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Deutsch E, Oppenheim C, Varlet P,

Pallud J, Edjlali M and Robert C (2021)
Development of a Machine Learning

Classifier Based on Radiomic Features
Extracted From Post-Contrast 3D

T1-Weighted MR Images to
Distinguish Glioblastoma From

Solitary Brain Metastasis.
Front. Oncol. 11:638262.

doi: 10.3389/fonc.2021.638262

ORIGINAL RESEARCH
published: 13 July 2021

doi: 10.3389/fonc.2021.638262
Development of a Machine Learning
Classifier Based on Radiomic
Features Extracted From Post-
Contrast 3D T1-Weighted MR Images
to Distinguish Glioblastoma From
Solitary Brain Metastasis
Alix de Causans1,2,3†, Alexandre Carré4,5†, Alexandre Roux2,3,6,
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Objectives: To differentiate Glioblastomas (GBM) and Brain Metastases (BM) using a
radiomic features-based Machine Learning (ML) classifier trained from post-contrast
three-dimensional T1-weighted (post-contrast 3DT1) MR imaging, and compare its
performance in medical diagnosis versus human experts, on a testing cohort.

Methods: We enrolled 143 patients (71 GBM and 72 BM) in a retrospective bicentric
study from January 2010 to May 2019 to train the classifier. Post-contrast 3DT1 MR
images were performed on a 3-Tesla MR unit and 100 radiomic features were extracted.
Selection and optimization of the Machine Learning (ML) classifier was performed using a
nested cross-validation. Sensitivity, specificity, balanced accuracy, and area under the
receiver operating characteristic curve (AUC) were calculated as performance metrics.
The model final performance was cross-validated, then evaluated on a test set of 37
patients, and compared to human blind reading using a McNemar’s test.

Results: The ML classifier had a mean [95% confidence interval] sensitivity of 85% [77;
94], a specificity of 87% [78; 97], a balanced accuracy of 86% [80; 92], and an AUC of
92% [87; 97] with cross-validation. Sensitivity, specificity, balanced accuracy and AUC
were equal to 75, 86, 80 and 85% on the test set. Sphericity 3D radiomic index highlighted
the highest coefficient in the logistic regression model. There were no statistical significant
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differences observed between the performance of the classifier and the experts’ blinded
examination.

Conclusions: The proposed diagnostic support system based on radiomic features
extracted from post-contrast 3DT1 MR images helps in differentiating solitary BM from
GBM with high diagnosis performance and generalizability.
Keywords: radiomics, machine learning, glioblastoma, brain metastasis, diagnostic decision support system
INTRODUCTION

Brain Metastases (BM) and Glioblastomas (GBM) are the two
most frequent intra-cranial brain tumors in adults (1–3).
Currently, Magnetic Resonance Imaging (MRI) is the modality
of choice for brain tumor characterization. Usually, BM present
an encapsulated contrast enhancement, with regular and well-
defined boundaries, whereas GBM have heterogeneous contrast
enhancement with very irregular and fuzzy boundaries (4–6).
Nonetheless, their morphological characteristics remain very
similar on MRI as both are lesions with annular contrast
enhancement, having a necrotic center and a peritumoral zone
in T2-weighted and Fluid-Attenuated Inversion Recovery
(FLAIR) sequences. Advanced neuroimaging techniques such
as perfusion MRI and Magnetic Resonance Spectroscopy (MRS)
provide additional information to distinguish between the two
tumor types, based on differences in the peritumoral area (7–10).
Although in the past decades, various studies (11–13) have
evaluated the diagnostic performance of perfusion imaging and
MRS, they have shown heterogeneous results in distinguishing
these two tumor types, resulting in sensitivities and specificities
ranging from 64 to 100% and 60 to 100% respectively. This
high heterogeneity reflects the difficulty experienced in daily
practice to differentiate the two brain tumors, even using
advanced neuroimaging techniques, particularly in the case of
differentiating a GBM from a solitary BM revealing an unknown
primary cancer [5 to 12% of BM (14, 15)]. Even though the final
diagnostic will be given by a histopathological examination and a
biomolecular analysis of the tumor tissue relying on the 2016WHO
classification (16), the presurgical distinction between these two
types of tumors is crucial for adapting treatment strategies: for
metastases less than 3–4 cm, a bloc resection or stereotactic
radiosurgery will be planned depending on the lesion location
(17), while GBM (18) should be treated with maximal safe
resection, and concurrent chemoradiotherapy. Radiomics (19–22)
is a recent area of research based on the simple observation that the
human eyes have limitations, even those trained for medical image
interpretation. Radiomics consists of extracting large numbers of
predefined quantitative features from medical images with the
ultimate goal of identifying subgroups of biomarkers able to guide
patient’s care and has shown promise in brain cancer detection,
diagnosis, molecular mutation characterization, prognosis and
outcome prediction (23–29). In our study, we hypothesized that
themorphological differences observed on post-contrast 3DT1MR
images would lead to differences in radiomic features between the
two tumor types. The aim of this study was to therefore develop a
2

radiomic features-based Machine Learning (ML) classifier, to
evaluate its diagnostic performance on an unseen test set of
patients, and to compare it to the diagnosis performance of
neuroradiologists. A strong emphasis was placed on favoring
explainable classifiers to ease translation into clinic.
MATERIALS AND METHODS

The steps of our study are summarized in Figure 1.

Patients
This retrospective bicentric study was approved by the local
institutional review board (n° IRB00011687 College de
neurochirurgie IRB #1: 2020/29). The two Radiology
Departments that participated in the study had the same 3 Tesla
MRI scanners (MR 750, Discovery; General Electric Healthcare),
with the same imaging parameters implemented. Medical records
of patients who had histologically proven BM or GBM between
January 2010 and May 2019 were screened in the two centers to
constitute the training set. Inclusion criteria for the training set
were: 1) patients more than 18 years of age, 2) with histologically-
confirmed diagnosis of BMorGBM, and 3) andwith pre-operative
MRI. Exclusion criteria for the training set were: 1) lesions less than
2 cm, 2) extra-axial locations, 3)history of treatment before theMRI
examination, 4) absence of 3D T1-weighted Fast SPoiled Gradient
Recalled sequence, 5) image acquisition performed on a different
machine to the 3 Tesla GE Discovery MR scanner, and 6) 3D T1-
weighted sequence acquired with non-conventional parameters or
inadequate quality (see sectionMRIdata). Theminimal size of 2 cm
was chosenasGBMareusually >2cmat the diagnosis.We therefore
wanted to exclude small BMfromthe analysis, to avoid a bias of size.
For BM, we included patients with one or more brain lesions.
However in casesofmultiple lesions, only the largestwas segmented
for radiomic feature extraction.

Secondly, a test set was constituted after completion of the
model development process in order to evaluate the final
performance of the radiomic classifier on unseen lesions. As
well, the test set included patients from both centers. Inclusion
criteria for the test set were the same as for the training set. All
patients included in the test set were required to have solitary
lesions so that neuroradiologists were not influenced in their
final diagnosis. Exclusion criteria of the study were therefore the
same as those of the training set plus patients having multifocal
or infra-tentorial lesions. All inclusion and exclusion criteria are
summarized in the flow chart (Figure 2).
July 2021 | Volume 11 | Article 638262
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MRI Data
MR acquisitions were performed on the same 3 Tesla MR
scanner, even if at two clinical sites. MRI data included at least
a post-contrast (gadoterate meglumine [Dotarem; Guerbet
Frontiers in Oncology | www.frontiersin.org 3
Laboratory]) three-dimensional T1-weighed Fast SPoiled
Gradient Recalled (FSPGR) acquisition (post-contrast 3DT1),
with the following parameters: repetition time: 10.2 ms; echo
time: 3.4 ms; field of view: 22 cm; voxel size: 0.8 mm × 0.8 mm ×
FIGURE 2 | Flow chart of patient inclusion.
FIGURE 1 | Different steps of the study.
July 2021 | Volume 11 | Article 638262
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1.2 mm. Patients were excluded from this study if other imaging
protocols were followed. Post-contrast 3DT1 MR images were
only used as inputs of the radiomic classifier. To compare the
performance between the classifier and neuroradiologists,
clinical conditions were mimicked, and all available sequences
of the imaging exam were thus analyzed by the neuroradiologists,
as routinely conducted in a clinical setting.

Image Analysis
Pre-Processing
MR image preprocessing included bias field correction using the
N4ITK algorithm (30) from the Advanced Normalization Tools
(ANTs) library (31), skull-stripping with the Brain Extraction
Tool (BET) of the FSL software (FMRIB’s Software Library) (32)
and Z-score normalization with a scaling factor of 100. No spatial
resampling was performed due to data homogeneity. As well, no
noise filtering was applied.

Tumor Segmentation
A segmentation of the volume of interest, including the contrast-
enhanced and necrotic regions, was performed semi-
automatically using Olea Sphere© (Olea Medical, La Ciotat,
France). These two sub-regions corresponded to Labels 4 and 1
of the BraTS 2012–2016 challenge (33). Within a region of
interest defined by a trained radiologist (AdC, 5 years of
experience), threshold-based gray level contouring and manual
correction were used for the segmentation so that the volume of
interest was carefully drawn along the tumor enhancement.

Feature Extraction
One hundred radiomic features were extracted from the 3D MR
images using the Python library PyRadiomics 2.1.2 (34) in which
the feature definitions are consistent with the Image Biomarker
Standardization Initiative (IBSI) (35). The only exception is that
PyRadiomics and IBSI use different definitions of the Kurtosis first-
order feature, where Kurtosis is calculated using −3 and +3 in the
IBSI and PyRadiomics referentials respectively. For first order
features, an intensity shifting of 300 (equal to three standard
deviations) was applied to ensure that the majority of the voxel
intensities were positive before feature extraction. An absolute
discretization with a fixed bin size equal to 37 was chosen (36,
37). This leads to a bin number of 32 considering the mean of the
intensity intervals computed for all volumes of interest of patients of
the training set (min intensity: 575, max intensity: 2069, mean
intensity range: 1190). Six feature classes were considered: 18 first-
order statistics, 14 shape-based features, 22 Gray Level Co-
occurrence Matrix features (GLCM), 16 Gray Level Run Length
Matrix features (GLRLM), 16 Gray Level Size Zone Matrix features
(GLSZM), and 14 Gray Level DependenceMatrix features (GLDM).

Model Building
The establishment of the classification model was based on the
scikit-learn library version 0.23.2 (38) and included two steps
applied to the training set: (1) selection of the ML classifier and
feature scaling method and 2) optimization of the hyper-
parameters. In step 1), a nested cross-validation was used given
the moderately-sized dataset and 144 ML models combining
Frontiers in Oncology | www.frontiersin.org 4
nine feature scaling methods (No Scaler, MaxAbsScaler,
MinMaxScaler, Normalizer, PowerTransformer-Yeo–Johnson,
QuantileTransformer-normal, QuantileTransformer-uniform,
RobustScaler, StandardScaler) and 16 classifiers (AdaBoostClassifier,
BaggingClassifier, BernoulliNB, DecisionTreeClassifier, Extra
TreeClassifier, ExtraTreesClassifier, GaussianNB, Gradient
BoostingClassifier, KNeighborsClassifier, LinearSVC, Logistic
Regression, MLPClassifier, QuadraticDiscriminantAnalysis,
RandomForestClassifier, RidgeClassifier, SGDClassifier) were
compared. The nested cross-validation considered a stratified
5-fold cross-validation in the inner loop for hyper-parameter
tuning (grid search strategy) and a stratified 5-fold cross-
validation in the outer loop for the evaluation of the
performance of the model. In step 2), the model showing the
lowest generalization error, as assessed by the balanced accuracy,
was kept and a ten-repeated 5-fold cross-validation was
performed. In this second step, a grid search method was
implemented to optimize the final set of hyper-parameters.
Mean sensitivity, specificity, balanced accuracy, and area under
the receiver operating characteristic curve (AUC) and their
associated variances and 95% confidence intervals were
calculated as performance metrics. Research spaces for hyper-
parameter tuning with grid search during nested cross-validation
and cross-validation are described in Table S1.

Evaluation on the Test Set and
Comparison to Human Performance
The final model was fitted using the entire training set and its
performance evaluated on the test set including 37 patients (21
GBM and 16 BM). Images of the test set were then blindly
analyzed by five neuroradiologists (R1, R2, R3, R4, and R5). Two
were neuroradiologists with more than 10 years of experience
and three were radiology residents with about 6 months of
training and practice in neuroradiology. The neuroradiologists
had access to all MR sequences acquired in a routine MR imaging
protocol, including 3D FLAIR, 2D T2, perfusion imaging, and
pre- and post-contrast 3DT1 sequences.

Statistics
Sensitivity, specificity, balanced accuracy and AUC were used to
assess the diagnosis performance of the radiomic model. We
applied a McNemar’s test and evaluated its p-value to assess if
the differences were significant between the diagnostic
performance of the radiomic classifier and the diagnostic
performance of the readers. The threshold was set at 0.05.
RESULTS

Patients
267 GBM and 271 BM were pre-selected for the training set, and
71 GBM and 72 BM met the inclusion criteria respectively
(Figure 2). Median [minimum value–maximum value] 2D
maximal diameter was equal to 53.39 mm [24.11–88.12 mm]
for GBM and 41.40 mm [20.77–77.92 mm] for BM. The test set
included 37 patients (21 GBM and 16 BM). In this set, the
July 2021 | Volume 11 | Article 638262
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median 2D maximal diameter was equal to 54.93 mm [32.61–
102.53 mm] and 33.85 mm [22.41–63.63 mm] for GBM and BM
respectively. Patient characteristics and their repartition between
Centers 1 and 2 are summarized in Table 1.

Selected Machine Learning Classifier
Table S2 summarizes the mean balanced accuracies and their
associated standard deviations obtained for all tested
combinations (scaling method + classifier). Combinations are
ranked considering the lowest generalization error. The ML
classifier providing the better performance using the nested
cross-validation was the logistic regression combined to the
power transform Yeo–Johnson scaling feature method which
corresponds to a zero-mean, unit-variance normalization with a
power transform applied feature wise to make distribution of
each radiomic feature Gaussian-like. To limit overfitting, the
classifier encompassed a ridge regression for regularization (l2
penalty assignment) with a C value equal to 0.7. The final logistic
regression-based established signature was a combination of the
100 input radiomics features, in which the feature with the
highest coefficient in the decision function was sphericity, with
a coefficient of 1.48. All other features had absolute coefficient
less than 0.96. The 20 predominant features had absolute
coefficients superior to 0.38. Among these features, five were
shape features, two were first-order metrics, and 13 were based
on texture matrices, with 6 extracted from the GLCM
matrix (Figure 3).

Diagnosis Performance of the Classifier
With a Ten-Repeated 5-Fold
Cross-Validation
The model differentiated BM from GBM on the validation sets
with a mean sensitivity of 85% [95% CI = (77%; 94%)], a
specificity of 87% [95% CI = (78%; 97%)], a balanced accuracy
of 86% [95% CI = (80%; 92%)], and an AUC of 92% [95% CI =
(87%; 97%)] (Figure 4).
Frontiers in Oncology | www.frontiersin.org 5
Diagnosis Performance of the Radiomic
Classifier on the Test Set
The classifier correctly identified 12/16 BM and 18/21 GBM.
Corresponding sensitivity, specificity, balanced accuracy and
AUC were respectively equal to 75, 86, 80, and 85% (Figures 4
and 5).

Performance of the Radiologists
The performances of the neuroradiologists are described in
Table 2. Even though differences in diagnostic performance
were not statistically significant, we can highlight the fact that
two radiology residents (R3 and R4) had lower scores than the
classifier (respective balanced accuracies of 72 and 72%) whereas
the two neuroradiologists with 10 years of experience (R1 and
R2) and one radiology resident (R5) had better scores than the
classifier (respective balanced accuracies of 87, 94 and 88% versus
balanced accuracy of 80% for the classifier).
DISCUSSION

We have developed a radiomic classifier to differentiate solitary
BM and GBM based on post-contrast 3DT1 MR images with
high diagnostic performances on the validation and test sets.
There was no statistically significant difference between classifier
predictions and human reading by five trained neuroradiologists
(two neuroradiologists with 10 years of experience, and three
radiology residents with about 6 months of training exclusively
in neuroradiology in an expert center).

The radiomic classifier, a logistic regression combined to the
power transform Yeo–Johnson scaling feature method, was
chosen because of its high performance, simplicity, and
because it allowed an interpretation of the underlying model.
Indeed, the fact that the radiomic feature with the most
important coefficient value in the classifier was a shape feature,
i.e. sphericity, partly allows an explainability of our radiomic
TABLE 1 | Demographics and clinical characteristics at diagnosis of the patients included in the training set and in the test set.

Patients characteristics Training set Test set

BM (n = 72) GBM (n = 71) BM (n = 16) GBM (n = 21)

Mean patient age—years 59.29 58.25 59.00 58.19
(standard deviation) (13.29) (14.59) (10.9) (14.5)

Proportion of female gender (%) 53 38 50 52
Proportion of male gender (%) 47 62 50 48
Largest diameter in mm 41.40 53.39 33.85 54.93
median [range] [20.77–77.92] [24.11–88.12] [22.41–63.63] [32.61–102.53]

Patients from Center 1 56 (77.8%) 69 (97.2%) 5 (31.2%) 18 (85.7%)
Patients from Center 2 16 (22.2%) 2 (2.8%) 5 (31.2%) 3 (14.3%)
Primary lung cancer n (%) 29 (40.3) – 8 (50) –

Primary breast cancer n (%) 13 (18.0) – 3 (18) –

Melanoma n (%) 9 (12.5) – 2 (12.5) –

Primary colo-rectal cancer n (%) 5 (6.9) – 0 (0) –

Primary Clair cell carcinoma n (%) 4 (5.6) – 1 (6.3) –

Other primary cancer * n (%) 12 (16.7) – 2 (12.5) –
July 2021 | Volume 11 |
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features-based classifier in contrast with the concept of the “black
box” in some ML models, where even its designers cannot
explain why the artificial intelligence reaches a decision (39). It
introduces the notion of analyzing a tumor with its
representation in 3D to differentiate solitary BM and GBM,
which is usually not available during conventional reading of
sectional imaging. Indeed, sphericity is a 3D shape feature
Frontiers in Oncology | www.frontiersin.org 6
representing a measure of roundness of the tumor, with a
value ranging from 0 to 1, where 1 indicates a perfect sphere. The
classifier showed that GBM have lower sphericity than BM
(Figure 6), which was expected given the morphological
characteristics of BM and GBM on histopathological slides. The
more spherical the lesion is, themore likely it is tobeaBM.Thus, the
radiomic features-based classifier is consistent with current
A B

FIGURE 4 | Areas under the receiver operating characteristics curve of the radiomic classifier after ten-repeated 5-fold cross-validation (A) and on the test set (B).
FIGURE 3 | Coefficient of each radiomic feature in the decision function for the proposed logistic regression model.
July 2021 | Volume 11 | Article 638262
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A B

FIGURE 5 | Confusion Matrix of the radiomic model on the test set (A) and distribution of probabilities as predicted by the logistic regression model compared to
ground truth (B).
FIGURE 6 | Examples of 3D representation of a brain metastasis (A) for which the sphericity was equal to 0.76 and a glioblastoma (B) for which the sphericity was
equal to 0.45. GBM, Glioblastoma; BM, Brain Metastasis.
TABLE 2 | Sensitivities, specificities, balanced accuracies, positive predictive values, negative predictive values of the radiomic classifier and of the neuroradiologists
(R1, R2, R3, R4, R5) on the test set.

Reader Se* Sp* Balanced Accuracy PPV* PNV* Se p-value* Sp p-value*

Radiomic classifier 0.75 0.86 0.8 0.8 0.82 – –

R1 0.88 0.86 0.87 0.82 0.9 0.41 1
R2 0.94 0.95 0.94 0.94 0.95 0.08 0.16
R3 0.69 0.76 0.72 0.76 0.69 0.65 0.41
R4 0.63 0.81 0.72 0.71 0.74 0.48 0.65
R5 0.81 0.95 0.88 0.93 0.87 0.65 0.16
Frontiers in Oncology | www.
frontiersin.org
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*Se, Sensitivity; Sp, Specificity; PPV, Positive Predictive Value; PNV, Positive Negative Value; Se p-value, p-value (calculated with McNemar’s test) of the difference between the sensibility
of the radiomic classifier and the sensibility of the reader; Sp p-value, p-value (calculated with McNemar’s test) of the difference between the specificity of the radiomic classifier and the
specificity of the reader.
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morphological characteristics between BM and GBM, also adding
further information regarding tumor heterogeneity imperceptible
to the human eye, as the radiomic classifier is also based on other
texture and intensity features. This result is in linewith a pioneering
paper (40) that described in 2012 2D circularity as one of the best
morphological features to differentiate BM fromGBM on the basis
of a cohort of 50 patients.

In our study, we trained the ML classifier using a nested cross-
validation and a ten-repeated 5-fold cross-validation on the
training set in order to minimize overfitting. In addition to
limit the extraction to 100 features (shape, first order and second
order features) that we thought to be the most meaningful and
interpretable, we selected a classifier model which could embed
feature selection. For this model, L1 and L2 regularization
methods were tested as hyperparameters. The L2 method
provided the best performance in the cross-validation (CV)
process, validating the usefulness of the 100 features. The
selected classifier was then applied on a test set of data, which
demonstrates that the high performances obtained were not
random but generalizable. In the test set, 12/16 BM were
correctly classified leading to a sensitivity of 75%. Among the
four BM incorrectly classified, two had leptomeningeal
enhancement, one had ventriculitis adjacent to the lesion and
the fourth one had a multilocular lesion (Figure 7). The first
Frontiers in Oncology | www.frontiersin.org 8
three elements were absent from BM of the training set, which
might have misled the classifier, suggesting the need for a larger
training set which extensively reproduces all clinical situations
encountered in clinic.

The results of our study are consistent with the results of
three previous studies which also used radiomic features-based
classifiers on post-contrast 3D T1 MR images to differentiate
BM from GBM. Among these studies, Chen et al. (41)
achieved diagnostic performance slightly lower than our on
134 patients, however without applying image pre-processing
(42–44) nor evaluation on a test set. Artzi et al. (45) built
a radiomics-based classifier on 358 patients and evaluated its
performance on a test set of 88 patients. Excellent performances
were achieved on the test set. However, the radiomic analysis
was carried out on three central slices only to simplify the
segmentation process, which did not allow 3D shape features
such as sphericity, to be taken into account. Moreover, there was
no comparison to human performance. In 2019, Qian et al. (46)
used a cohort of 227 patients to train a ML classifier using cross-
validation and evaluated it on an independent test set of 185
patients. Despite high diagnostic performances, there were
biases in the study considering several radiomic features-
based classifiers were evaluated on the test set. Finally, in 2020,
Bae et al. (47) developed a Deep Neural Network (DNN)
classifier based on post-contrast 3D T1-weighted and T2-
weighted MR images, which outperformed the best-performing
traditional machine learning model. Results showed excellent
performance on an independent test set (AUC of 0.956 on
the test set) and outperformed scores of two trained neuro
radiologists. However, comparing the literature is not a trivial
task due to the use of different data sets, each with varying
degrees of complexity, suggesting the need for publicly available
data sets.

Our study had a few limitations. First, we chose to build the
radiomic features-based classifier on imaging data acquired on
the same model of MR scanner with acquisitions performed with
the same parameters in order to minimize inter-acquisition
variability. This choice limited the number of patients included
in the study. Several methods are available today to compensate
for differences in image quality between scanners (36, 48), which
should allow the applicability of our signature in other centers. In
addition, no spatial resampling was applied to the MR images
prior to feature extraction. Although this step is mandatory to
obtain rotationally invariant features, no bias was introduced in
the machine learning pipeline, as the entire cohort had exactly
the same imaging parameters. The developed signature can
finally be generalized to new patients with MR images of
different voxel sizes by integrating an additional resampling
step [resampling at a voxel size of (0.8 mm × 0.8 mm ×
1.2 mm)]. Third, a semi-automatic method was used for tumor
delineation and a single radiologist specialized in neurology
performed the contouring of the lesions. Perturbation of the
contours would have been an alternative to multiple
segmentations to evaluate the robustness of the model
developed to segmentation (49). However, the semi-automatic
contouring process has been shown to be reliable between raters
FIGURE 7 | Four incorrectly classified BM of the test set. Two of them presented
tumoral leptomeningitis (arrows, A, B), one a metastatic ventriculitis (C) and the
forth one a multilocular lesion (D). Leptomeningitis and ventriculitis may have
interfered with spatial delineation of tumor boundaries.
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for brain tumors (50). An integrated diagnostic support system
should include an automatic segmentation of the volumes of
interest to be considered for radiomics analysis. The automation
of this step is now possible with high performance as
demonstrated by the recent results of the BRATS challenge
(51). Then, the radiomic only features-based classifier takes
into account imaging data. The addition of the patient’s age,
gender, and medical history elements would lead to holistic
models enabling to analyze the correlations between radiomic/
non-radiomic features, and to better assess the added value of
such a signature compared to more readily available clinical
features (49). As well, only post-contrast 3DT1 MR images were
considered. A more complex classifier combining data from
other sequences such as FLAIR, T2 (47) or perfusion MR
sequences may improve classification performance. Finally, a
larger cohort of lesions studied would enable its generalizability.

In conclusion, we developed a radiomic features-based
classifier based on post-contrast 3DT1 MR images that helps
in differentiating GBM and solitary metastatic brain tumors with
high diagnosis performance. The performance of the radiomic
classifier equals that of neuroradiologists however needs to be
improved in further studies including feature extraction applied
on FLAIR and perfusion sequences. An interesting point is that
the radiomic feature with the highest coefficient value in the
classifier, namely sphericity, allows an explainability of the
developed model. Future studies using this model on larger
sets of patients may clarify its role and its benefit in
differentiating these two lesions, particularly by a prospective
study registered in a trial database.
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36. Carré A, Klausner G, Edjlali M, Lerousseau M, Briend-Diop J, Sun R, et al.
Standardization of Brain MR Images Across Machines and Protocols:
Bridging the Gap for MRI-Based Radiomics. Sci Rep (2020) 10:12340.
doi: 10.1038/s41598-020-69298-z

37. Duron L, Balvay D, Vande Perre S, Bouchouicha A, Savatovsky J, Sadik JC,
et al. Gray-Level Discretization Impacts Reproducible MRI Radiomics
Texture Features. PloS One (2019) 14:e0213459. doi: 10.1371/journal.
pone.0213459

38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-Learn: Machine Learning in Python. arXiv:1201.0490 [cs] (2018).

39. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and
Explainability of Artificial Intelligence in Medicine. WIREs Data Min Knowl
Discovery (2019) 9:e1312. doi: 10.1002/widm.1312

40. Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N. Multiparametric
Magnetic Resonance Imaging to Differentiate High-Grade Gliomas and
Brain Metastases. J Neuroradiol (2012) 39:301–7. doi: 10.1016/j.neurad.
2011.11.002

41. Chen C, Ou X, Wang J, Guo W, Ma X. Radiomics-Based Machine Learning in
Differentiation Between Glioblastoma and Metastatic Brain Tumors. Front
Oncol (2019) 9:806. doi: 10.3389/fonc.2019.00806

42. Kuo MD, Jamshidi N. Behind the Numbers: Decoding Molecular Phenotypes
With Radiogenomics–Guiding Principles and Technical Considerations.
Radiology (2014) 270:320–5. doi: 10.1148/radiol.13132195

43. Aerts HJWL. The Potential of Radiomic-Based Phenotyping in Precision
Medicine: A Review. JAMA Oncol (2016) 2:1636–42. doi: 10.1001/
jamaoncol.2016.2631
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