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Radiomics is an emerging field in radiology that utilizes advanced statistical data
characterizing algorithms to evaluate medical imaging and objectively quantify
characteristics of a given disease. Due to morphologic heterogeneity and genetic
variation intrinsic to neoplasms, radiomics have the potential to provide a unique insight
into the underlying tumor and tumor microenvironment. Radiomics has been gaining
popularity due to potential applications in disease quantification, predictive modeling,
treatment planning, and response assessment – paving way for the advancement of
personalized medicine. However, producing a reliable radiomic model requires careful
evaluation and construction to be translated into clinical practices that have varying
software and/or medical equipment. We aim to review the diagnostic utility of radiomics in
otorhinolaryngology, including both cancers of the head and neck as well as the thyroid.
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INTRODUCTION

Head and neck cancer (HNC) malignancies include cancers within the upper aerodigestive tract –
anatomically including cancers of the mucosal linings of the sinuses and air pathways from the
thoracic inlet up to the skull base (1). This group of malignancies is the seventh most common
cancer worldwide and the ninth most common cancer within the United States (1). Considering the
various anatomical regions pertaining to HNC, cutaneous neoplasms of the head and neck (e.g.
melanoma, cutaneous squamous cell carcinomas, basal cell carcinomas, etc.) are not discussed in
this article. Instead, malignant neoplasms of the thyroid often present with similar clinical
symptoms as head and neck cancers, and both are often managed initially by
otorhinolaryngologists. The goal of this review is to illustrate the diagnostic utility the field of
radiomics can offer in differentiating pathology at the nascent setting of presentation.

Radiomics - “radi” deriving from the science of radiology and “-omics” to indicate mapping of
the human genome (2–4) - is a rapidly evolving field that aims to provide non-invasive ability to
comprehensively characterize tissues and organs from features extracted from standard-of-care
medical imaging (5), including techniques such as computed tomography (CT), positron emission
tomography (PET), magnetic resonance imaging (MRI), and so on. It is important to further
explore the implications and significance of the clinical knowledge deduced from radiological
imaging to potentiate developing a radiomic pipeline that allows for improving diagnosis
development and clinical decision making when treating cancer.
July 2021 | Volume 11 | Article 6393261

https://www.frontiersin.org/articles/10.3389/fonc.2021.639326/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.639326/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:achaudhry@coh.org
https://doi.org/10.3389/fonc.2021.639326
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.639326
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.639326&domain=pdf&date_stamp=2021-07-07


Gul et al. Radiomics and Head and Neck Cancers
Technological advancements in computer hardware and
artificial intelligence enable an integrative analysis of clinical,
radiomic, and bio-genomic data for cancer discovery (6–9). In
the case of radiomics, vast numbers of quantitative features can
be derived from multi-modal medical images using
computational methods (3, 10). Phenotypes represented using
radiomic features may have prognostic and diagnostic value, and
potentially improve clinical decision support in cancer treatment
(6, 11, 12).

Radiomics can be performed using multimodal (CT, PET,
MRI, and ultrasound) and/or multiparametric (multiple MRI
sequences, e.g., diffusion MRI, perfusion MRI techniques (7–9,
13–15). In a typical radiomic workflow (Figure 1), we first
perform image registration and pre-processing, then image
segmentation and annotation. Next, radiomic features are
calculated using computational methods. A variety of tools are
available to streamline the process (16–24). Radiomic features
are mostly sub-visual and can be coarsely grouped into intensity,
shape, and texture. In addition, before calculating the radiomic
values, we can apply spatial filters such as wavelets and Laplacian
of Gaussian filters to extract a variety of derivative and spatial-
frequency information.

The radiomic features are then integrated with other data
sources for prognostic (7–9, 25–39), treatment response (40–42),
histopathological (43–48), or radiogenomic (11, 49–51) analyses
using statistical or machine learning modeling techniques.
HEAD AND NECK CANCER

Oncologic disease developing in the mucosal surfaces of
anatomic subsites, such as the nasopharynx, oropharynx,
hypopharynx, oral cavity, larynx, paranasal sinuses, and
salivary glands are considered HNC (Figure 2) (52, 53). The
International Classification of Diseases, Tenth Revision (ICD-10)
reports that oral and pharyngeal cancer accounts for
approximately 2.3% of cancers within the United States. Oral
and pharyngeal cancer has a five-year survival of 27.8% and is
internationally considered to be the sixth most common cancer
(54, 55). Risks of developing this disease are commonly
associated with the consumption of tobacco and alcoholic
products. Therefore, 74% of the general population that
practice tobacco and alcohol consumption have a greater risk
Frontiers in Oncology | www.frontiersin.org 2
of developing oral and pharyngeal cancer, with an estimated 80%
of that population being male and 61% being female (54).

Research has also indicated an etiological association of head
and neck cancer to viruses (56). The human papillomavirus
(HPV), a virus known to cause common conditions such as
warts, has developed a reputation for its association with cervical
and oropharyngeal cancers (53). Therefore, when diagnosing
HNC, patients will often be screened for HPV infection as a
potential cause of disease. There are over 170 different types of
HPV’s, categorized by the virus’s characteristics such as location
(mucosal or cutaneous anatomical sites), response to an external
stimulus, and its risk for malignancy. The mucosal subgroup of
HPV is primarily associated with HNC as this subgroup contains
over 40 subtypes that are considered to be sexually transmitted
diseases (STD) and predominantly infect the reproductive and
respiratory tracts (53).

Additional etiological associations to HNC include the
Epstein-Barr virus (EBV), which is often associated with many
different types of human cancers, including those of lymphoid
and epithelial cells (57). Considered one of the most common
human viruses, EBV infection typically spreads undetected and
can reside within the host over a span of ages in which infection
is dependent on several factors such as genetic predisposition,
diet, living conditions, hygiene, and sexual behavior (53, 58). To
further validate the commonality of EBV infection, statistics
show by adulthood approximately 90-95% of the population will
sustain a permanent, asymptomatic infection of EBV (53, 57). As
a member of the Herpesviridae family, alternatively known as
human herpesvirus type 4 (HHV4) (58), post-primary infection
of EBV is permanent and can subsequently result in the virus
shedding into genital and salivary secretions that increase the
risk of carcinogenesis into HNSSC.

Currently, radiomics can predict some tumoral characteristics
linked to patient survival in HNC (Table 1). In a study performed
by Mukherjee et.al., radiomic features were analyzed via CT
imaging to non-invasively predict the histopathological features
of HNSCC. This study was performed retrospectively, utilizing CT
images and data from clinically diagnosed patients with HNSCC.
An institutional test cohort (n = 71) and an HNSCC training
cohort derived from The Cancer Genome Atlus (TCGA) (n = 113)
were analyzed within this study (43). A machine learning model,
trained with 2,131 extracted radiomic features that were utilized to
predict tumor histopathological characteristics, was applied to the
FIGURE 1 | Typical radiomic workflow.
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training and test cohort. These features included intensity, size
and shape, texture, and filters (43). The cancer characteristics
investigated related to these features were tumor grade, perineural
invasion, lymphovascular invasion, extracapsular spread, and
HPV status (p16 expression) (43). For dimensionality reduction
and classification of these features, principal component analysis,
and regularized regression was applied, respectively (43). Results
from this study indicated that the radiomic model produced by
Mukherjee et al. showed strong-to-moderate power in predictive
prognosis for patients diagnosed with HNSCC, which was further
validated in an external institutional testing cohort. In other
words, this study concluded that radiomic CT models have
significant value in predicting features typically indicating
pathological assessment of HNSCC (43). Many of these
Frontiers in Oncology | www.frontiersin.org 3
pathologic features are specific to the individual regions of the
head and neck and will therefore be reviewed by region (Figure 2).

Nasopharynx
Typically viewed as an endemic within the southern Chinese
population, undifferentiated nasopharyngeal carcinoma (NPC)
has the strongest association with EBV infection (57, 58). The
World Health Organization (WHO) has characterized NPC into
two primary histological types: keratinizing squamous cell
carcinoma (Type I) and non-keratinizing squamous cell
carcinoma (Type II and III). The undifferentiated histological
subtype of NPC, such as Type II and III, has the closest
association with EBV infection, which particularly affects
regions such as Hong Kong, southern regions of China, and
FIGURE 2 | Anatomy of ear, nose, and throat, sagittal view.
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Southeast Asia (58). Additional risks include are genetic
predisposition and dietary factors. It is important to note that
although EBV infection is discovered in nearly all
undifferentiated NPC cases, EBV is not detected in other head
and neck cancers, excluding salivary gland tumors (58).

Exploring the application of Radiomics to
Nasopharyngeal Cancer
In a study performed by Zhang et. al., multiparametric magnetic
resonance imaging (MRI)-based radiomics was utilized as a
prognostic factor in patients with advanced NPC. For this
study, 118 advanced NPC patients were enrolled to determine
the training cohort (n = 88) and the validation cohort (n = 30). A
total of 970 radiomic features were extracted from two
parameters: T2-weighted (T2-w) and contrast-enhanced T1-
weighted (CET1-w) MRI images. Application of LASSO
regression was utilized to select features for progression-free
survival (PFS) nomograms and the association between radiomic
features and clinical data was evaluated via heatmaps (37). The
results indicated that there are significant associations between
the radiomic features and PFS. For example, radiomic signatures
derived from joint CET1-w and T2-w images displayed
improved prognostic performance when compared to
signatures derived from the CET1-w and T2-w parameters
separately. These findings were confirmed in the validation
cohort, suggesting the application of radiomics utilizing
multiparametric MRI-based radiomics provided improved
prognosis in advanced NPC. Nonetheless, there is a need to
research features that can be utilized in radiomic application to
profile these types of advanced NPC tumors. Producing these
findings will allow for treatment advancement and precise
clinical risk stratification (20).

Exploring the application of Radiomics to the
Epstein-Barr Virus in Head and Neck Cancer
EBV in relation to HNSSC has the strongest association with
nasopharyngeal carcinoma (NPC). In a study performed by Yang
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K. et. al., the study aimed to develop and validate a nomogram
that incorporated clinical data, gross tumor volume of the
nasopharynx (GTVnx) and lymph nodes (GTVnd) radiomic
signatures, and multiparametric based therapeutic dose-volume
histogram (DVH) signatures by Least Absolute Shrinkage and
Selection Operator (LASSO) to predict progression-free survival
(PFS) in patients diagnosed with locoregionally advanced NPC.
The study concluded that the developed multidimensional
nomogram incorporating radiomic signatures of lymph nodes,
planning scores, and tumor-node-metastasis stage showed
efficient predictive accuracy in determining PFS. However,
incorporating pre-treatment plasma EBV-DNA status
improved the predictive accuracy of the nomogram model.
This implication was investigated via a sub-group analysis of
EBV-DNA (59). This data was confirmed by the study’s
validation cohort, and as a result, indicated that consideration
of pre-treatment EBV-DNA was a useful prognostic biomarker
in NPC (59). Therefore, there is potential improvement in NPC
screening when considering radiomics and EBV-status.

Oropharynx
Oropharyngeal cancer (OPC) is one of the most frequent HNC,
with squamous cell carcinoma (SCC) accounting for
approximately 90% of diagnosed cases (60). The oropharynx is
a region in the pharynx located behind the oral cavity, including
structures such as the soft palate and tonsils. This cancer has a 5-
year-survival rate of approximately 50% (60). The high mortality
rate is not always due to the malignancy or intensity of the
tumor, but simply due to late detection (60). OPC tumors rarely
present symptoms that seem concerning upon initial screening.
For example, symptoms typically include a sore throat or
difficulty swallowing (60). Therefore, the tumor is usually
detected late with little to no time to treat the disease, resulting
in low survival rates and death shortly after diagnosis. OPC can
also be characterized by its aggressive tumors, with a 70%
prevalence of cervical metastases and the ability to disseminate
quickly (60). Risk factors for oropharyngeal cancer include a
TABLE 1 | Summary of radiomic applications in head and neck.

Classification Prediction Target Radiomic and Clinical Features Source

Nasopharynx Progression free survival Multiparametric MRI features (37)
Progression free survival EBV DNA, Gross tumor volume (GTVnx), lymph node (GTVnd), Dose Volume

Histogram
(59)

Oropharynx HPV status CT imaging: gross tumor volume (GTV) (63)
HPV status CE-CT imaging: gross tumor volume (GTV): high intensity, small lesions, greater

sphericity, heterogeneity
(64)

Local tumor control status post chemoradiation CT imaging: shape, intensity, texture, wavelet transformation, heterogeneity, HPV
status

(32)

Hypopharynx Treatment response PET imaging: surface to volume ratio, spherical disproportion, TGV, local homogeneity,
variance

(70)

Disease progression CE-CT and NC-CT image features, clinical identification of peripheral Invasion (71)
Larynx T category prediction radiomics model CT imaging: gradient skewness and mean, least axis, sphericity, wavelet kurtosis (72)

Overall survival CT texture features (73)
Treatment response FLT PET tumor heterogeneity (28)
Local control CT imaging: entropy, kurtosis skewness, standard deviation (74)

Parotid gland Differentiation of MALToma from benign
lymphoepithelial lesion

CT based hybrid radiomic and clinical demographic model (82)

Metastatic PDL-1 expression FDG PET textural features, HPV status, Ki-67 expression (87)
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history of smoking cigarettes and the presence of an HPV
infection (61).

The association between HPV status and HNSCC involves
distinct tumor morphology, younger patient’s age when
presented, and positive response to radiotherapy treatment.
HPV-positive status is a significant prognostic feature
regarding favorable outcomes and overall survival in patients
diagnosed with oropharyngeal squamous cell carcinoma
(OPSCC) (5). This is because HPV-positivity is considered a
strong, independent prognostic feature when diagnosing
OPSCC. HPV status of the tumor is determined by analyzing
p16 positivity using immunohistochemistry. The cyclin-
dependent kinase inhibitor p16 is a tumor suppressor gene
that is often overexpressed in HPV mediated cancers and leads
to an overall better course of disease (62).

In a study performed by Leijenaar et. al., the study examined
that HPV-positive OPSCC is biologically and clinically different
than HPV-negative cases. The study then approached
understanding these significant differences through radiomics
to evaluate the HPV status of OPSCC (63). The study included
four independent cohorts that encompassed a total of 778
patients diagnosed with OPSCC. Of the 778 cases, the data was
randomly assigned for the radiomic model training (n = 628) and
validation (n = 150) cohorts. From pre-treatment CT imaging,
902 radiomic features were extracted from gross tumor volume.
Currently, there are no MRI-based radiomic reports available
regarding radiomic signature prediction of HPV status.

Exploring the Application of Radiomics to
Oropharyngeal Cancer
Application of radiomics has been practiced within this field of
disease and poses as a promising tool to noninvasively
characterize tumor phenotypes (32, 64). In a study conducted
by Bagher-Ebadian et.al., a radiomic analysis of primary tumors
extracted from pre-treatment contrast-enhanced computed
tomography (CE-CT) images was performed on patients
diagnosed with OPC (64). Within this study, Bagher-Ebadian
et al. utilized radiomics to identify distinct features that construct
optimal characterization and prediction of HPV affecting OPC.
Amongst the 172 radiomic features that were examined, only 12
radiomic features were significantly different between HPV-
positive and HPV-negative patients. Results from this study
indicate that gross tumor volumes (GTV) for HPV-positive
patients display higher intensity, smaller lesion size, greater
sphericity, and higher patient intensity-variation/heterogeneity
on CE-CT imaging (64). These results suggest that radiomic
features of HPV status in OPC patients are associated with
spatial arrangement and morphological appearance via CE-
CT imaging.

Furthermore, in a retrospective study performed by Bogowicz
et al. CT radiomics was utilized to predict local tumor control
(LC) after chemoradiation therapy of HNSCC, as well as
examining the effects of HPV infection on tumor radiomics. A
training cohort (n = 93) and a validation cohort (n = 56) were
approved to be included in this study. 317 CT-radiomic features
were calculated within the primary tumor region, including
features based on shape, intensity, texture, and wavelet
Frontiers in Oncology | www.frontiersin.org 5
transformation (32). Results from this study indicated that 3
features were significantly associated with LC, indicating that
tumors with a heterogeneous CT density were at risk for decreased
LC (32). As a result, this study concluded that quantified CT
radiomics examining the heterogeneity of HNSCC tumor density
is associated with LC after chemoradiation therapy and HPV
status (32). Utilizing this radiomic information from studies such
as Bagher-Ebadian et al. and Bogowicz et al. will allow for
clinicians to further optimize oral screening for OPC and
HNSCC, therefore optimizing patient diagnosis and clinical
decision making in treatment planning.

Hypopharynx
Hypopharyngeal cancer has the worst prognosis of all HNC with
a 5-year-survival of only 25% to 41% (65–67). It is uncommon,
with 2,500 new cases arising annually within the United States
(68). The hypopharynx can be divided into three distinct regions
to better distinguish the localized cancer cells: pyriform sinus,
postcricoid region, and the posterior wall (68). The pyriform
sinus is where most squamous cell carcinomas occur, with 70%
of cases arising within this region. The postcricoid region
accounts for approximately 20% of cases and the posterior wall
accounts for approximately 10% of cases (69). Because typical
presentation is usually recognized by the growth of a neck mass
or dysphonia, newly diagnosed patients are often presented at
Stage III or IV of disease, contributing to this disease history of
poor prognosis (68). Hypopharyngeal cancer typically affects
individuals ranging between the ages of 50 to 60 years, occurring
more often in men than women. Superior localization of the
cancer cells is mostly associated with heavy drinking and
smoking. Nutritional deficiencies account for the postcricoid,
the inferior part of the hypopharynx, being affected (68).
Hypopharyngeal tumors are classified as highly aggressive due
to their ability to metastasize early and infiltrate an abundant
submucosal lymphatic network, sometimes even skipping
metastasis and reappearing in various locations distinct from
the primary site. Therefore, it is very common for multiple
primary tumors to resurface (68). Treatment of hypopharyngeal
cancer is often controversial due to the desire for organ
preservation (65, 67). Early detection of this carcinoma may
only require radiotherapy, but treatment for later stages of the
disease is more complicated. Due to the complications of late-
stage disease, the standard treatment is surgical resection and is
sometimes paired with postoperative chemoradiation therapy
with or without immunotherapy (69).

Exploring the Application of Radiomics to
Hypopharyngeal Cancer
Since early detection of this disease may only require treatment
via radiotherapy, identifying significant markers that indicate the
carcinogenesis of hypopharyngeal cancers into a non-invasive
radiomic pipeline could potentially improve prognosis. Utilizing
radiomics may allow clinicians to assess the progression of the
disease earlier, and, therefore, to construct a patient-specific
treatment plan that optimizes treatment response and reduces
unnecessary high-risk intervention. Fortunately, studies have
July 2021 | Volume 11 | Article 639326
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shown that early detection of the tumor can be found using
radiomics. Liao et al. conducted a study including a total of 80
OPC and hypopharyngeal cancer PET images were analyzed
using radiomics to distinctively select imaging features indicative
of the diseases. These imaging features were then correlated with
prognostic diagnosis, cancer stage detection, and prediction of
effective treatment. All cases included in the study had been
treated with chemoradiation therapy (70). This study found that
16 image features were significantly different between early and
late stages within the several metabolic tumor volumes (MVT).
The image features include surface area, surface to volume ratio,
compactness, spherical disproportion, TGV, energy, contrast,
local homogeneity, dissimilarity, variance, inverse variance,
inverse difference moment, inverse difference, RLNU, and
RPC. These features successfully differentiated early from late
stages of OPC and hypopharyngeal cancer. As a result, these
findings assisted in evaluating prognosis and specific treatment
response for the patient (70). 5 and 2 features had an area under
curve (AUC) in receiver operating characteristic (ROC) greater
than 0.7, indicating a promising predictor. The studied imaging
features resulted to prove to be essential indicators in tumor
differentiation, staging, overall survival (OS), relapse, and
treatment efficacy (70).

Additionally, a study conducted by Mo et al. established a
radiomics-based model to classify early versus late detection and
metastatic disease in patients with hypopharyngeal cancer. 113
patients diagnosed with this carcinoma were treated with
chemoradiotherapy and divided into two cohorts, a training
cohort (n = 80) and a validation cohort (n = 33) (71). The
radiomics model utilized the concordance index (C-index) to
predict prognostic factors, resulting in C-indices of 0.804 with a
95% confidence interval (CI) of 0.688-0.920 and 0.756 with a
95% CI between 0.605-0.907. Furthermore, the log-rank test and
a nomogram were used in risk prediction of the model to assess
disease progression. The significant results were p=0.00016 and
p=0.00063, demonstrating an effective classification of patients
into high and low-risk categories (71). Overall, the radiomics
model in this study suggests being effective in predicting the
risk of progression for hypopharyngeal cancer along with
chemoradiotherapy (71).

Larynx
Laryngeal squamous cell carcinoma (LSCC) consists of 30-50%
of all neoplasms in the head and neck (15). Treatment
surrounding this disease is difficult due to considerable
amounts of variability concerning the region’s anatomy, its
surrounding structures, variable appearance of primary and
recurrent tumors, significant anatomic changes resulting from
tumor response, and high intratumoral heterogeneity (15).
Standard-of-care treatment towards LSCC prioritizes organ-
preserving strategies, although treatment options may be
limited for more aggressive diseases. Although these strategies
focus primarily on limiting the functional complications that are
associated with complete surgical removal of the larynx, the most
appropriate therapy for patients with advanced LSCC is a total
laryngectomy (72). Conducting a surgical plan for treatment
Frontiers in Oncology | www.frontiersin.org 6
relies heavily on tumor T categories defined by the National
Comprehensive Cancer Network (NCCN) Guidelines (72).

However, relapse occurrence resulting from these organ-
preserving treatment approaches remains high, with recurrence
at 5-years approximately 30-40%, despite overall improvement
in radiotherapy and systemic techniques (15). Exploring the
radiomic study of one of the most anatomically complex
structures within the head and neck region can provide
additional comprehensive information and characterization of
intra-tumor heterogeneity.

Exploring the Application of Radiomics to Laryngeal
Squamous Cell Carcinoma
Surgical options for patients diagnosed with LSCC heavily
depend on preoperative T category classification, specifically
between T3 and T4 categories. This is because the distinction
between T3 and T4 categories for LSCC relies on the destruction
degree of the extralaryngeal spread and/or outer cortex of thyroid
cartilage (72). However, determining the T category pre-
operatively has its clinical challenges due to variable clinical
deductions between imaging modalities. Commonly used
imaging techniques include CT and MRI, both techniques
harboring individual benefits and limitations (72). Therefore, a
T category prediction radiomics (TCPR) model that combines
radiomic signature and T category distinction could be beneficial
in establishing optimal surgical outcomes. A study conducted by
Wang et al. was done to further validate the precise prediction of
T categories using a radiomic nomogram and the TCPRmodel to
assess appropriate treatment management for each individual
case. This study included a total of 211 patients with LSCC who
had total laryngectomies separated into two cohorts. The
training cohort (n=150) and the validation cohort (n=61)
yielded results that demonstrate great capabilities of the TCPR
model in predicting the preoperative T categories per patient.
The T category resulting from the study has an AUC of 0.775
(95% CI: 0.667–0.883). The radiomic signature resulted in a
higher AUC, with AUC 0.862 (95% CI: 0.772–0.952). Finally, the
nomogram incorporating the radiomic signature as well as the T
category, the TCPR model, resulted in an AUC of 0.892 (95% CI:
0.811–0.974). These results show that the predictive performance
of the T category improves with the application of the TCPR
model (72).

Moreover, in a study conducted by Chen et al., radiomic
analysis of laryngectomy CT imaging of 136 patients with LSCC
was performed to assess the prognostic value of radiomics
derived from CT. All patients were divided into the training
cohort (n = 96) and the validation cohort (n = 40). A method was
designed to establish a radiomics signature from the CT texture
features and a radiomics nomogram to predict overall survival
(OS) (73). The validation of the nomogram was done by a
calibration curve, C-index, and decision curve. The results
revealed the radiomics signature to have C-indices of 0.782
(95%CI: 0.656–0.909) and 0.752 (95%CI, 0.614–0.891). The
radiomics nomogram had outdone the cancer staging
capability with a C-index of 0.817 vs. 0.682; P = 0.009 in the
training cohort and a C-index of 0.913 vs. 0.699; P = 0.019 in the
July 2021 | Volume 11 | Article 639326
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validation cohort (73). The radiomics nomogram has had a
significant difference in its discrimination capability when
compared to other cancer staging techniques. The calibration
and decision curves have been shown to have an accurate
prediction for OS as well. This study has successfully utilized
radiomics in a way that predicts OS for LSCC, is critical in
constructing a personalized treatment plan for each individual
patient (73).

In another study conducted by Ulrich et al., radiomic feature
analysis from various 18F-fluorothymidine positron emission
tomography (FLT-PET) was done to evaluate the prediction of
treatment response in patients with HNC. Thirty patients in the
late stages of OPC and LSCC who underwent chemoradiation
therapy and FLT-PET imaging before surgery were included in
the study. 377 radiomic features of FLT uptake were extracted, 9
of which were indicated as significant (28). Within the 30 HNC
cases, the study concluded that cases presenting smaller,
homogeneous lesions at baseline resulted in a better prognosis.
Furthermore, features extracted from the entire lesions had a
higher C-index than primary tumor features for the majority of
the 9 significant features. Overall, this study has shown that for
future studies integrating FLT-PET in predicting prognostic
outcome, radiomic features incorporating lesion shape, size,
and texture features should be considered to ensure an
improved understanding of the disease (28).

Additionally, the increasing application of radiomics to LSCC
has demonstrated efficacy in predicting inferior local control and
laryngectomy free survival (LFS). A study done by Agarwal et al.
explores if pre-treatment CT imaging features of the LSCC can
predict long-term local control and LFS. This study analyzed 60
imaging texture features of patients undergoing chemoradiation
(CTRT), which were further evaluated with a texture analysis
software (74). The data consisted of entropy, kurtosis, skewness,
standard deviation, mean intensity, and so on. After a median
follow-up of about 24 months, it was found that 39 patients were
locally controlled and 10 had been treated with laryngectomy
(74). Medium filtered-texture feature that had poor LFS were
entropy ≥4.54, (p = 0.006), kurtosis ≥4.18; p = 0.019, skewness
≤−0.59, p = 0.001, and standard deviation ≥43.18; p = 0.009). The
inferior local control was associated with medium filtered texture
features with entropy ≥4.54; p 0.01 and skewness ≤ – 0.12; p =
0.02. The analysis of the study has shown medium texture
entropy to be a predictor for local control and LFS (p = 0.001
& p < 0.001). This advancement is undoubtedly efficient in
developing prognostic factors for LSCC and predicting
treatment response (74).
Salivary Glands
Salivary gland cancer (SGC) is rare, compromising less than 1%
of all cancers in the United States. This type of cancer is prevalent
in the older population, mostly affecting individuals between the
ages of 50 and 60 (75). The 5-year survival rate of SGC is
approximately 7% (76). Residing within the facial region, three
major glands are used to classify different types of areas of SGC –
the parotid, sublingual, and submandibular glands. Generally,
about 80%, 11%, and less than 1% of SGC cases are found within
Frontiers in Oncology | www.frontiersin.org 7
the parotid gland, submandibular gland, and sublingual gland,
respectively. Regarding the frequency of malignancy, 20%, 45%,
and up to 81% of parotid tumors, submandibular gland tumors,
81% of sublingual gland tumors are malignant, respectively (77).
Although there are effective treatments for SGC, successful
treatment for sublingual gland cancer is unknown due to lack
of clinical trials and the rarity of diagnosis (78). Standard of care
treatment typically involves regional surgical resection of the
parotid gland, otherwise known as a superficial parotidectomy
(77). Although more difficult to treat, cases of malignancy
typically require a total parotidectomy. However, this
procedure is considered high risk as it involves contact with
critical facial nerves that may result in facial paralysis, in more
severe cases (77).

Parotid Gland
Parotid tumors are the most common type of SGC, with the
parotid gland accounting for approximately 25% of human saliva.
It is the largest salivary gland and resides within the parotid space
amongst the external carotid artery, retromandibular vein, and the
intraparotid lymph nodes. In some cases, an accessory parotid gland
is present on the surface of the masseter muscle (77). The majority
of parotid tumors are discovered as benign, though some lesions can
be malignant (79). The different cancer subtypes of SGC that can
occur in the parotid gland include pleomorphic adenoma,
Warthin’s Tumor (War-T), parotid carcinoma (PCa), and
Kimura’s Disease (KD) (80). The most common of the subtypes
is pleomorphic adenoma. Pleomorphic adenoma composes of
epithelial cells along with myoepithelial cells, which are
commonly referred to as benign mixed tumors (BMT) (81).
Factors that may cause carcinogenesis of pleomorphic adenoma
include irradiation, dehydration, and tobacco use (81).

Exploring the Application of Radiomics
to Parotid Tumors
Regarding parotid tumors, one study implored radiomics to
improve diagnostic efficacy and, therefore, treatment options.
To improve differentiation of a benign lymphoepithelial lesion
(BLEL) and a malignant mucosa-associated lymphoid tissue
lymphoma (MALToma) in the parotid gland, Y.-M. Zheng
et al. developed a CT-based radiomics nomogram that
integrated the radiomics signature alongside clinical data such
as demographics (82). This integrated model was trained (n=70)
and validated (n=31) on a total of 101 patients with BLEL or
MALToma (82). In developing this model, 851 radiomics
features extracted from CT images were narrowed down to 7
features by removing features with poor inter- and intra-observer
agreement between radiologists, including features that showed
significant differences between BLEL and MALToma (p < 0.000
to 0.050) and applying LASSO regression (82). After performing a
multiple logistic regression analysis, statistically significant clinical
factors of age (p = 0.0036) and maximum diameter (p = 0.019) were
integrated with the radiomics signature resulting from the 7
radiomic features to produce a CT-based radiomics nomogram
that showed a statistically significant difference between BLEL and
MALToma (82).
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Submandibular Gland
The submandibular gland is the second largest salivary gland. This
gland accounts for 70% of human saliva and is located underneath
the jawbone (79).Despite the rarity of tumors in the submandibular
gland compared to the parotid gland, the probability ofmalignancy
in the submandibular gland is approximately 43% and results in a
poorer prognosis (83). Due to rarity and high rates of malignancy,
there is a lack of knowledge pertaining to treating submandibular
gland tumors (83). There are no definitive treatments for
submandibular tumors, but there are numerous ways that have
been proven to be successful – all involving high-risk surgery.
A common procedure that is performed is submandibular
sialoadenectomy, which is to surgically remove the submandibular
gland in its entirety (84). The efficacy of radiotherapy in targeting
thesemass neoplasms is notwell knownwith this type of cancer and
is still being evaluated. Chemotherapy in general is not shown to be
successful in treating submandibular gland tumors but is sometimes
used for treatment if the tumor progressively spreads within the
gland (83).

Exploring the Application of Radiomics to
Submandibular Tumors
In general, there remains uncertainty due to a lack of knowledge
for treatment of these diseases, demonstrating the necessity of
exploratory measures. Radiomic application to diseases such as
submandibular gland cancer illuminates characteristics that can
be extracted into operational data. This data can then be utilized
to improve detection and lead the course of treatment when
managing this disease.

Sublingual Gland
Sublingual salivary gland tumors are the rarest tumors found in
SGC. The sublingual gland is the smallest of the threemajor glands,
residing just below the floor of the mouth and is positioned under
the tongue, producing 5% of human saliva (79). Sublingual salivary
gland tumors typically affect individuals between 50 to 60 years old
and are not specific to gender (85). Sublingual gland tumors are
typically malignant, boasting an 81% probability of malignancy
associated with this disease type. Adenoid cystic carcinoma and
mucoepidermoid carcinoma are the most common neoplasms
found in the sublingual gland. Prognosis for adenocarcinoma of
the sublingual gland relies on the histology of the specific tumor.
This tumor is commonly misinterpreted as minor salivary gland
tumors or other malignant lesions within the mouth due to its
compact mass (85). Patients normally present no symptoms,
making the tumor difficult to identify and accurately diagnose.
When evaluating the tumor, it is important to distinguish if it lies in
the sublingualglandoranyof theminor salivary glands.This cannot
be done solely based on location on anatomy, but from a collection
of imaging, surgical, and clinical data to ensure accurate
diagnosis (85).

Exploring the Application of Radiomics to Sublingual
Gland Tumors
Due to the rare nature of sublingual glands, specific suggestions
for treatment have not been developed, the lack of radiomic
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studies. However, proper diagnosing of malignant sublingual
glands from other types of malignancies has been a challenge
(85). Although advances in diagnostic imaging technology have
helped with more effective identification, malignant sublingual
glands vary in degrees of malignancy and lead to difficulties in
not only diagnosis but also management and treatment (85).
Radiomics has the potential to improve the initial evaluation of
malignant gland tumors since there is a recurrence rate of 50%
for these tumors (85).

Radiomic Application to Advanced Head
and Neck Cancer
The management of metastatic and locally advanced head and
neck cancer has changed dramatically in the last several years.
Keynote 048 was a landmark trial that resulted in FDA approval
for the use of immunotherapy either alone or in combination
with platinum-based chemotherapy as a first line treatment (78).
Specifically, this trial evaluated the efficacy of pembrolizumab, an
immune checkpoint inhibitor that allows cytotoxic T cells to
recognize programmed death ligand 1 (PDL-1) overexpressed by
tumor cells, resulting in their destruction (78). In general, PDL-1
expression by the tumor is evaluated by immunohistochemistry
and serves as both a prognostic indicator and as a variable in the
decision-making process when selecting an appropriate
immunotherapy regiment. The application of radiomics has
further potential of evaluating the predictive power of PDL-1
expression, and overall patient outcomes.

While the radiomics of PDL-1 expression has been studied in
other tumors such as non-small cell lung cancer, data on
radiomic PDL-1 expression in head and neck cancer is lacking
(86). One pilot study by Chen et al. was able to predict PDL-1
expression through FDG PET (87). This was accomplished by
dichotomizing other biomarkers such as HPV status (p16
positivity) and Ki-67 expression. Textural features were also
used to predict PDL-1 expression. For example, gray-level
nonuniformity for run (GLNUr), run percentage (RP), and
short-zone low gray-level emphasis (SZLGE) were inversely
proportional with PDL-1 expression. While it is promising to
see evidence of the predictive power of PDL-1 expression
afforded by radiomics, this study is limited by its small cohort
size. Further studies are needed to reproduce results and
optimize the parameters relevant to head and neck cancer.
THYROID CANCERS

Defined as a malignancy of the thyroid gland by the International
Classification of Diseases, Tenth Revision (ICD-10), thyroid
cancer accounts for 3.8% of all cancers in the United States
and has a five-year survival of 98.3 (88). Thyroid cancers include
3 main types: differentiated thyroid cancer (DTC), anaplastic
thyroid cancer (ATC), and medullary thyroid cancers (MTC)
(89). Included in DTC, which accounts for over 90% of all
thyroid cancers, are papillary thyroid cancer (PTC), follicular
thyroid cancer, Hurthle cell, and poorly differentiated thyroid
cancer (PDTC) (89). ATC accounts for less than 2% of call
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thyroid cancers, and MTC accounts for about 1%-2% of all
thyroid cancers in the United States. Both DTC and MTC
generally have good prognoses, with a 10-year survival rate of
80–95% for PTC, 70–95% for follicular thyroid cancer, and 96%
for MTC (90, 91). However, ATC does not share such numbers,
as it has a 5-year survival rate of 0-10%. Due to its rare and highly
aggressive nature, ATC requires a multidisciplinary team
approach with different treatment options of surgery,
chemotherapy, or tracheotomy (89). Surgical resection is the
standard of care treatment option for DTC and MTC (89).

Radiomic Application to Thyroid Cancers
There is a need for establishing a non-invasive assessment
technique that allows for the mapping of thyroid tumors in
their entirety. It is important to expand the knowledge of
radiomics and explore its implication to various disease types
to improve clinical diagnosis and patient’s quality of life.
According to a study performed by Liang et. al., application of
radiomics showed good performance and potentially
outperformed ACR TI-RADS (American College of Radiology,
Thyroid Imaging, Reporting, and Data System) scoring when
predicting the malignancy of thyroid nodules (92). The objective
of this study was to produce a radiomic score utilizing US
imaging to predict the probability of malignancy in thyroid
nodules when compared to the ACR TI-RADS criteria. To do
so, pathologically proven thyroid nodules were enrolled to
produce a training cohort (one hospital, n=137) and a
validation cohort (separate hospital, n=95). The radiomic score
was developed utilizing the training cohort. US images were
reviewed by two junior and one senior radiologist and scored the
nodules based on the 2017 ACR TI-RADS scoring criteria (92).
Results from this study indicated that the radiomic score had
good discrimination, with an AUC of 0.921 in the training cohort
and 0.931 in the validation cohort. This result suggests that the
radiomic score was significantly more accurate than the ACR
scores when scoring suspicious thyroid nodules (Table 2). As a
result, a decision curve analysis showed that the radiomics score
model potentially added more benefits than using the ACR TI-
RADS scoring criteria (92).

Papillary Thyroid Cancer
Papillary thyroid cancer (PTC) is the most diagnosed thyroid
cancer, accounting for approximately 80% of well-differentiated
thyroid cancers. Although PTC typically has favorable outcomes
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and a mortality rate of 1.2% at 20 years, patients with recurrent
disease have poorer outcomes. Approximately 10% to 15% of
PTC cases recur, resulting in 35% of these patients ultimately
dying from this cancer. This is because recurrent PTC patients
present aggressive features such as extrathyroidal extension
(ETE), aggressive pathological cell subtypes, the extent lymph
node involvement, resistance to therapeutic treatments, and
distant metastasis (93). To assess these aggressive features,
clinicians use a variety of techniques such as ultrasound and
ultrasound-guided fine-needle aspiration to develop a diagnosis.
An additional imaging modality that is often utilized is MRI.
This allows for superior contrast of the soft tissues when
examining the thyroid region, affording assessment of
aggressive features such as ETE and neck nodal metastasis (93,
94). Although these imaging modalities are standard-of-care
practices, both harbor limitations in accuracy and therefore
inhibit optimal clinical assessment of the disease.

Exploring the Application of Radiomics to Papillary
Thyroid Cancer
In a retrospective study conducted by Park et. al., the association
between a radiomic signature of conventional ultrasound (US)
images and disease-free survival in PTC was investigated. The
history of this disease type shows that PTC is considered a “good
cancer” with regards to its treatability and relatively favorable
survival rate (25). However, there is a small amount of PTC cases
that show clinically aggressive behavior that results in 9% to 13%
of patients experiencing recurrence and 1% to 5% of patients
ultimately dying from thyroid cancer. Considering this
information, patients diagnosed with aggressive PTC would
greatly benefit from radiomic application with a preoperative
risk stratification tool that assists in assessing treatment plans
and follow-up procedures (25).

Follicular Thyroid Cancer
Follicular thyroid cancer (FTC) is known as the second most
common differentiated thyroid cancer, accounting for 10% to
15% of all cases. When considering age and gender, this disease
subtype typically affects women 50 to 60 years old. FTC presents
more aggressively in comparison to PTC, as this disease typically
invades blood vessels and is capable of metastasizing via
hematogenous dissemination. Knowing this information, FTC
is associated with a poorer prognosis in comparison to PTC, as
FTC patients often present with more advanced staging of
TABLE 2 | Summary of radiomic applications in thyroid cancer.

Category Prediction Target Radiomic Features and Clinical Information Source

Thyroid nodules Malignancy US Thyroid radiomic score (92)
Papillary Thyroid
Cancer

Progression free survival US Thyroid: tumor size, cervical lymphadenopathy, extrathyroidal extension, gray
level scores

(25)

Follicular Thyroid
Cancer

Metastatic disease US Thyroid: tumor shape, gray level scores (97)

Medullary Thyroid
Cancer

Treatment response to PRRT SSTR- PET: textural features (gray level non uniformity) (101)

Anaplastic Thyroid
Cancer

Treatment response/dose adjustment of
Trametinib

Radiolabeled Trametinib (105)
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disease due to vascular invasion (95). Long-term survival rates in
patients diagnosed with metastatic FTC range between 31% to
43%, taking into consideration the patient’s age at the time of
diagnosis, tumor size, capsular invasion, gender, and evidence of
metastases (96). FTC is typically classified into two categories:
minimally invasive or widely invasive.

Exploring the Application of Radiomics to Follicular
Thyroid Cancer
In a study conducted by Kwon et. al, radiomics was utilized to
evaluate distant metastasis of FTC on gray-scale US images. This
retrospective study included 35 cases of FTC with distant
metastases and 134 cases of FTC without distant metastasis
(97). A total of 60 radiomic features were extracted, deriving
from the first order, shape, gray-level co-occurrence matrix, and
gray-level size zone matrix features utilizing US imaging
techniques. Results from this study indicated that the support
vector machine (SVM) classifier had an AUC of 0.90 on average
on the test folds (97). Radiomic signature (p<0.01) and widely
invasive histologies (p = 0.003) proved to be significant when
associated with distant metastasis on multivariate analysis (97).
From multivariate analysis, the SVM classifier indicated an AUC
of 0.93. As a result, this study indicated that utilizing radiomic
signatures from thyroid US can be an independent biomarker in
order to non-invasively predict the probability of distant
metastasis of FTC (97). However, this study does harbor
limitations. It primarily lacks external validation, as the study
was performed at a single institution. Additionally, FTC with
distant metastasis is considered rare, naturally limiting the study.
As a result, it is necessary to further validate radiomic application
amongst different variables in FTC in order to successfully
translate radiomics to FTC diagnosis.

Medullary Thyroid Cancer
Medullary thyroid carcinoma (MTC) derives from the
calcitonin-secreting parafollicular C cells of the thyroid,
accounting for up to 1% to 3% of all malignant thyroid cancer
cases (98–100). Two forms of MTC currently exist: sporadic and
hereditary. The hereditary form of MTC is expressed in an
autosomal dominant fashion caused by a mutation of the
receptor tyrosine kinase (RET) proto-oncogene (99). This
mutation causes hereditary MTC to be associated with diseases
such as multiple endocrine neoplasia 2 (MEN 2) syndrome (98,
99). This subtype of hereditary MTC can be further characterized
as MEN2A and MEN2B. MEN2A presents in approximately
80% of inherited MTC cases, showing symptoms such as
multifocal and bilateral MTC, pheochromocytoma, and primary
hyperthyroidism (99). MEN2B presents in approximately 5% of
inherited MTC cases and is associated with pheochromocytoma,
multiple mucosal neuroma, and Marfan syndrome (98, 100). An
additional subtype of MTC is known as familial MTC (FMTC)
and is diagnosed in patients that have a family history of MTC
which have at least four family members diagnosed with
MTC with no history of pheochromocytoma or primary
hyperthyroidism (98, 99). MTC often presents as a poor
prognosis with early lymph node metastasis, aggressive
invasiveness of key surrounding organs, and failure to respond
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to radiation therapy and/or chemotherapy. As a result, early
detection and preventative surgery is often the standard-of-care
treatment plan regarding MTC (98).

Exploring the Application of Radiomics to Medullary
Thyroid Cancer
Regarding medullary thyroid cancers, there is great potential for
radiomics to be utilized here. One study shows promise in
improving prognosis by exploring radiomic features involved
with PET images of advanced medullary thyroid cancer (101).
Lapa et al. assessed tumor heterogeneity by investigating the
association between textural parameters on somatostatin
receptor PET (SSTR-PET) and treatment response to peptide
receptor radionuclide therapy (PRRT) on 4 medullary thyroid
cancer patients and 8 radioiodine-refractory differentiated
thyroid cancer patients (101). They found that several textural
parameters showed a significant capability to assess PFS, with
“grey level non uniformity” ranking with the highest AUC (0.93)
in ROC curve analysis and “contrast” with the ranking second
highest AUC (0.89) (101). Further assessment of other radiomics
features might assist in considering PRRT as a treatment option
for patients.

Anaplastic Thyroid Cancer
Anaplastic thyroid cancer (ATC) is the rarest and most
aggressive of the thyroid cancer subtypes, accounting for 1% to
2% of all thyroid malignancies. Although incidence is rare,
diagnosis of this subtype results in over 50% of deaths from
thyroid cancer with a median survival of only six months (102).
Amongst all malignancies, ATC is a highly aggressive disease
with one of the worst prognoses due to its resistance to standard
therapies and management difficulties (102). ATC has been
known to arise in two forms: de novo or by dedifferentiation
from a well-differentiated thyroid cancer such as PTC (103).
Standard-of-care treatment is typically surgical resection of the
cancerous lesion, followed by adjuvant radiotherapy and/or
chemotherapy (104).

Exploring the Application of Radiomics Anaplastic
Thyroid Cancer
Due to anaplastic thyroid cancer’s aggressive nature and poor
prognosis, there is a major lack of radiomic studies on it.
However, utilizing radiomics can help predict resistance to an
FDA approved therapy for ATC – trametinib (105). Trametinib
is a highly potent, efficacious, yet toxic, treatment option for
ATC, so modifying the dose is desirable (105). In a study
conducted by Pratt et. al., a radiolabeled version of trametinib,
124I-trametinib was developed to potentially assess therapeutic
index and personalize individual doses for patients (105).

Parathyroid Cancer
Parathyroid carcinoma (PC) is a less common cancer, diagnosed
in <1% of cases within primary hyperparathyroidism (PHPT).
Although this disease is generally seen as sporadic, it may appear
in familial PHPT, specifically within hyperparathyroidism-jaw
tumor syndrome (HPT-JT). Extremely rare cases of PCmay arise
from multiple endocrine neoplasia type I (MEN1) (106). It is
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difficult to diagnose PC preoperatively because this disease type
has a lack of specific biochemical and clinical features (106). As a
result, this disease is typically diagnosed postoperatively when
the disease is being examined histologically and/or when the
disease recurs (106).

Exploring the Application of Radiomics to
Parathyroid Cancer
Although there are no studies on the application of radiomics to
parathyroid cancer, there is a need for clinicians to be able to
differentiate between parathyroid adenoma (benign) and
parathyroid carcinoma because of the lack of specific
biochemical and clinical features (106). CT and MRI can both
help accurately localize the primary tumor, so the use of
radiomics shows great promise in the parathyroid glands in
PC (106).
DISCUSSION/CONCLUSION

Machine learning and deep learning models have been widely
used for medical imaging research (6, 107). Although having
impressive predictive performance, these models are often
difficult to interpret. Additionally, there may be hidden bias in
the model leading to potential ethical issues (108, 109).
Interpretability of predictive models has become one of the key
factors driving their adoption in clinical decision support
environment. To ease the tension between the model
prediction accuracy and interpretability, various approaches
have been proposed to generate intuitive interpretations of
predictive models (110–113).

Radiomic studies are often exploratory in nature. They are
normally single institutional with limited cohort size. The
Frontiers in Oncology | www.frontiersin.org 11
associated imaging data are typically acquired from just one or
a few scanners from a single site. To deploy radiomic predictive
models at scale and possibly across institutions, we need to
address issues of potential data variability caused by scanners
from different vendors (114), and whether the models are still
predictive when they are applied to a different cohort from an
external site with similar disease types In summary, being able to
standardize image data acquisition and quality control using
phantoms, various calibration techniques, having large cohorts
from multiple locations for model training, and validation will
provide more confidence for deployment in clinical settings.

The application of radiomics to HNC and thyroid cancers is
an advancement that allows for a deeper interpretation of a
patient’s digital medical imaging data beyond visual assessment.
Utilizing this practice, especially in cancer domains that lack
radiomic studies such as anaplastic thyroid cancer and
parathyroid cancers, will allow for more personalized and
patient-specific cancer treatment. By gathering additional
statistical data and conducting subsequent analysis, clinical
decision making is improved and therefore affects patient
outcomes Court, Fave (115).
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