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Background: Computational aid for diagnosis based on convolutional neural network
(CNN) is promising to improve clinical diagnostic performance. Therefore, we applied
pretrained CNN models in multiparametric magnetic resonance (MR) images to classify
glioma mimicking encephalitis and encephalitis.

Methods: A data set containing 3064 MRI brain images from 164 patients with a final
diagnosis of glioma (n = 56) and encephalitis (n = 108) patients and divided into training
and testing sets. We applied three MRI modalities [fluid attenuated inversion recovery
(FLAIR), contrast enhanced-T1 weighted imaging (CE-T1WI) and T2 weighted imaging
(T2WI)] as the input data to build three pretrained deep CNN models (Alexnet, ResNet-50,
and Inception-v3), and then compared their classification performance with radiologists’
diagnostic performance. These models were evaluated by using the area under the
receiver operator characteristic curve (AUC) of a five-fold cross-validation and the
accuracy, sensitivity, specificity were analyzed.

Results: The three pretrained CNN models all had AUC values over 0.9 with excellent
performance. The highest classification accuracy of 97.57% was achieved by the
Inception-v3 model based on the T2WI data. In addition, Inception-v3 performed
statistically significantly better than the Alexnet architecture (p<0.05). For Inception-v3
and ResNet-50 models, T2WI offered the highest accuracy, followed by CE-T1WI and
FLAIR. The performance of Inception-v3 and ResNet-50 had a significant difference with
radiologists (p<0.05), but there was no significant difference between the results of the
Alexnet and those of a more experienced radiologist (p >0.05).

Conclusions: The pretrained CNN models can automatically and accurately classify
these two diseases and further help to improving clinical diagnostic performance.
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INTRODUCTION

For an intracranial lesion, the first question faced by the
neuroradiologist is whether it is a neoplastic or non-neoplastic
lesion. Glioma and encephalitis are two common diseases of the
central nervous system that sometimes overlap in their clinical
symptoms and radiographic presentations (1). However, the
treatment protocols and prognosis are substantially different for
these two diseases. Being able to classify glioma and encephalitis
both accurately and noninvasively is of the utmost importance.

MRI is most commonly used to assess brain diseases due to its
superior contrast compared with other imaging modalities. In
current conventional MR imaging methods, it is not difficult to
classify encephalitis from a single enhancing glioma with perifocal
edema, mass effect, and necrosis. However, some gliomas (referred
to as “glioma mimicking encephalitis” in this paper, mainly lower-
grade glioma) show focal area enhancement or no enhancement
lesions without mass effect or necrosis, which may be misdiagnosed
as encephalitis, resulting in delayed treatment (1, 2). On the other
hand, some encephalitis have a certain mass effect due to the large
scope, which may also be misdiagnosed as glioma for craniocerebral
surgery or pathological biopsy (3).

Some advanced MR modalities such as diffusion-weighted
imaging (DWI), MR spectroscopy (MRS) and perfusion-weighted
imaging (PWI) play important roles in differentiating glioma and
encephalitis to some extent. However, generally advanced imaging
techniques require additional expense and time to perform andmay
not be routinely performed for every patient in clinical practice. By
contrast, FLAIR, CE-T1WI, and T2WI are almost always available.
However, conventional MRI modalities do not fully perform deep
mining of the intrinsic features of images given the limitations of the
subjective vision of the human eye. To improve the diagnostic
accuracy and efficiency, advanced and automated methodologies
are needed.

Recently, computational aid in diagnosis became a fast-
developing research area, combining radiology imaging and
computers in a noninvasive fashion to extract a large number of
high-dimensional features to help improve clinical diagnostic
performance (4, 5). Several studies on MRI brain tumour
classification using traditional machine learning approaches such
as the classification of glioblastoma (GBM) and primary cerebral
nervous system lymphoma (PCNSL) used a support vector machine
(SVM) or random forest (RF) (6–8). A few studies focused on the
classification of a neoplastic or non-neoplastic lesion (9–11), such as
autoimmune pancreatitis and pancreatic ductal adenocarcinoma.
However, traditional machine learning methods have two main
weaknesses. First, it depends on handcrafted features, which is time-
consuming and highly dependent on the experience of the
operators. Second, it focuses only on either low-level or high-level
features (12). Deep learning is a subset of machine learning that
does not require handcrafted features. Deep learning, especially
convolutional neural networks (CNN), can achieve a higher
classification performance than the traditional radiomic
framework by automatically extracting the abstracted and deeper
features from medical images (13, 14) and has been widely used for
medical images analysis over the past several years (15, 16). Several
successful studies have applied a pretrained CNN model such as
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Alexnet, ResNet, and GoogLeNet models to classify two or more
types of tumours. To our knowledge, the application of deep
learning based on multiparametric MRI to differentiate
encephalitis from glioma mimicking encephalitis is rarely
been reported.

Thus, in this study, we aimed to train CNN models to
automatically classify glioma mimicking encephalitis and
encephalitis by analyzing conventional multiparametric MRI
images. We made three comparisons of the classification
performance to find the most suitable classifier model for the
classification problem: (a) a comparison of three existing
pretrained CNN architectures (Alexnet, ResNet-50, and
Inception-v3) with different parameters and layers, (b) a
comparison of the effects of different MR modalities (FLAIR, CE-
T1WI, and T2WI) on amodel based on the same network, and (c) a
comparison of quantified deep learning models with radiologists’
diagnostic performance.
MATERIALS AND METHODS

Patients
For this retrospective analysis, ethical approval was obtained by our
institutional review board (approval number 2019-178), and the
informed consent requirement was waived. The study population
consisted of 164 (56 gliomas and 108 encephalitis) patients enrolled
at the institution consecutively between January 2012 and January
2020. The glioma mimicking encephalitis inclusion criteria were as
follows: (1) histopathologically confirmed cerebral gliomas, and (2)
patients with atypical MR imaging such as patchy or large patchy
abnormal signals and insignificant enhancement withoutmass effect
or necrosis, which are difficult to differentiate from encephalitis.
Encephalitis inclusion criteria: encephalitis had the lesion on MRI,
and was confirmed by cerebrospinal fluid analysis, antibody testing,
virus examination, surgery or pathological biopsy, or confirmation
of the diagnosis because the lesion completely or largely disappeared
or turned into encephalomalacia during the follow-up period. In
addition, before a routine MRI examination, no patients had a
previous brain biopsy or treatment, and three MRI modalities
(FLAIR, CE-T1WI, and T2WI) were used. The exclusion criteria
were followed as: (1) the lesion was too small and its diameter was
less than 10 mm, (2) MRI images had motion and other artifacts
with poor quality that affected the analysis. The number of raw
images in the gliomamimicking encephalitis and encephalitis group
was 1570 and 1494 images, respectively.

Data Acquisition
All MR images were obtained on a GE 3.0 T scanner (General
Electric Medical Systems, USA) equipped with an eight-channel
head coil. All images were stored in the picture archiving and
communication systems (PACS, Carestream Health, Inc.,
Rochester, NY, USA). The acquisition parameters of were as
follows: conventional axial T1WI [TR 250 ms, TE 2.86 ms, flip
angle 90°, field of view (FOV) 240 × 240 mm, matrix 224 × 224,
layer thickness 5 mm, total of 20 layers], axial T2WI [TR 3 600 ms,
TE 120 ms, flip angle 90°, FOV 240 × 240 mm, matrix 256 × 256,
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layer thickness 5 mm, total of 20 layers] and FLAIR sequence [TR
8000 ms, TE 120 ms, flip angle 90°, FOV 240 × 240 mm, matrix
224 × 224, layer thickness 5 mm, total of 20 layers]. Axial contrast-
enhanced T1WI (TR 6.3 ms, TE 3.1 ms, flip angle = 15°, FOV=
240 × 240 mm, matrix 192 ×192, slice thickness 5 mm) was
obtained after intravenous rejection of 0.1 ml/kg gadobutrol
(Gadovist, Bayer Schering Pharma). The scan range included the
region from the calvarial vertex down to the foramen magnum.

Neuroradiologist Assessment
To compare the diagnostic performance of the pretrained CNN
models with a visual assessment, MRI images of all 164 cases were
independently reviewed by the same two neuroradiologists (Wu JQ
and Liu MQ, with 14 and 6 years’ experience, respectively, in
neuroradiology). They were blinded to clinical information but were
aware that the patients were either encephalitis or glioma without
knowing the exact number of patients diagnosed with each entity.
The two readers assessed only conventional MR images (FLAIR,
CE-T1WI, and T2WI) and recorded a final diagnosis using a 4-
point scale (1 = definite encephalitis; 2 = likely encephalitis; 3 =
likely glioma; and 4 = definite glioma). Cohen’s kappa coefficients
were used to assess the interdiagnosis agreement by the two
radiologists, which was interpreted as follows: <0.20 = slight,
0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = good, and
0.81–1.00 = excellent.

Image Preprocessing
All MRI images (FLAIR, CE-T1WI, and T2WI) were exported
in.jpg format without annotation from the original digital
imaging communication in medicine (DICOM) format on
PACS. Then we use the Opencv image-processing library to
cut out the redundancy around the images, such as the skull and
eyes, and only retain the brain parenchyma of the original image
matrix. The flowchart was added to the supplementary materials.
After that, images containing lesion areas were selected by the
two experienced neuroradiologists. This screening can ensure
that all features contributing to the classification are retained,
and remove the nonfocus sections that interfere with
the classification.

Data augmentation plays a vital role in the utilization of deep
learning in medical images, especially in our task, which lacks
data. The training data were augmented four times by randomly
choosing four methods from a list of six methods: contrast
transformation, brightness conversion (increased and
decreased), sharpening and flipping (horizontal and vertical).
The test data set was kept as origin. Last, in order to implement
our experiment more efficiently, as the CNN’s network
architecture we chose the bilinear interpolation to resize all the
images to 224 × 224.

Deep Transfer Learning
One of the most important reasons for the tremendous success of
deep learning is that it can handle massive amounts of data. With
the development of the Internet, thousands of different data can be
obtained in a very short time. Nevertheless, in the field of medical
imaging, there is usually a lack of data sets. Moreover, the
annotation of medical images is not only tedious, laborious, and
Frontiers in Oncology | www.frontiersin.org 3
time-consuming but also demanding of costly, specialty-oriented
skills that require experienced radiologists. Transfer learning is an
effective method to solve this problem (17). Transfer learning is a
method that uses a CNN network model trained on a large data set
such as ImageNet and transfers it to another different but related
task. This results in a faster, more accurate and more generalized
learning process (18, 19). The weight parameters of this model are
generated after learning massive data sets, and it has the ability to
extract a class-specific feature representation, which is suitable for
distinguishing encephalitis and glioma mimicking encephalitis.

Based on the idea of transfer learning, we selected current
popular CNN networks (Alexnet, ResNet-50, and Inception-v3)
to classify encephalitis and glioma mimicking encephalitis of
intracranial diseases with similar manifestations on MRI. We
trained them using the ImageNet data set. After that, we utilized
our own training data set to fine-tune these models and evaluate
them in order to choose the model with the best performance.
The transfer learning process for the classification of these two
brain diseases is shown in Figure 1.

Pretrained Model
After Alexnet was proposed and had tremendous success in
image classification tasks during the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) in 2012, more and
more deep convolutional neural networks with superior
performance were proposed and applied in scientific research
and practical applications, such as computer vision and natural
language processing. All basic structures are the same, including
the convolutional layer, pooling layer, and fully connected layer.

Alexnet
In 2012, the Alexnet was the first architecture to use a deep
convolutional neural network, which showed the best results and
achieved significant improvement over traditional non-deep
methods for the ILSVRC task (20). It has several innovations
including using ReLU as the CNN network’s activation function
to solve the gradient dispersion problem when the network is
deep, using the dropout method randomly to ignore some
neurons and reduce overfitting and using max-pooling and
proposed local response normalization (LRN) in the network
to enhance the generalization ability. It has 60 million
parameters and 500,000 neurons, and consists of five
convolutional layers and three pooling layers (not shown)
followed by three fully connected layers and a softmax classifier.

ResNet-50
The ResNet (21) model proposed a new structure called the
“residual block,” which changed the learning goal: the residual
block was no longer learning a complete network’s output, but
the difference between output and input was residual. The
residual block is implemented by a connection between the
block’s input and an output named the “shortcut connection.”
The input and output of this “residual block” are overlapped
elementwise through a “shortcut connection,” which does not
add additional parameters or computation to the network but
can greatly accelerate the training process and improve the
training effect of this model. By using a residual unit to
March 2021 | Volume 11 | Article 639062
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successfully train 152 layers of the deep neural network, this
approach was the champion in the ILSVRC 2015 competition,
achieving a 3.57% top-5 error rate while the parameter quantity
was lower than those of other deeper models. Because of its
“simple and practical” coexistence, after that, many methods
based on ResNet-50 or ResNet-101 have been widely used in
detection, segmentation, recognition, and other fields.

In our task, we chose a ResNet-50 model containing one
general convolutional layer, 16 “building block” modules and
one pooling layer and one fully connected layer. Each “building
block” has three convolutional layers. ResNet-50 eventually has
20 million parameters.

Inception-v3
The GoogLeNet (22) model is significantly more complex and
deeper than all previous CNN architectures. More important, it
introduces a new module called the “inception module,” which
concatenates filters of different sizes and dimensions into a single
new filter. In our task, we chose the Inception-v3 architecture to
train a classifier. Overall, Inception-v3 has six convolutional
layers, two pooling layers, and ten “inception” modules. Each
“inception” module consists of seven to nine convolution layers
and one pooling layer. The model we chose contains 30
million parameters.

Architecture Modification
The models we introduced above were for ILSVRC image
classification tasks that contain 1000 categories. However, in
our task, there are only two categories, so the original CNN
structures need to be modified to ensure that the experiment can
be implemented. First, because of a lack of data sets and a large
number of parameters in these models, overfitting occurs, which
means that the training accuracy is outstanding but the
validation or test accuracy is much lower. This suggests that
Frontiers in Oncology | www.frontiersin.org 4
the model is too complex to fit the data and the data are too
scarce. To alleviate this problem, we removed all fully connected
layers and treated the activations of the last convolutional layer
as a deep feature representation for each input image. We added
two fully connected layers which contained fewer hidden nodes
to reduce the parameters. The first fully connected layer was
fixed at 512 hidden nodes, and we initialized the weights with a
Gaussian distribution. The activation function was ReLU. The
second fully connected layer had 256 hidden nodes, and its
initialization and activation were the same as that of the first fully
connected layer. The last layer was the output layer. For our
binary classification task, we fixed the last layer at one. We used
sigmoid activation at the output layer to determine the
probability directly. We used other modifications on the
models to promote their classification performance, such as
adding batch normalization and dropout. All of these
modifications are based on regularization, which can alleviate
overfitting and increase the classification accuracy.
Experiment
Evaluation
Because we had a small amount of data, the evaluation of the
three models was based on five-fold cross-validation, which splits
all samples into five subfolds, using four of them as a training set
and one as a test set in each iteration. During the experiment, the
training process was carried out on the training set, while the test
set was used to assess the performance of each model.

Due to the imbalances between the two diseases in our task, we
used the receiver operating characteristic (ROC) curve that is drawn
by the false positive rate and true positive rate as our principle
evaluation measure. The ROC and the area under the curve (AUC)
were used to evaluate the discrimination performance of these
models using DeLong tests, and p<0.05 was considered
FIGURE 1 | Transferring parameters of convolutional neural network (CNN). First, network is trained on source task (ImageNet classification, top row) with large
amount of available labeled images. Then, convolutional layers (C1-C5) are transferred to target task(brain tumour and encephalitis classification, bottom row). We
remove original fully connected layers (FC6-FC8) and add adaptation layer (FCa-FCc). Last, we fine-tune new model on labeled data of target task.
March 2021 | Volume 11 | Article 639062
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statistically significant. The accuracy, sensitivity, and specificity were
also computed.

Implementation
The preprocessing and classification methods were coded in python
using Keras and Opencv. Evaluation methods were implemented
using scikit-learn. All experiments were performed using Ubuntu
OS on a machine with an Intel Xeon E5 2687W V3, NVIDIA
GeForce 1080ti GPU, and 16 × 8GB of RAM.

The CNN networks we chose (Alexnet, ResNet-50, and
Inception-v3) were all fine-tuned from ImageNet pretrained
models. In these experiments, we fixed the hyperparameters to be
the same so that we could choose the best model with excellent
performance. For fine-tuning, the number of training epochs was
50, and the minibatch size was 32 image instances. We used Adam
as our optimization method, and the hyperparameters had
momentum: 0.9, weight decay: 0.0005 and base-learning rate: 0.001.
Frontiers in Oncology | www.frontiersin.org 5
RESULTS

Comparison of Performance of Three
Pretrained CNN Models
In this paper, we focused on three pretrained CNN models in
classifying glioma mimicking encephalitis and encephalitis.
Table 1 summarizes the averaged classification accuracy,
specificity, sensitivity and AUC values of the Alexnet, ResNet-
50, and Inception-v3 architectures based on three single MRI
modalities under five-fold cross-validation. Figure 2 shows the
ROC curves of the three pretrained CNN methods based on
three single MRI modalities. It can be seen from Table 1 and
Figure 2 that all classification models had great potential in
distinguishing glioma mimicking encephalitis and encephalitis
(AUC>0.9). Among them, the highest classification performance
was achieved by the Inception-v3 model, and the lowest
performance was obtained with the Alexnet model. And
TABLE 1 | Performance comparison of three pretrained models based on three single MRI modalities.

Accuracy (%) Specificity (%) Sensitivity (%) AUC

FLAIR Alexnet 86.67 95.37 70.17 0.915
ResNet-50 88.95 92.52 82.14 0.972
Inception-v3 93.29 97.22 85.71 0.970

CE-T1WI Alexnet 92.72 97.22 84.21 0.955
ResNet-50 93.33 100 80.70 0.973
Inception-v3 96.96 100 91.22 0.983

T2WI Alexnet 84.84 87.96 78.94 0.944
ResNet-50 95.75 96.29 94.73 0.975
Inception-v3 97.57 99.07 94.73 0.981
Ma
rch 2021 | Volume 11 | Article 6
AUC, the area under the receiver operator characteristic curve.
FIGURE 2 | Comparison of receiver operating characteristic curves of three pretrained CNN models based on three single MRI modalities.
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Inception-v3 performed statistically significantly better than the
Alexnet architecture in accuracy (p<0.05). The classification
accuracy on FLAIR, CE-T1WI and T2WI of ResNet-50 was
88.95%, 93.33% and 95.75%, respectively. The Alexnet
performance was statistically significantly lower than that of
the ResNet-50 architecture when based on FLAIR modality
(p<0.05). There was no statistically significant difference
between ResNet-50 and Inception-v3 for any of the modalities.

Comparison of Performance of Single
Modality Model
To further examine the effect of different MRI modalities on
model performance, FLAIR, CE-T1WI, and T2WI single
modality networks were constructed, and the classification
accuracies are shown in Figure 3. The results indicate that the
Inception-v3 and ResNet-50 models related to T2WI data inputs
achieved the highest accuracy (97.57% and 95.75%, respectively)
and were slightly better than CE-T1WI and FLAIR data.
However, they had similar AUC values on T2WI and CE-
T1WI. Looking at the classification performance of the Alexnet
model, the highest accuracy (92.72%) and AUC (0.955) were
achieved based on CE-T1WI. FLAIR had the lowest classification
ability for the three networks. Note that no matter what network
was applied, the three single MRI modalities (FLAIR, CE-T1WI,
and T2WI) as the input data had no significant difference in their
classification performance (p>0.05, DeLong test).

Comparisons of Visual Assessment and
Deep Learning Methods
The diagnostic performance of visual assessment for these two
diseases was evaluated by two neuroradiologists. The AUC were
0.891, 0.770 and the accuracy were 80.61% and 76.97% for
readers 1 and 2, respectively. Interagreement between the two
neuroradiologists was rated as moderate (Cohen’s kappa = 0.513,
95% CI was 0.415–0.611). Based on the results in Figure 4, the
Frontiers in Oncology | www.frontiersin.org 6
Inception-v3 and ResNet-50 models had significant differences
from the results of two neuroradiologists with regard to AUC
(p<0.05, DeLong test) for any MRI modality. However, there was
no significant difference between the AUC of the Alexnet model
and those of the experienced neuroradiologist of reader 2
(p>0.05, DeLong test). These findings indicate the Inception-v3
and ResNet-50 models have a higher level of performance than
radiologists' diagnostic performance. The performance of the
Alexnet model is better than that of a resident neuroradiologist
and equivalent to that of an experienced neuroradiologist.
DISCUSSION

In this study, three pretrained CNN models were fine-tuned
using a transfer learning approach that was successfully
implemented for the automated classification of glioma
mimicking encephalitis and encephalitis on conventional MR
images. Classification models with AUC values of 1.00–0.90 and
0.90–0.80 were regarded as excellent and good, respectively. In
this study, no matter what MRI modality as the input data, three
pretrained CNN network all had AUC values over 0.9 with
excellent performance. Inception-v3 based on the T2WI
modality achieved the highest classification accuracy. And then
we demonstrated the utility of deep learning to classify neoplastic
and non-neoplastic situations of the brain, yielding excellent
diagnostic values over the visual analysis of neuroradiologists,
which is consistent the results of other studies (6–8, 23).

In terms of the structure of the three pretrained CNNmodels,
namely Alexnet, ResNet-50, and Inception-v3 models for our
classification problem. The Inception module of the Inception-v3
was able to extract features under different receptive fields, and
combine these features to obtain deep features with stronger
robustness, so as to achieve the best classification accuracy in this
study. The structure of ResNet-50 model mainly improved the
FIGURE 3 | Comparison of accuracy of classification performance with Alexnet, ResNet-50, and Inception-v3 on three single MRI modalities.
March 2021 | Volume 11 | Article 639062
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perspective of model optimization, but the size of receptive field
was unchanged, resulting in its performance lower than
Inception-v3. Notably, there was no significant difference
between Inception-v3 and ResNet-50 models. As for Alexnet
model, the number of convolution layers was too small to obtain
advanced convolution features, resulting in the worst
classification performance, which was significantly lower than
that of inception-v3 and slightly lower than that of ResNet-50.
Therefore, the deeper-layered Inception-v3 and ResNet-50
models provided features that are more suitable for
distinguishing these two diseases than the thin-layered Alexnet
model. Previous studies also confirmed it. Yang et al. (24) used
Alexnet and GoogLeNet in grading glioma from MR images.
GoogLeNet proved superior to Alexnet for the task. Talo et al.
(15) demonstrated that the ResNet-50 model achieved the best
classification accuracy while the Alexnet model obtained the
lowest performance among Alexnet, ResNet-18, ResNet-34, and
ResNet-50 pretrained models in five classes of brain abnormality
classification MR images. In another study (25), the ResNet-50
model also achieved the highest classification accuracy among
four pretrained models in automating four classes of oral
squamous cell carcinoma.

Selecting which images to use is usually the basis for a
machine learning study. In fact, the different MR imaging
modalities used in machine learning studies of glioma in the
current literatures with various conclusions. Some researchers
reported that radiomics features extracted from the CE-T1WI
with a better performance than other single MR sequences when
grading the gliomas (26, 27) and predicting the IDH genotype of
glioma (28). Another report showed that T2WI modality had the
best IDH genotype prediction ability of glioma, and conversely,
CE-T1WI was lower (29). In this study, as Table 1 revealed, no
matter what network was applied, the single MRI modality
obtained high and similar performance. Among them the
Inception-v3 and ResNet-50 diagnostic models based only on
Frontiers in Oncology | www.frontiersin.org 7
the T2WI modality conferred a slightly higher accuracy, followed
by CE-T1WI and FLAIR. This probably because the patients who
we chose in this study without significant enhancement, making
it was difficult to determine the boundaries of glioma mimicking
encephalitis and encephalitis lesions on the CE-T1WI modality,
when we used entire MRI image rather than the ROI of the
lesion. On the contrary, glioma mimicking encephalitis and
encephalitis showed hyperintense signal intensities on T2WI
modality, and hyperintense signal intensity on T2WI modality
is also a hallmark of encephalitis (30). Therefore, the pretrained
CNNmodels are easy to identify lesions and extract deep features
on the T2WI modality. It is worth noting several studies showed
that a combination of several MRI parameters can better
understand the tumour characteristics with an enhanced
performance of the classifier than a single modality model
based on machine learning (27–29). However, Yoganada et al.
(31) suggested that the T2WI network and multicontrast
network achieved similar IDH classification accuracies of
gliomas using deep learning MRI networks. Chang et al. (28)
showed that CE-T1WI images achieved similar accuracy with a
combined sequence model in a predictive glioma IDH genotype.
This suggests that the information from single MR images can
also provide a high classification confidence, which is consistent
with our results. Moreover, the ability to utilize only single MR
modality data will facilitate imminent clinical translation.

There are some limitations in the present study. First, the
sample size was relatively small for deep learning analysis and
single-center study. Therefore, multicenter data sets and a larger
patient cohort are needed to verify the current findings. Second,
we did not include clinical data and imaging features to train a
clinical model to compare with CNN models, and we will
continue to study in the future. Third, we did not evaluate the
diagnostic performance of deep learning based on T1WI
sequence as it is difficult to automatically identify lesions,
besides, the diagnostic performance of deep learning was not
FIGURE 4 | Classification performance for three pretrained models and radiologists including averaged accuracy, specificity, sensitivity and AUC value as evaluation metrics.
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compared with combined sequences since the single sequence
has achieved well results.
CONCLUSIONS

In this study, we applied the transfer learning approach of three
pretrained CNN models (Alexnet, ResNet-50, and Inception-v3) to
automatically classify glioma mimicking encephalitis and encephalitis
on conventional MRI images. The results demonstrated that the
three pretrained CNN models had excellent classification
performances that were superior to those of the neuroradiologists.
The Inception-v3 and ResNet-50 were significantly superior to
Alexnet. And no matter what network was applied, the single MRI
modality as the input data can obtain high and similar performance,
among them Inception-v3 related to T2WI input achieved the highest
classification accuracy. Thus, the pretrained CNN models can aid in
the accurate and noninvasive classification of glioma mimicking
encephalitis and encephalitis by automatically extracting deep
features from multiparametric MRI images.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The study involving human participants was reviewed and
approved by The First Affiliated Hospital of Chongqing Medical
University. For this retrospective analysis, the informed consent
requirement was waived.
Frontiers in Oncology | www.frontiersin.org 8
AUTHOR CONTRIBUTIONS

Conception and design: SX andWW. Provision of study material
or patients: WW, WZ, and QW. Collection and/or assembly of
data: WW,WZ, and QW. Data analysis and interpretation: WW,
JL, and JY. Manuscript writing: WW, JL, and WZ. Manuscript
review: SX and JY. Final approval of manuscript: WW, JL, JY,
QW, WZ, and SX. All authors contributed to the article and
approved the submitted version.
FUNDING

This research was supported by Chongqing Research Program of
Basic Research and Frontier Technology [no. cstc2018jcyjAX0633]
and the Fundamental Research Funds for the Central Universities
[no. 2018CDXYGD0017]. We appreciate the funding to support
the research.
ACKNOWLEDGMENTS

We thank other radiologists to help the team to assess visually.
We also appreciate those patients who contributed their images
for our study. During the study process, our institution and
radiology department provided much support and convenience,
which we also express our deep gratitude.
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2021.639062/
full#supplementary-material
REFERENCES

1. Vogrig A, Joubert B, Ducray F, Thomas L, Izquierdo C, Decaestecker K, et al.
Glioblastoma as differential diagnosis of autoimmune encephalitis. J Neurol
(2018) 265(3):669–77. doi: 10.1007/s00415-018-8767-1

2. Macchi ZA, Kleinschmidt-DeMasters BK, Orjuela KD, Pastula DM, Piquet
AL, Baca CB. Glioblastoma as an autoimmune limbic encephalitis mimic: a
case and review of the literature. J Neuroimmunol (2020) 342:577214.
doi: 10.1016/j.jneuroim.2020.577214

3. Peeraully T, Landolfi JC. Herpes encephalitis masquerading as tumor. ISRN
Neurol (2011) 2011:474672. doi: 10.5402/2011/474672

4. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278(2):563–77. doi : 10.1148/
radiol.2015151169

5. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine:
a review. JAMA Oncol (2016) 2(12):1636–42. doi: 10.1001/jamaoncol.
2016.2631

6. Nakagawa M, Nakaura T, Namimoto T, Kitajima M, Uetani H, Tateishi M,
et al. Machine learning based on multi-parametric magnetic resonance
imaging to differentiate glioblastoma multiforme from primary cerebral
nervous system lymphoma. Eur J Radiol (2018) 108:147–54. doi: 10.1016/
j.ejrad.2018.09.017

7. Alcaide-Leon P, Dufort P, Geraldo AF, Alshafai L, Maralani PJ, Spears J, et al.
Differentiation of enhancing glioma and primary central nervous system
lymphoma by texture-based machine learning. AJNR Am J Neuroradiol
(2017) 38(6):1145–50. doi: 10.3174/ajnr.A5173

8. Suh HB, Choi YS, Bae S, Ahn SS, Chang JH, Kang SG, et al. Primary central
nervous system lymphoma and atypical glioblastoma: differentiation using
radiomics approach. Eur Radiol (2018) 28(9):3832–9. doi: 10.1007/s00330-
018-5368-4

9. Zhang Y, Cheng C, Liu Z, Wang L, Pan G, Sun G, et al. Radiomics analysis for
the differentiation of autoimmune pancreatitis and pancreatic ductal
adenocarcinoma in 18 F-FDG PET/CT. Med Phys (2019) 46(10):4520–30.
doi: 10.1002/mp.13733

10. Park S, Chu LC, Hruban RH, Vogelstein B, Kinzler KW, Yuille AL, et al.
Differentiating autoimmune pancreatitis from pancreatic ductal
adenocarcinoma with CT radiomics features. Diagn Interv Imaging (2020)
101(9)555–64. doi: 10.1016/j.diii.2020.03.002

11. Guo J, Liu Z, Shen C, Li Z, Yan F, Tian J, et al. MR-based radiomics signature
in differentiating ocular adnexal lymphoma from idiopathic orbital
inflammation. Eur Radiol (2018) 28(9):3872–81. doi: 10.1007/s00330-018-
5381-7

12. Swati ZNK, Zhao Q, Kabir M, Ali F, Ali Z, Ahmed S, et al. Brain tumor
classification for MR images using transfer learning and fine-tuning. Comput Med
Imaging Graph (2019) 75:34–46. doi: 10.1016/j.compmedimag.2019.05.001

13. Deepak S, Ameer PM. Brain tumor classification using deep CNN features via
transfer learning. Comput Biol Med (2019) 111:103345. doi: 10.1016/
j.compbiomed.2019.103345
March 2021 | Volume 11 | Article 639062

https://www.frontiersin.org/articles/10.3389/fonc.2021.639062/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.639062/full#supplementary-material
https://doi.org/10.1007/s00415-018-8767-1
https://doi.org/10.1016/j.jneuroim.2020.577214
https://doi.org/10.5402/2011/474672
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1016/j.ejrad.2018.09.017
https://doi.org/10.1016/j.ejrad.2018.09.017
https://doi.org/10.3174/ajnr.A5173
https://doi.org/10.1007/s00330-018-5368-4
https://doi.org/10.1007/s00330-018-5368-4
https://doi.org/10.1002/mp.13733
https://doi.org/10.1016/j.diii.2020.03.002
https://doi.org/10.1007/s00330-018-5381-7
https://doi.org/10.1007/s00330-018-5381-7
https://doi.org/10.1016/j.compmedimag.2019.05.001
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.compbiomed.2019.103345
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Glioma in Deep Learning
14. Diamant A, Chatterjee A, Vallières M, Shenouda G, Seuntjens J. Deep learning
in head & neck cancer outcome prediction. Sci Rep (2019) 9(1):2764.
doi: 10.1038/s41598-019-39206-1

15. Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR. Convolutional neural
networks for multi-class brain disease detection using MRI images. Comput
Med Imaging Graph (2019) 78:101673. doi: 10.1016/j.compmedimag.
2019.101673

16. Lee H, Hong H, Kim J, Jung DC. Deep feature classification of
angiomyolipoma without visible fat and renal cell carcinoma in abdominal
contrast-enhanced CT images with texture image patches and hand-crafted
feature concatenation. Med Phys (2018) 45(4):1550–61. doi: 10.1002/
mp.12828

17. Oquab M, Bottou L, Laptev I, Sivic J. (2014). Learning and Transferring Mid-
level Image Representations Using Convolutional Neural Networks. In: 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Columbus, OH: IEEE (2014). p. 1717–24. doi: 10.1109/CVPR.2014.222

18. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al.
Convolutional Neural Networks for Medical Image Analysis: Full Training or
Fine Tuning? IEEE Trans Med Imaging (2016) 35(5):1299–312. doi: 10.1109/
TMI.2016.2535302

19. Deniz E, Şengür A, Kadiroğlu Z, Guo Y, Bajaj V, Budak Ü. Transfer learning
based histopathologic image classification for breast cancer detection. Health
Inf Sci Syst (2018) 6(1):18. doi: 10.1007/s13755-018-0057-x

20. Deng J, Dong W, Socher R, Li L, Li K, Li FF. (2009). ImageNet: A large-scale
hierarchical image database, In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Miami, FL: IEEE (2009). p. 248–55.
doi: 10.1109/CVPR.2009.5206848

21. He K, Zhang X, Ren S, Sun J. (2016). Deep Residual Learning for Image
Recognition, In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV: IEEE (2016). p. 770–8. doi: 10.1109/
CVPR.2016.90

22. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. (2015). Going
deeper with convolutions, in: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Boston, MA: IEEE (2015). p. 1–9. doi: 10.1109/
CVPR.2015.7298594

23. Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic features and
multilayer perceptron network classifier: a robust MRI classification strategy
for distinguishing glioblastoma from primary central nervous system
lymphoma. Sci Rep (2019) 9(1):5746. doi: 10.1038/s41598-019-42276-w
Frontiers in Oncology | www.frontiersin.org 9
24. Yang Y, Yan LF, Zhang X, Han Y, Nan HY, Hu YC, et al. Glioma Grading on
Conventional MR Images: A Deep Learning Study With Transfer Learning.
Front Neurosci (2018) 15(12):804. doi: 10.3389/fnins.2018.00804

25. Das N, Hussain E, Mahanta LB. Automated classification of cells into multiple
classes in epithelial tissue of oral squamous cell carcinoma using transfer
learning and convolutional neural network. Neural Netw (2020) 128:47–60.
doi: 10.1016/j.neunet.2020.05.003

26. Ge C, Gu IY, Jakola AS, Yang J. Deep learning and multi-sensor fusion for glioma
classification using multistream 2D convolutional networks. Conf Proc IEEE Eng
Med Biol Soc (2018) 2018:5894–7. doi: 10.1109/EMBC.2018.8513556

27. Tian Q, Yan LF, Zhang X, Zhang X, Hu YC, Han Y, et al. Radiomics strategy
for glioma grading using texture features from multiparametric MRI. J Magn
Reson Imaging (2018) 48(6):1518–28. doi: 10.1002/jmri.26010

28. Chang K, Bai HX, Zhou H, Su C, Bi WL, Agbodza E, et al. Residual
convolutional neural network for the determination of IDH status in low-
and high-grade gliomas from MR imaging. Clin Cancer Res (2018) 24
(5):1073–81. doi: 10.1158/1078-0432.CCR-17-2236

29. Liang S, Zhang R, Liang D, Song T, Ai T, Xia C, et al. Multimodal 3D
DenseNet for IDH genotype prediction in gliomas. Genes (Basel) (2018) 9
(8):382. doi: 10.3390/genes9080382

30. Zoccarato M, Valeggia S, Zuliani L, Gastaldi M, Mariotto S, Franciotta D, et al.
Conventional brain MRI features distinguishing limbic encephalitis from
mesial temporal glioma. Neuroradiology (2019) 61(8):853–60. doi: 10.1007/
s00234-019-02212-1

31. Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M, Nalawade SS,
Murugesan GK, Yu FF, et al. A novel fully automated MRI-based deep-
learning method for classification of IDH mutation status in brain gliomas.
Neuro Oncol (2020) 22(3):402–11. doi: 10.1093/neuonc/noz199

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Wu, Li, Ye, Wang, Zhang and Xu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2021 | Volume 11 | Article 639062

https://doi.org/10.1038/s41598-019-39206-1
https://doi.org/10.1016/j.compmedimag.2019.101673
https://doi.org/10.1016/j.compmedimag.2019.101673
https://doi.org/10.1002/mp.12828
https://doi.org/10.1002/mp.12828
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1109/TMI.2016.2535302
https://doi.org/10.1109/TMI.2016.2535302
https://doi.org/10.1007/s13755-018-0057-x
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1038/s41598-019-42276-w
https://doi.org/10.3389/fnins.2018.00804
https://doi.org/10.1016/j.neunet.2020.05.003
https://doi.org/10.1109/EMBC.2018.8513556
https://doi.org/10.1002/jmri.26010
https://doi.org/10.1158/1078-0432.CCR-17-2236
https://doi.org/10.3390/genes9080382
https://doi.org/10.1007/s00234-019-02212-1
https://doi.org/10.1007/s00234-019-02212-1
https://doi.org/10.1093/neuonc/noz199
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Differentiation of Glioma Mimicking Encephalitis and Encephalitis Using Multiparametric MR-Based Deep Learning
	Introduction
	Materials and Methods
	Patients
	Data Acquisition
	Neuroradiologist Assessment
	Image Preprocessing
	Deep Transfer Learning
	Pretrained Model
	Alexnet
	ResNet-50
	Inception-v3

	Architecture Modification
	Experiment
	Evaluation
	Implementation


	Results
	Comparison of Performance of Three Pretrained CNN Models
	Comparison of Performance of Single Modality Model
	Comparisons of Visual Assessment and Deep Learning Methods

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


