the implementation
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of digitization in a clinical institution. A standard microscopy
slide, such as the ones routinely used in pathology are typically
75 mm long, 26 mm wide, and approximately 1 mm thick. As the
resolution and color depth of digital detectors improve, the size
of images that capture these slides keeps on increasing. For a
state-of-the-art acquisition instrument with a resolution of 0.44
micrometers/px (20X) and color depth of 16 bit (~65K gray
levels), and assuming a 2-dimensional slide with standard
dimensions, single images achieve a size of ~20 Gigabytes
(Gb). Of course, depending on the size of the scanned area and
the type of image compression, whole slide images can range
between 0.5 and 4 Gb (96). This is translated to hundreds of
Terabytes per year (or even Petabytes when considering a large
hospital) that need to be properly acquired, stored, transferred,
and processed. Designing and implementing a proper
infrastructure for digital pathology that deals with all these
tasks is not trivial and key for a successful digital transition.
Regarding image acquisition, this is an easily solvable problem,
since in the 20 years since the introduction of whole-slide
imaging scanners, several of them have been marketed for
clinical use in the European Union and in the US (99, 100).
Image storage and transfer are instead critical steps and they may
require important investments on the side of the institution.
There exist different types of solutions for image storage, ranging
from local ones such as Direct Attached Storage (DAS), network-
based solutions such as Network Attached Storage (NAS), cloud-
based solutions (such as Amazon’s S3 Glacier storage for
example) or external services (regional supercomputer centers).
The last two examples require sending data to third parties which
could have GDPR issues (see below). In most cases, several of
these solutions need to be simultaneously implemented to archive
the data depending on different factors, including access
frequency (hot/interactive versus cold/archival storage) or
intended use (101). For image transfer, solutions where data is
remotely stored or/and the images are remotely analyzed, the
speed in which data is transferred (network bandwidth) becomes
a critical factor. If we consider a 10 Gb image and a standard Local
Area Network (LAN) with a bandwidth of 100Mbit/s, it will take
~15 minutes to transfer the file. Therefore it is crucial to
guarantee an environment with sufficient bandwidth prior to
taking the step to digital pathology. Finally, most of the digital
image analysis algorithms currently used in clinical practice are
limited to traditional image analysis and can be used on ordinary
computers with Central Processing Units (CPUs) (96). Deep
learning algorithms, on the other hand, are heavily dependent
on processing acceleration units such as Graphical Processing
Units (GPUs) (102). High-end GPUs are very expensive and
therefore centers implementing deep learning in digital pathology
might choose for a dedicated workstation/server or even to train/
run their algorithms in the cloud or in external supercomputer
centers. Lately, the development of Tensor Processing Units
(TPUs) are allowing the training of deep neural networks
(DNN) 15-30 times faster and 30-80 times more energy
efficient than contemporary CPUs or GPUs (103). Additional
infrastructural challenges to be considered for implementing deep
learning in digital pathology include: the number of users of the
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dedicated computers, the flexibility of the system to implement
new algorithms or variable case-loads, implementation/running
cost of the facility, cyber-security, data maintenance, etc. (96). A
practical example of the implementation process of a fully digital
workflow at the University Medical Centre in Utrecht can be
found in Stathonikos et al. (104).

The last challenge for digital pathology is correlated with the
fact that digital images, as well as patient materials, are subject to
the regulation on data protection and privacy in the European
Union and the European Economic Area on the protection of
natural persons with regard to the processing of personal data
and on the free movement of such data (General Data Protection
Regulation, GDPR) (105). With respect to digital pathology, it
contains several basic principles that digital slides containing
human samples must comply with. These include: Purpose
specification, the valid legal basis for the collection of the data
including the goal for which the data is being collected (106);
anonymization or pseudo-anonymization, data is only
anonymous when it is impossible to track it to natural persons
while pseudo-anonymous data requires extra information to
map it to natural persons (107, 108); Data minimization, the
collected data should be limited to what is strictly necessary for
the scope of the project (107) transparency, the registration of the
study and the provision of the relevant information to the subject
of the study; storage limitation, the collected data should only be
kept as long as needed; and security, the stored data should be
processed and stored in such way that it avoids or limits the
potential for unlawful processing, accidental loss, destruction or
damage (107). This includes technical measures such as badge
and password-mediated access control, detailed logs monitoring
every ongoing process on the system, data encryption, etc. If the
data is stored on the cloud or in external sources, a legal contract
needs to be written between the collector and the third party
which needs to be checked by legal entities (109, 110).

To conclude, the highly requested demand for a better
understanding of the TME in melanoma and its use to further
improve the clinical response rates to immunotherapy, the fast-
Frontiers in Oncology | www.frontiersin.org 13
moving technological advancements in machine learning and the
rise of spatial omics, have pushed dermatopathology into the
digital era. Although the use of digital pathology has already
proven to be insightful in melanoma, its exploitation to the full
potential by combining spatially resolved single-cell data with
artificial intelligence for clinical purposes, is still a rather future
perspective. However, such an approach possesses the capability
to overcome existing limitations and bring us one step closer to
personalized medicine. Nonetheless, despite the many
advantages, a lot of the imaging-based methods go along with
substantial challenges that need to be addressed before its
implementation in daily practice will be possible.
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