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Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein-1 (PD-1),

and programmed cell death ligand-1 (PD-L1) have been approved for a variety of

malignant tumors and are widely used to treat patients with metastatic disease. However,

the efficacy of PD-1 inhibitors is limited due to tumor heterogeneity, high tumor burden,

and “cold” tumor microenvironment. Radiotherapy can improve the anti-tumor effects of

PD-1/PD-L1 inhibitors in various ways. As a new radiotherapy method, stereotactic body

radiotherapy (SBRT) or hypofractionated radiotherapy (HFRT) provides higher doses per

fraction to the target lesions, thus achieving immune activation effects and overcoming

tumor resistance to anti-PD-1/PD-L1 treatment, which significantly improves the local

and distant control of tumors. However, for different metastatic situations, radiotherapy

plays different roles in the combination therapy. In oligometastatic status, radiotherapy

can be used as a local radical treatment aiming to eliminate cancers in cooperation

with systemic PD-1 inhibitors. In other circumstances, like bulky metastasis or multiple

metastatic tumors, radiotherapy can be used as adjuvant to systemic immunotherapy.

This review focuses on the underlying mechanisms and optimization strategies for the

combination of radiotherapy and anti-PD-1/PD-L1 therapy in metastatic disease.

Keywords: metastatic cancer, PD-1/PD-L1 inhibitor, radiotherapy, in-situ tumor vaccination, biological response

modifiers

INTRODUCTION

Targeting programmed cell death protein-1(PD-1)/programmed cell death ligand-1 (PD-L1) is one
of key achievements in cancer immunotherapy. PD-1/PD-L1 inhibitors have been approved for
the treatment of many kinds of tumors, such as melanoma, renal cell carcinoma, lung cancer,
esophageal cancer, head and neck cancer, bladder cancer, breast cancer and so on (1). However,
the response rate of most tumors treated with PD-1/PD-L1 inhibitors as monotherapy is limited
to 15–25% (2). The therapy is even ineffective in some tumors, such as microsatellite stable (MSS)
colorectal cancer and pancreas ductal adenocarcinoma (2, 3).Therefore, considerable interest is
being directed to use combinational treatments to amplify immunomodulatory effects and produce
a synergistic effect to anti-PD-1/PD-L1 therapy (4).
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Ionizing radiation can enhance the immune response by
directly acting on tumor cell DNA, generating in situ tumor
vaccine effects, and producing cytokines, which can crosstalk
with immune cells, thus changing tumor microenvironment
(5). Although “abscopal effect” has been identified more than
67 years, it is very rare to see this phenomenon caused by
radiotherapy alone (6). For patients with multiple metastatic
tumors, emerging data suggested that single site irradiation
was not sufficient enough to boost synergistic effect (7). Over
the years, many clinical trials have been launched aiming to
examine the safety and efficacy of radiotherapy in combination
with immunotherapy. In metastatic cancers, radiotherapy can be
used not only as a local radical therapy in some oligometastatic
conditions, but also as a sensitizer to PD-1/PD-L1 inhibitors in
other circumstances like bulky disease or multiple metastases.
However, the optimal radiation doses, fraction size, appropriate
timing, irradiated sites, and numbers of irradiated targets have
not yet been established. In this study, we mainly discuss the
mechanisms and treatment strategies for radiation therapy in
combination with PD-1/PD-L1 inhibitors.

THE POTENTIAL MECHANISMS OF
RADIATION ON IMMUNOMODULATION

The Direct Killing Effect of Ionizing
Radiation on Tumor Cells
The ionizing radiation affects the tumor cell DNA, causing
DNA double-strand breaks and releasing into the cytoplasm
(8). Cytoplasmic DNA can activate cyclic GMP-AMP synthase
(cGAS) to synthesize cyclic GMP-AMP (cyclic GMP-AMP,
cGAMP) and further activate stimulator of interferon genes
(STING), which can promote type I interferon (IFN-I) synthesis,
thus stimulating dendritic cells (DC) and T cell activation
(9). However, the activation of the cGAS/STING pathway is
closely related to the radiation dose. Preclinical experiments
have shown that hypofractionated (8 Gy×3 fractions) but not
ablative radiation (20Gy single dose) can activate this pathway
and induce an abscopal effect when combined with immune
checkpoint inhibitors (ICI). When a single dose is 12–18Gy, the
expression of DNA exonuclease Trex1 is significantly increased,
resulting in a decrease of cytoplasmic double-stranded DNA,
which is not conducive for activating immune response (10).

Ionizing Radiation Coverts Tumor Into an
in-situ Vaccine
Radiotherapy is shown to cause tumor cell death associated
with releasing tumor-associated antigens (TAAs), danger signals
and cytokines which are highly immunogenic and related with
initiation of an in-situ vaccine (11). The ionizing radiation
can promote tumor cells releasing TAAs, especially tumor
neoantigens (TNAs), into blood and induce immunogenic cell
death (ICD) (12, 13). ICD is a form of regulated cell death
that elicits an adaptive immune response and relies upon
the antigenicity and adjuvanticity of dying tumor cells (12).
TNAs have poor structure homology to self-epitopes and are
recognized by self-reactive T cells (12). Accumulating evidence

showed the favorable immunotherapy response in patients with
high tumor mutation burden (TMB) was in consistent with
more TNAs found in this type of cancers (14). Therefore,
enhancing tumor antigenicity by inducing TAAs releasing could
promote immunogenic response and efficacy of PD-1/PD-L1
treatment (14–16). Radiotherapy can increase the expression
of TAAs and release TAAs by causing tumor cell damage,
and further promote antigen cross-presentation by DCs and
stimulate the activity of antigen-specific cytotoxic CD8+T cells,
thus eliciting long-term anti-tumor efficacy when combined with
PD-1/PD-L1 inhibitors (17).

Ionizing radiation can also promote the tumor cells to
increase the expression or release of danger-associated molecular
patterns (DAMPs) and cytokines which are associated with
initiation of adaptive immunity. Several ICD-associated DAMPs
and cytokines are found to play important roles in ionizing
radiation induced ICD. Calreticulin (CRT) is a ubiquitous
calcium-binding protein in the endoplasmic reticulumwhich can
provide DC with a phagocytic signal allowing DC to recognize
dead cells and phagocytose (18). Human high mobility group
box 1 (HMGB1) is another DAMP that can exert a powerful
immunomodulatory effect by binding Toll-like Receptor (TLR)-
4 and TLR-9. HMGB1 can further promoting DC maturation
and migration to lymph nodes, cross-presenting antigens to
naive T cells (19, 20). Adenosine triphosphate (ATP) binds to
the purinergic receptor P2X7, which increases the expression
of inflammatory cytokines and chemokines, and induces the
phagocytosis and inflammasome activation of DC (9, 18).
Subsequently activated DC can secrete interleukin (IL)-1β and
promote the activation of interferon-gamma-producing CD8+T
cell (11). Cytokines like IFN-I, which is produced by activated
STING/TBK/IRF3/ NF-κB signaling pathway, mediates the anti-
tumor effect of DC (9, 18).Tumor cell nucleic acid derivatives
and extracellular annexin A1 have important roles in initiating
ICD and affect the strength and durability of adaptive anti-
tumor immune response (21, 22). Other immunostimulants
like heat shock proteins, chemokines also play important
roles in priming adaptive immunity (23–25). Herein, ionizing
radiation can induce ICD and convert tumors into an in-
situ personalized vaccine, providing immunostimulatory effects
(Figure 1).

Ionizing Radiation Modulates the Tumor
Immune Microenvironment
The presentation and recognition of tumor-associated antigens
are very important for initiating adaptive immune response,
however, a microenvironment with a high density of tumor-
infiltrating lymphocytes (TILs) is also essential for eradicating
tumor cells. Smyth et al. suggested the tumor immune
microenvironment can be categorized into four types according
to the infiltration of CD8+T cells and the expression of PD-
L1 (29), and in 2019 they reclassified in gene level based
on a T cell inflammatory gene signature and TMB (30).
Turan et al. suggest that three landscapes best define the
cancer microenvironment: immune-active, immune-deserted,
and immune-excluded landscape (31). Among them, the tumors
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FIGURE 1 | The partial mechanisms of multisite radiotherapy combined with immune checkpoint inhibitors (ICIs) and biological response modifiers (GM-CSF or IL-2).

Radiotherapy induces immunogenic cell death (ICD), which exposes and releases danger-associated molecular patterns (DAMPs) like calreticulin, HMGB1, ATP,

ANAX1, and similar (12). cGAS-STING pathway is activated by the cytolytic double-strand DNA and results in the release of IFN-I (10). Radiation can also generate

tumor neoantigens. Multisite radiotherapy can overcome the insufficient tumor-associated antigen (TAA) exposure caused by tumor heterogeneity (7). ICDs can recruit

antigen-presenting cells (APC) like dendritic cells (DC). APCs can take up antigens and further be activated, which can be augmented by GM-CSF. DCs then migrate

to lymph nodes, presenting antigens to T cells and prime a cytotoxic T lymphocyte (CTL)-mediated immune activation (26, 27). The activated CTLs initiate clonal

proliferation and then travel to the irradiated lesions or distant tumor sites, exerting killing effects. The cytokine IL-2 is essential for the proliferation, differentiation, and

survival of T cells (28). CTLA-4 antibody, PD-1 antibody, and PD-L1 antibody, known as ICIs, can increase CTL activation and boost the synergistic anti-tumor effects.

with immune desert microenvironment are also called “cold”
tumors and generally resistant to ICIs (32). The “immune
desert” microenvironment is characterized by the presence
of a small amount of TIL and a large number of type
II tumor-associated macrophages (TAM), myeloid suppressor
cells (MDSC), regulatory T cells (Treg), and other suppressive
immune cells (33). Both tumor cells and suppressive immune
cells can produce molecules promoting tumor growth, such as
vascular endothelial growth factor (VEGF), IL-10, transforming
growth factor (TGF)-β, adenosine, and prostaglandin E2. These
molecules can prevent DC activation and inhibit the activation of
cytotoxic T cells (CTLs) and nature killer (NK) cells (34).

Ionizing radiation can modulate the tumor
microenvironment and overcome the barriers of immune
suppression. Chemokines like chemokine (C-X-C motif) ligand
(CXCL)-9, CXCL-10, CXCL-16 are upregulated after irradiation.
These chemokines have an important role in the recruitment of
T cells into local tumor microenvironment and activation of T

cells (35). Ionizing radiation can also convert TAM into TAM-1,
which can secrete inducible nitric oxide synthase (iNOS),
upregulate the expression of intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecules (VCAM) to
facilitate lymphocytes infiltrating into tumor tissues (36, 37).
Ionizing radiation can directly improve the killing ability of
CTLs and NK cells. Tumors inhibit host immune response by
downregulating major histocompatibility complex I (MHC-I),
a key molecule of CD8+T cell recognition, as well as secreting
negative immune factors and recruiting immunosuppressive
cells (17). However, radiotherapy can increase the expression of
MHC-I and II molecules, Fas death receptors and stress ligands
on tumor cells surface, which stimulates T cells and NK cells
medicated cytotoxicity (38–40). Therefore, ionizing radiation
can promote the infiltration of immune cells into the tumor
microenvironment and directly improve the recognition and
killing ability of T cells and NK cells, which potentially boosting
the systemic efficacy of ICIs.
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EXPLORATION THE BEST MODE OF
RADIOTHERAPY AND PD-1/PD-L1
INHIBITORS

Ionizing radiation is a double-edged sword. In addition to
immune activation effects, it also has immunosuppressive
effect (41). DNA double-strand breaks caused by ionizing
radiation can activate ATM/ATR/Chk1 kinase signaling pathway,
thereby up-regulating PD-L1 expression and inhibiting T cells
activity (42, 43). Ionizing radiation can promote tumor cells
to release transforming growth factor-β (TGF-β), IL-33, and
other cytokines to increase the recruitment of Tregs (44). CD73
(ecto-5’-nucleotidase), which can be upregulated by ionizing
radiation, can generate adenosine and increase Tregs in the
tumor microenvironment (45). Tregs can induce effector T cells
apoptosis, inactivation, dormancy, and inhibit the functions of
B cells, NK cells, DC and macrophages (34). Therefore, it is not
only necessary to consider how to exert the optimal immune
activation effect of ionizing radiation but also how to avoid
immunosuppressive effects when combining with anti-PD-1/PD-
L1 therapy.

Exploration of the Dose and Fraction Size
of Radiotherapy
So far, the optimal dose and fraction schedule of radiotherapy
to sensitize PD-1/PD-L1 inhibitors has not been determined.
Many preclinical studies investigated the potential impacts on
the immunity with different radiation doses. Kulzer et al.
(46) found that hypofractionated treatment (5 Gy×3 fractions)
could enhance tumor necrosis factor (TNF)-α, IL-6, and IL-8
levels comparing to conventional fractionated radiotherapy (2
Gy×5 fractions), suggesting that hypofractionated radiotherapy
(HFRT) may promote the maturation and activation of
antigen-presenting cells, especially DC. Lan et al. (47) found
that HFRT could reduce MDSC infiltration into the tumor
microenvironment in mice models. When combined with PD-
L1 antibody, a higher tumor control effect was observed in
HFRT treatedmice comparing to those treated with conventional
schemes (47). In fact, radiation doses exceeding 5Gy per fraction
can effectively and directly destroy tumor cells and render
these cells’ elements for in-situ vaccination (5, 20, 48). On the
other hand, the conventional schedules are more likely to cause
systemic lymphopenia which affects immunotherapy efficacy and
associated with poor prognosis (49–51).

However, a higher single dose per fraction is not always
associated with a higher immune activation effect. Evidence
showed that 7.5–10 Gy×2–3 fractions could stimulate immune
response with lower level of Tregs and achieve a better tumor
control effect comparing to 15 Gy×1 fraction (52). Studies
have also found that >12Gy irradiation can inhibit the STING
pathway and down-regulate IFN-I by up-regulating Trex1, which
can decompose cytoplasmic double-stranded DNA. In contrast,
the free double-stranded DNA is obviously elevated at a dose of
8–12Gy, and the STING pathway is activated (10). Filatenkov
et al. (53) found that hypofrationated irradiation (15 Gy×2–3
fractions) can reduce MDSCs when compared with a single dose

fraction mode (30 Gy×1 fraction), thereby promoting higher
activation of T cell function.

Some clinical trials have shown the clinical activity and
safety of combination radiotherapy and PD-1/PD-L1 inhibitors
in metastatic tumors. In the phase I trial conducted by Luke
et al. (54), the 10–15 Gy×3 fractions scheme combined with
pembrolizumab showed safe antitumor activity. The overall
response rate (ORR) was 13.6% and <10% subjects experienced
≥ grade 3 adverse reactions. A phase II trial, PEMBRO-
RT, examined the effect of 8 Gy×3 fractions radiotherapy
combined with pembrolizumab in advanced metastatic non-
small cell lung cancer (NSCLC). Comparing to the single
pembrolizumab treatment without SBRT in control group, SBRT
with pembrolizumab showed 36% ORR at 12 weeks (control
18%, p = 0.07), median progression free survival (PFS) of
6.6 month (control 1.9 month, p = 0.19) and median overall
survival (OS) 15.9 month (control 7.6 month, p = 0.16) (55).
In MDACC trial, where pembrolizumab was concurrently given
with SBRT (50Gy in four fractions) or HFRT (45Gy in 15
daily fractions) as experimental group, no benefits in median
PFS or OS were observed when compared with pembrolizumab
without radiation therapy (56). But the pooled analysis of
PEMBRO-RT and MDACC trials demonstrated that adding
radiotherapy to pembrolizumab provided significant survival
benefit (57). Moreover, subgroup analysis showed that 50Gy in
four fractions were significantly associated with better PFS (57),
which needs further validation by a randomized phase III trial.
The most common adverse events (AEs) in both trials were
fatigue, respiratory related symptoms, rash, pruritus and weight
loss. Generally, the AEs were mild and self-limiting in patients
received pembrolizumab and radiotherapy, comparable with the
safety profile in patients received pembrolizumab alone.

Radiotherapy schedules for patients with oligometastasis
or multiple metastasis need tailored. The ESTRO/EORTC
consensus on oligometastasis recommends combing local radical
treatment with systematic treatment to eliminate the disease.
Thorough local treatment can reduce the resistance to current
systemic treatment and restore sensitivity to systemic therapy
by eradicating metastasis (58). In oligometastatic tumors, the
SABR-COMET study showed that radical or nearly radical SBRT
(30–60Gy in 3–8 fractions, 16–24Gy in 1 fraction allowed for
intracranial lesions) had significant OS benefits (the 5-year OS
rate was 42.3 vs. 17.7%) compared to palliative treatment (8Gy
in 1 fraction or 30Gy in 10 fractions) in the control group
(59, 60). However, the number of patients with grade 2 or higher
treatment-related toxicities was increased to 29% following the
use of SABR compared with 9% in the control group. Therefore,
for patients with multiple metastases, the accessibility and safety
of radical treatment must be considered. Palliative radiotherapy
may be more suitable for reducing tumor burden and enhancing
the sensitivity of systemic therapy. Further research needs to
investigate the combination of palliative HFRT and ICIs in
patients with multiple metastases in order to determine the
optimal dose and fraction size to enhance tumor response to
immunotherapy without increasing treatment related toxicity.
Meanwhile, radiation therapy schedule can be individualized
based on different tumor pathological types, tumor sizes,
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tumor locations, metastatic states, intrinsic radiosensitivity, and
host characteristics (61).

In the trials of oligometastatic disease listed in Tables 1,
2, radiotherapy was administered according to the lesion and
clinical condition location, trying to achieve a radical dose
[biologically effective dose (BED)>100Gy] with 8–12Gy per
fraction in most of the trials. The palliative dose schedules of
6–15 Gy×3–5 fractions or a single dose of 20Gy were given for
multiple metastatic cancers. These trials helped us to determine
the doses in different tumors and metastatic conditions in
the future.

Exploration of the Timing Schedule of
Combination Therapy
Selecting an appropriate timing for combining radiotherapy and
anti-PD-1/PD-L1 therapy is also crucial when designing the
scheme. Preclinical data suggested that the PD-L1 expression
significantly increased after irradiation. Higher level of PD-L1
expression was found at a single dose of 10Gy comparing to
5Gy, and at 48 h after radiation comparing to at 24 h (36).
Dovedi et al. (65) found that highest expression of PD-L1 on
tumor cells was at 3 days after radiotherapy, and PD-1 on T cells
was upregulated 1–7 days after radiotherapy. In vivo preclinical
data also suggested that concurrent anti-PD-1/PD-L1 antibodies
administration with conventionally fractionated RT had longer
survival time than those treated sequentially (65). However, there
are other evidences suggested that different timing of radiation
therapy and ICI therapy (concurrent or sequentially) can also
produce synergistic effects (66–68). Herter-Sprie et al. showed
that there was no significant difference among concurrently PD-
1 antibody administrated with RT, and sequentially giving RT at
5 or 7 days after PD-1 antibody administration (69). Therefore,
from the perspective of preclinical data, there are different results
even some contradictions about the timing schedule, and there is
still no conclusion of the optimal timing.

Although the optimal timing of combination of RT and ICI
is not determined, this combinational therapy shows notable
efficiency. In metastatic NSCLC, the experimental group given
pembrolizumab within 1 week after SBRT showed better clinical
effects compared with pembrolizumab administrated alone in the
control group in PEMBRO-RT study (55). A phase I study for
solid metastatic tumors showed that sequential administration
of pembrolizumab after SBRT at multiple metastatic lesions
achieved 13.2% in ORR and 13.5% abscopal effect in non-
irradiated metastases (54). Regarding to investigation of
best combinational timing, PACIFIC study showed stage III
unresectable NSCLC patients who received durvalumab within
14 days after concurrent chemotherapy and radiotherapy
(CCRT) had longer PFS than those received durvalumab over
14 days after completion of CCRT (70, 71). Similar result
was reported that melanoma patients with brain metastasis
who received PD-1 inhibitor and CTLA-4 inhibitor treatment
within 4 weeks after stereotactic radiosurgery (SRS) had better
results compared to those received PD-1 inhibitor and CTLA-
4 inhibitor over 4 weeks after SRS (18). These trials implied
that patient receiving PD-1/PD-L1 inhibitors immediately after

radiotherapy might have better clinical outcome. However, there
were several arguments. A phase I clinical study showed that
ORR of simultaneous SBRT treatment after 3 cycles of PD-1
inhibitor was significantly better than that of SBRT followed by
PD-1 inhibitor sequential treatment (72). The COSINR phase I
trial evaluated concurrent or sequential ipilimumab, nivolumab,
and SBRT in patients with stage IV NSCLC and found that the
median PFS was 5.9months in the sequential arm and 6.2months
in the concurrent arm, which showed no significant differences in
two different timing schedule (73).

The safety and toxicity of radiotherapy and anti-PD-1/PD-L1
therapy are of great concern. Pembrolizumab given concurrently
with SBRT or HFRT confirmed no clinical benefits in the
MDACC trial but two patients had grade 4 adverse event which
might be related to the concurrent scheme (56). Anti-PD-1/PD-
L1 therapy may also lead to radiation recall pneumonitis (74).
In the clinical studies listed above, it seemed the time intervals
between radiotherapy and anti-PD-1/PD-L1 therapy were not
associated with the rate of severe pneumonitis. Nonetheless,
a study presented at the ESMO 2020 congress suggested that
the application of anti-PD-1 drugs before or during thoracic
radiotherapy increases the incidence of radiation pneumonitis
compared to administration after radiotherapy (60 vs. 28%, p
= 0.01) (75). Bang et al. showed higher overall toxicity when
radiation was administered within 14 days of immunotherapy (39
vs. 23%, p = 0.06) but no significant differences in grade 3 AEs
(76). These data seems that concurrent scheme has more adverse
reactions and inferior effectiveness than sequential therapy, but
it is still controversial due to the lack of randomized controlled
trials. However, it is notable that the overall toxicity may also
related with high BED, irradiated volumes and irradiated sites
(77). Future studies are needed for better understanding of the
efficacy and safety of different schedules and defining suitable
patients for the options listed in Tables 1, 2.

Exploration of Appropriate Volume and
Numbers of Irradiated Targets in
Combination Therapy
In 2019, Chang et al. suggested using multisite radiotherapy
for metastatic sites instead of single-site irradiation to boost
the synergistic effect (7). Considering the heterogeneity
among different metastatic sites, only one lesion irradiation
in patients with multiple metastases might not be sufficient
to expose new TAAs and promote immune cell infiltration
to all metastatic sites. In addition, the increased tumor
burden may lead to a decrease in the efficacy of PD-
1 inhibitors (11, 78).Therefore, multisite irradiation can
obviously decrease tumor burden, and consequently
restore the tumors’ sensitivity to anti-PD-1/PD-L1 therapy.
However, multisite treatment undoubtedly increases the
irradiated volume and adverse reactions. Treatment-related
lymphopenia was associated with a less effective response to
anti-PD-1/PD-L1 therapy and inferior survival (49, 50, 79).
Therefore, it may be helpful to maintain the number and
function of immune cells so that they can be recruited
to initiate anti-tumor immune response. This might be

Frontiers in Oncology | www.frontiersin.org 5 March 2021 | Volume 11 | Article 638873

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kong et al. Radiotherapy and Immunotherapy

TABLE 1 | Trials testing radiotherapy in combination with PD-1/PD-L1 in advanced metastatic cancers that allowed only one irradiated lesion or did not mention the

irradiated numbers.

NCT number Phase Tumor type RT regimen PD-1/PD-L1

inhibitors

Treatment schedule

timing

Trial design

(arms)

Primary

outcome

Status

NCT03988647 II Metastatic

Merkel cell

carcinoma

9Gy × 3f or

4–6Gy × 5f

Pembrolizumab RT will be given between

the first and second

cycles of immunotherapy

Single group ORR Recruiting

NCT03220854 II Advanced solid

tumors

6–12Gy × 3–5f Humanized

anti-PD-1

monoclonal

antibody

PD-1 inhibitor will be

started after last SRT

fraction (on same day)

Single group Proportion of

patients with

improved

disease

control

Active, not

recruiting

NCT03548428 II Oligometastase

in Sarcoma

SBRT:3 to 5

fractions

depending on

tumor size

Atezolizumab Not mentioned Arm A:

SBRT+Atezolizumab

Arm B:SBRT

PFS Recruiting (62)

NCT02843165 II Advanced

metastatic

disease

9.5Gy × 3

allowed

reduction (6Gy

× 3 Minimum

Dose)

Anti-CTLA-4 and

anti-PD-1/PD-L1

antibodies

SBRT will be delivered

within 1–21 days of the

start of Cycle 1 of the CBI

Arm A: CBI plus

SBRT

Arm B: CBI

ORR Recruiting

NCT04166734 I/II Advanced

malignant pleural

mesothelioma

10Gy × 3f Pembrolizumab Pembrolizumab will be

given prior to SBRT

Sequential

assignment

Non-randomized

AE Not yet

recruiting

NCT03436056 I/II Metastatic

NSCLC

10Gy × 3f

18Gy × 3f

dosed at the

maximum

tolerated dose

Pembrolizumab Pembrolizumab will be

given prior to SBRT

Sequential

assignment

Non-randomized

AE.To

establish the

recommended

dose

Active, not

recruiting

NCT02992912 II Metastatic

tumors

(colorectal

cancer, NSCLC,

RCC, sarcoma)

15Gy × 3f Atezolizumab Not mentioned Single Group PFS Recruiting

NCT03115801 II Metastatic

genitourinary

cancers

10Gy × 3f Nivolumab

Atezolizumab

Pembrolizumab

PD-1/PD-L1 inhibitor is

administered on the day

of radiation (Day 1)

Arm

A:immunotherapy

alone Arm

B:Radiation and

immunotherapy

ORR Active, not

recruiting

NCT02400814 I Stage IV NSCLC Total of five

fractions

MPDL3280A Arm A:concurrent

Arm B:induction cohort

Arm C:sequential cohort

Arm A:SBRT

Beginning on day

1 of course 1

Arm B:SBRT

Beginning on day

1 of course 3

Arm C:SBRT prior

to anti-PD-L1

To determine

best

administration

schedule of

MPDL3280A

and SBRT

Active, not

recruiting

NCT04098432 I/II Locally

advanced

unresectable

pancreatic

adenocarcinoma

8Gy × 4f Nivolumab Nivolumab is given after

SBRT

Single Group AE Recruiting

NCT03509584 I Pretreated

advanced stage

non-small cell

lung cancer

8Gy × 3f Nivolumab Not mentioned Arm I:HFRT+

Nivolumab

Arm II: HFRT+

Nivolumab

+ ipilimumab

AE Recruiting

NCT04306926 II Advanced

oligometastatic

NSCLC

Give according

to the location of

the lesion and

clinical condition.

TQB2450 SBRT 3 days before

TQB2450

Single group PFS Not yet

recruiting

(Continued)
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TABLE 1 | Continued

NCT number Phase Tumor type RT regimen PD-1/PD-L1

inhibitors

Treatment schedule

timing

Trial design

(arms)

Primary

outcome

Status

NCT02599779 II TKI refractory

metastatic

kidney cancer

(mRCC) patients

Dose and

duration

dependent on

body site

Pembrolizumab Arm-A: SBRT will be given

at the time of progression

on pembrolizumab and

pembrolizumab will be

continued.

Arm B: SBRT will be given

before the 2nd course of

pembrolizumab and

pembrolizumab will

be continued.

Arm A: SBRT will

be given at the

time of

progression on

pembrolizumab

and

pembrolizumab

will be continued.

Arm B: SBRT will

be given before

the 2nd course of

pembrolizumab

and

pembrolizumab

will be continued.

PFS Recruiting

NCT04547452 II Advanced

metastatic HCC

7–10Gy × 5–8f Sintilimab The first course of

sintilimab will be given

within 4–6 weeks after

completion of SBRT.

Arm A: Sintilimab

and SBRT

Arm B:Sintilimab

PFS Recruiting

NCT03035890 I/II Metastatic

NSCLC

8–15Gy × 3f

6–10Gy × 5f

Nivolumab

Pembrolizumab

Atezolizumab

Concurrent Single group ORR Active, not

recruiting

NCT03122496 I Metastatic

anaplastic

thyroid cancer

9Gy × 3 f Durvalumab RT is given within 2 weeks

after the completion of

cycle 1 of durvalumab and

tremelimumab

Single group OS Active, not

recruiting

NCT03867175 III Metastatic lung

cancer

3–10 treatments

of SBRT

Pembrolizumab Not mentioned Arm A:SBRT and

Pembrolizumab

ArmB:Pembrolizumab

PFS Recruiting

NCT02826564 I Metastatic

urothelial cancer

SBRT Pembrolizumab Arm A:Sequential

Arm B:Concurrent

Arm A:SBRT prior

to

pembrolizumab

Arm B:SBRT

concurrent

with pembrolizumab

AE

DLT

Completed (63)

NCT03101475 II Colorectal

cancer liver

metastases

10Gy × 3 f Durvalumab SBRT is started 8–14

days after first dose of

immunotherapy

Single group ORR Recruiting

NCT04167657 II Advanced

NSCLC

6Gy × 5f Sintilimab Sintilimab is started no

later than 3 weeks after

radiation.

Single group ORR Recruiting

NCT04361162 II MSS pancreatic

cancer

Not mentioned Nivolumab Concurrent Single group ORR Recruiting

We searched “radiation and PD-1/PD-L1 inhibitors” in the clinicaltrials.gov database to identify studies with the following statuses: not yet recruiting, enrolling by invitation, recruiting,

active, not recruiting, completed, and unknown status (Clinical Trial). A total of >60 trials were found. We identified the trials using radiotherapy with PD-1/PD-L1 inhibitors in advanced

metastatic cancers (date of final query, 25 November 2020). Then we searched “radiation and immunotherapy” in the clinicaltrials.gov database as above. A total of >150 trials were

found. We identified the studies of radiotherapy with PD-1/PD-L1 inhibitors in advanced metastatic cancers (date of final query, 25 November 2020). This list shows the trials that allowed

only one irradiated lesion or did not mention the irradiated numbers. This list should not be considered comprehensive or exhaustive.

SABR, stereotactic ablative radiotherapy; PFS, progression free survival; CBI, checkpoint blockade immunotherapy; ORR, objective response rate; SBRT, stereotactic body radiotherapy;

RCC, renal cell carcinoma; AE, adverse events; DLT, dose limiting toxicities; RT, raidotherapy; TKI, tyrosine kinase inhibitor; NSCLC, non-small-cell lung cancer; SCC, squamous cell

carcinoma; HNSCC, head and neck squamous cell carcinoma; ICI, immune checkpoint inhibitor; HCC, hepatocellular carcinoma; OS, overall survival; ACC, adenoid cystic carcinoma;

MSS, microsatellite stability.

achieved through decreasing the exposure of circulating
blood volume and avoiding irradiation at lymphoid tissue or
medullary tissue, such as bone marrow, spleen, thymus, and
lymphatic vessels (11).

For patients with oligometastatic disease, defined as number
of metastases equal or <5 and restricted to no more than 2

organs, several studies have shown that active local treatment
for all metastases can significantly prolong patients’ OS with
tolerable side effects (58–60). The phase II clinical study done
by Bauml et al. (80) showed median PFS of 18.7 months
(PEMBRO-RT: 6.6 months) and median OS of 41.6 months
(PEMBRO-RT: 15.9 months) in patients with oligometastatic
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TABLE 2 | Trials testing radiotherapy in combination with PD-1/PD-L1 in advanced metastatic cancers that allowed more than one irradiated lesions.

NCT number Phase Tumor type RT regimen PD-1/PD-L1

inhibitors

Treatment schedule timing Numbers of irradiated

targets

Trial design (arms) Primary

outcome

Status

NCT03464942 II Advanced triple

negative breast

cancer

SABR 20Gy × 1f

or 8Gy × 3f

Atezolizumab PD-1 inhibitor will be started

within 5 days of last SABR dose

1–4 metastases with at least

1 untreated

Arm A:Single Dose

Arm

B:Fractionated Dose

PFS Recruiting

NCT03283605 I/II Metastatic head

and neck

carcinomas

Not mentioned Durvalumab

Tremelimumab

SBRT will be administered

between Cycle 2 and 3 of

durvalumab and tremelimumab

2–5 Single group AE

PFS

Recruiting (64)

NCT03644823 II Advanced NSCLC 6Gy × 3f Atezolizumab Not mentioned 1–2 Single group AE Recruiting

NCT03812549 I Stage IV NSCLC SBRT 10Gy × 3f Sintilimab Sintilimab will be started within 7

days after radiation completed

At least 2 Single group AE and/or DLT Recruiting

NCT04549428 II Advanced

oligoprogressive

NSCLC

8Gy × 1f Atezolizumab RT will be delivered concomitant

to the 2nd dose of atezolizumab

All eligible metastatic and

primary sites

Single group ORR Not yet recruiting

NCT04625894 I Oligometastatic

gastrointestinal

cancer

Multisite SABR

(BED > 100Gy)

Camrelizumab SABR prior to PD-1 inhibitor Multisite Single group DLT Not yet recruiting

NCT02303366 I Oligometastatic

breast neoplasia

20Gy × 1f MK-3475 SABT followed by MK-3475 At least one metastases (to

a maximum of five

metastases)

Single group Safety profile Completed

NCT03223155 I Metastatic lung

cancer

Three or five

fractions of

radiation

Nivolumab Sequential Arm:

nivolumab/ipilimumab between 1

and 7 days after completion of

SBRT.

Concurrent Arm:

nivolumab/ipilimumab first and

must complete planned SBRT to

2–4 sites within 2 weeks

2–4 Sequential Arm

Concurrent Arm

AE Recruiting

NCT03087019 II Recurrent or

metastatic ACC

>5 fractions Pembrolizumab Concurrent Up to 5 Arm A:

Pembrolizumab +

Radiation

Arm

B: Pembrolizumab

ORR Active, not

recruiting

(Continued)
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TABLE 2 | Continued

NCT number Phase Tumor type RT regimen PD-1/PD-L1

inhibitors

Treatment schedule timing Numbers of irradiated

targets

Trial design (arms) Primary

outcome

Status

NCT04535024 II MSS

oligometastatic

colorectal cancer

Target dose will be

adjusted depending

on site of the lesion

and organs at risk

(BED > 100Gy).

Sintilimab Starts within 1 week upon SABR

completion

Sequence of irradiation for

multiple metastases

Single group ORR Recruiting

NCT03825510 II Metastatic

non-small cell lung

cancer

3–5 fractions of

SBRT

Nivolumab or

Pembrolizumab

PD-1 inhibitors start after SBRT ≤3 sites Single group OS and acute

toxicity

Recruiting

NCT02608385 I Advanced solid

tumors

3 or 5 doses of

SBRT

Pembrolizumab Pembrolizumab is given after

SBRT

All sites in Oligometastatic

tumors

Arm A: Dose

Escalation Cohort.

Patients will be

enrolled to receive

specific doses of

SBRT to determine

the best safe doses.

Arm B: Large Volume

Tumors Cohort.

Tumors will be partially

treated with SBRT.

Arm C:

Oligometastatic

Cohort. All lesions will

be treated with SBRT

Recommended

SBRT dose in

combination with

pembrolizumab

Active, not

recruiting

We searched “radiation and PD-1/PD-L1 inhibitors” in the clinicaltrials.gov database to identify studies with the following statuses: not yet recruiting, enrolling by invitation, recruiting, active, not recruiting, completed, and unknown status,

with study type of interventional (Clinical Trial). A total of >60 trials were identified as trials using radiotherapy with PD-1/PD-L1 inhibitors in advanced metastatic cancers (date of final query, 25 November 2020). Then we searched

“radiation and immunotherapy” in the clinicaltrials.gov database as above. A total of >150 trials were detected. We identified the studies of radiotherapy with PD-1/PD-L1 inhibitors in advanced metastatic cancers (date of final query,

25 November 2020). This list shows the trials that allowed more than one lesion irradiated. This list should not be considered comprehensive or exhaustive.

SABR, stereotactic ablative radiotherapy; PFS, progression free survival; CBI, checkpoint blockade immunotherapy; ORR, objective response rate; SBRT, stereotactic body radiotherapy; RCC, renal cell carcinoma; AE, adverse events;

DLT, dose limiting toxicities; RT, raidotherapy; TKI, tyrosine kinase inhibitor; NSCLC, non-small-cell lung cancer; SCC, squamous cell carcinoma; HNSCC, head and neck squamous cell carcinoma; ICI, immune checkpoint inhibitor;

HCC, hepatocellular carcinoma; OS, overall survival; ACC, adenoid cystic carcinoma; MSS, microsatellite stability.
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TABLE 3 | Trials testing radiotherapy in combination with PD-1/PD-L1 and cytokines (IL-2 or GM-CSF).

NCT number Phase Tumor type RT regimen PD-1/PD-L1

inhibitors

Treatment schedule timing Primary

outcome

Status

NCT03474497 I/II Metastatic

NSCLC,

Melanoma, RCC,

or HNSCC who

have failed PD-1/

PD-L1 inhibitors

8Gy × 3f Pembrolizumab Radiotherapy will be delivered to the

treatment lesion during the second

cycle of therapy using an 8Gy × 3

fractions palliative regimen.A total of

four interleukin-2 treatments will be

delivered into the treatment lesion by

IT injection biweekly (at least 48 h

apart) starting 24–96 h after the

completion of radiotherapy and to be

completed during the second on-trial

cycle of Pembrolizumab.

Abscopal

response rate

Recruiting

NCT03224871 Early

Phase I

Metastatic NSCLC 8Gy × 3f Nivolumab Nivolumab will be started on week 1

day 1, concurrent with radiotherapy

DLT Completed

NCT03958383 I/II Melanoma Palliative radiation

therapy

Nivolumab Phase IA: Participants receive

hu14.18-IL2 fusion protein IT.

Phase IB: Participants undergo

palliative RT and hu14.18-IL2 fusion

protein IT as in phase IA.

Phase IC: Participants undergo

palliative RT, receive nivolumab, and

hu14.18-IL2 fusion protein IT as in

phase IA.

Phase ID: Participants undergo

palliative RT, receive nivolumab in

combination with ipilimumab, and

hu14.18-IL2 fusion protein IT as in

phase IA.

AE

MTD

MAD

Recruiting

NCT04106180 II Advanced NSCLC 8Gy × 3f Sintilimab SBRT combined sintilimab and

GM-CSF

ORR Recruiting

ChiCTR1900026175 I/II Metastatic solid

tumor

8Gy × 3f PD-1/PD-L1

inhibitors

SBRT combined PD-1/PD-L1

inhibitors and GM-CSF

Safety

PFS

Incidence of

abscopal effects

Recruiting

ChiCTR2000035817 I/II Advanced liver

cancer

Not mentioned Carrelizumab SBRT combined PD-1/PD-L1

inhibitors and GM-CSF

PFS Recruiting

We searched “radiation and IL-2” in the clinicaltrials.gov database to identify studies, and 18 trials were found. Data were obtained searching “SBRT and IL-2” in the clinicaltrials.gov

database resulting in 4 trials, where 3 trials were on combining radiotherapy with PD-1/PD-L1 inhibitors and IL-2 (date of final query, 25 November 2020). Then we searched “IL-2” in

www.chictr.org.cn database to identify studies; 17 trials were identified; no study met our requirements. Then we searched “radiation and GM-CSF” in the clinicaltrials.gov database.

Thirty-seven trials were identified. Data were obtained searching “SBRT and IL-2” in the clinicaltrials.gov database to identify studies, and 5 trials were detected. We identified one study

on radiotherapy with PD-1/PD-L1 inhibitors in advanced metastatic cancers (date of final query, 25 November 2020). Then we searched “GM-CSF” in www.chictr.org.cn database to

identify studies; 10 trials were identified, where 2 studies were on combining radiotherapy with PD-1/PD-L1 inhibitors and GM-CSF. This list should not be considered comprehensive

or exhaustive.

HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; MTD, maximum tolerated dose; MAD, maximum administered dose;

AE, adverse events; DLT, dose limiting toxicities; SBRT, stereotactic body radiotherapy; ORR, objective response rate; PFS, progression free survival; IT, intratumorally.

(≤4) NSCLC treated with local treatment (surgery, radiotherapy,
radiofrequency ablation) combined with a PD-1 inhibitor for all
lesions. The results may suggest better survival benefit of radical
radiotherapy done for all metastatic sites if applicable than done
at only one site. However, benefits of maximizing irradiated sites
with concurrent ICI therapy need to be examined in randomized
controlled phase III clinical trials.

Multisite SBRT is relatively implementable in patients with
oligometastatic disease and small tumor size. However, it is
not practical to give all sites SBRT to patients with multiple
metastases or bulky tumors. Partial tumor irradiation can
be considered in certain conditions with controlled, tolerable
toxicity. In the phase I trial mentioned above, patients with

solid metastatic tumors administrated with multisite SBRT
with pembrolizumab achieved 13.2% in ORR. Partial tumor
irradiation was carried out if the target tumor volume was
larger than 65mL in these patients (54). Other partial irradiation
strategies like novel SBRT targeted hypoxic segment, called
bystander tumor volume (BTV), defined by PET and contrast-
enhanced CT, showed very inspiring results suggesting a bulky
tumor control rate of 95% (bystander effects) and non-irradiated
metastases of 45% (abscopal effects) (81, 82). Other ways like
spatially fractionated radiation therapy (SFRT, also known as
GRID) can precisely treat target lesion with a non-uniform dose
and minimize the toxicity to normal tissue. Preclinical evidence
suggested that SFRT could further trigger immune responses
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and abscopal effects, which might be a potential combination
modality with PD-1 inhibitors, especially for bulky tumors (83–
85).

The safety and efficacy of multiple cycles of HFRT with
each cycle delivering to one lesion instead of one cycle
simultaneous multisite radiotherapy combining with anti-
PD-1/PD-L1 immunotherapy is tested in our clinical trial
(ChiCTR1900026175), presented at the ASCO congress 2020.
Participants who had solid tumors withmulti-metastases failed to
standard therapy were enrolled and treated with PD-1 inhibitors,
radiotherapy and GM-CSF (PRaG regimen) sequentially. Three
doses of 8Gy or five doses of 5Gy are delivered to tumor lesion
based on its site and size. On the 2nd day after radiotherapy,
PD-1 antibody is intravenously administered once, and GM-CSF
200 µg is subcutaneously injected daily for 2 weeks. At least
2 cycles of triple combination are required, and each cycle is
repeated every 3 weeks with different lesions irradiated. After
completion of PRaG regimen, maintenance therapy with PD-1
inhibitor is administered every 3 weeks until disease progression
or unacceptable toxicity. Interim analysis showed a favorable
short-term efficacy of 3-month ORR of 15.8% and PFS of 4.0
months with tolerable toxicity (86, 87). Currently the study
is ongoing.

There are other ways to get more lesions irradiated to boost
anti-PD-1 effects by combing SBRT with low-dose radiation
therapy (LDRT). Welsh et al. proposed to promote immune
response to cancer by utilizing high-dose and low-dose radiation
synergistically. Clinical data provided a promising result, where
58% of the low dose target responded to a mean dose of
7.3Gy (1.1–19.4Gy), which was remarkably higher than no-
dose lesions (18%, p = 0.0001) (88). The underlying rationale
is high-dose radiation increases the release and presentation
of antigens as well as activates immunity, while low-dose
radiation promotes the infiltration of immune cells into the
tumor microenvironment (88). On-going phase I study in
metastatic NSCLC reported delivering SBRT in 30Gy in 3
fractions to a small volume target and LDRT (2 Gy×1 fraction,
4 Gy×2 fractions, or 10 Gy×5 fractions) to a large lesion,
with administering sintilimab within 1 week after radiotherapy
completion, achieves an ORR of 78.6%. There are 80% of subjects
experience grade 1–2 treatment-related adverse events (TRAE)
and only 6.7% of subjects have ≥G3 TRAE (89).

It is not clear how many lesions irradiated are required to
obtain the greatest immune sensitization effect and minimize
side effects for patients with advanced multiple metastatic
tumors. At present, there are no large randomized controlled
studies. There are several clinical studies on SBRT irradiation
of multiple metastases combined with PD-1 inhibitor therapy
are underway (Table 2). In addition to investigate the optimal
radiotherapy schedule to tumors, the metastatic sites and their
biological behaviors should also be considered when selecting the
irradiated targets (90). Clinical data showed that radiotherapy
targeting to parenchymal sites, such as liver and lung, might
cause a better systemic immune changes than targeting to non-
parenchymal sites, such as brain and bone (91). In 2018, Pitroda
et al. biologically identified three distinct molecular subtypes
of colorectal liver metastases, which was related to clinical

outcomes and was potential independently of established clinical
risk factors (92). These finding suggested that the molecular
subtypes of oligometastasis can predict a subset of patients who
might benefit most from local treatment (90). Therefore, lesions
selected for radiotherapy can not only be considered by numbers
and volumes but also be determined according to the molecular
characteristics of metastases.

BIOLOGICAL RESPONSE MODIFIERS TO
BOOST THE EFFECT OF COMBINATIONAL
THERAPY

The addition of biological immunomodulators can further boost
the effect of this combinational approach. Cytokines like IFN-α,
IL-2, GM-CSF, TNF-α, IL-15, IL-12, have a synergistic action with
radiotherapy (93). In this review, we are mainly focusing on IL-2
and GM-CSF (Figure 1).

The cytokine IL-2 is secreted by effector T cells and is
essential for the proliferation, differentiation, and survival of
T cells. Preclinical studies have shown that in mouse models
of melanoma, colon and breast cancer, HFRT combined with
IL-2 can produce significant synergistic therapeutic effects and
enhance anti-tumor effects of CD8+T cells and NK cells (94).
Phase I clinical study showed that in metastatic malignant
melanoma and renal cancer, SBRT combined with IL-2 was
well-tolerated and provided an ORR of 66.6%. The possible
mechanism is the activation of CD4+ effector memory T cells by
combinational treatment (28). To date, there is no available data
in clinical trials for radiotherapy combined with IL-2 and PD-
1/PD-L1 inhibitors. A small number of phase I/II clinical studies
are currently underway (Table 3).

GM-CSF is also an immunomodulatory cytokine, which can
promote the differentiation of monocyte/M1 type macrophages
and DCs, enhance their activities and antigen presentation, and
amplify the body’s immune response (26, 95). Previous studies
showed that the expression level of DC gene signature in renal
cell carcinoma and NSCLC tissues was positively correlated with
OS (27). Blocking PD-L1 on DC can reduce the isolation of PD-
L1 from B7.1, thus enhancing the interaction between B7.1/CD28
and activating T cells (27). Animal experiments suggested
that GM-CSF combined with ICIs can enhance the activity
of innate immune cells by enhancing antigen presentation,
indirectly recruiting T cells into the tumor microenvironment,
and ultimately enhancing the efficacy of PD-1/PD-L1 inhibitor.
Thus, GM-CSF may help to transform “cold” tumors into
“hot” tumors (96).

Clinical studies have also demonstrated that GM-CSF can
enhance the efficacy of immune checkpoint inhibitors. In a
randomized controlled study of patients with unresectable stage
III or IV melanoma, the median OS of the patients treated with
GM-CSF and ipilimumab was significantly improved compared
to the group treated without GM-CSF (97). Preliminary
findings in patients with advanced cholangiocarcinoma showed
pembrolizumab combined with GM-CSF improved 6 months
PFS reached 35% with 7% of subjects having ≥ G3 adverse
reactions, suggesting this combination is safe and obtained
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good short-term effect (98). Evidence from combination PD-
1/PD-L1 inhibitors with GM-CSF modified tumor vaccines
also demonstrated synergistic anti-tumor effects (99–101). GM-
CSF could also boost the immune effect of radiotherapy and
induce abscopal effects. Prospective clinical study has shown
that local radiotherapy combined with GM-CSF induces a 27%
abscopal effect and improves patients’ prognosis in patients with
advanced solid tumors (102). To date, there is no report on triple
combination therapy of radiotherapy, PD-1/PD-L1 blocker and
GM-CSF. Our prospective study on HFRT combined with PD-
1 blocker and GM-CSF in the treatment of advanced multiple
metastatic solid tumors is ongoing (ChiCTR1900026175) (86,
87). Several phase II clinical studies of second-line SBRT
combined with PD-1 inhibitors and GM-CSF triple therapy in
solid tumors are ongoing (Table 3).

SUMMARY

Combination treatment of radiotherapy and PD-1/PD-L1
inhibitors is a promising strategy for patients with metastatic
cancers, where radiotherapy acts as a radical local treatment
in oligometastasis and as an adjuvant therapy in multiple
disease or bulky disease by directly damaging malignant
cells, helping TAA releasing and antigen presentation,
modulating tumor microenvironment. Addition of biological
immunomodulators can further amplify the anti-tumor immune
effects of this combinational treatment. Further research
needs to optimize treatment schedule, maximize immune
response and reduce adverse effects, through investigation
of doses and fraction size of radiotherapy, the numbers

and sites for irradiation, as well as the optimal timing of

combination. It will provide solid evidence for this combinational
treatment to support it widely accepted in clinical practice in
the future.
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