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Cervical cancer (CC) represents a major global health issue, particularly impacting women
from resource constrained regions worldwide. Treatment refractoriness to standard
chemoradiotheraphy has identified cancer stem cells as critical coordinators behind the
biological mechanisms of resistance, contributing to CC recurrence. In this work, we
evaluated differential gene expression in cervical cancer stem-like cells (CCSC) as
biomarkers related to intrinsic chemoradioresistance in CC. A total of 31 patients with
locally advanced CC and referred to Mario Penna Institute (Belo Horizonte, Brazil) from
August 2017 to May 2018 were recruited for the study. Fluorescence-activated cell
sorting was used to enrich CD34+/CD45- CCSC from tumor biopsies. Transcriptome was
performed using ultra-low input RNA sequencing and differentially expressed genes
(DEGs) using Log2 fold differences and adjusted p-value < 0.05 were determined. The
analysis returned 1050 DEGs when comparing the Non-Responder (NR) (n=10) and
Responder (R) (n=21) groups to chemoradiotherapy. These included a wide-ranging
pattern of underexpressed coding genes in the NR vs. R patients and a panel of IncRNAs
and miRNAs with implications for CC tumorigenesis. A panel of biomarkers was selected
using the rank-based AUC (Area Under the ROC Curve) and pAUC (partial AUC)
measurements for diagnostic sensitivity and specificity. Genes overlapping between the
21 highest AUC and pAUC loci revealed seven genes with a strong capacity for identifying
NR vs. R patients (ILF2, RBM22P2, ACO16722.1, AL360175.1 and AC092354.1), of
which four also returned significant survival Hazard Ratios. This study identifies DEG
signatures that provide potential biomarkers in CC prognosis and treatment outcome, as
well as identifies potential alternative targets for cancer therapy.
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INTRODUCTION

Cervical Cancer (CC) is the second most frequent cancer and the
fourth leading cause of cancer deaths in women worldwide. The
Global Cancer Observatory (GLOBOCAN) estimates the burden
of CC incidence in 2018 reached almost 570,000 women and a
mortality rate of 54.6% (311,365 patients). Approximately 85% of
cases occur in low- and middle-income countries (LMICs), and
are predominantly diagnosed in advanced stages (1). Despite the
scientific advances in primary and secondary prevention
(vaccine, HPV screening and precancerous lesions treatment,
respectively), CC continues to be a major global health challenge.
Impressively, around 50% of patients with CC died as a
consequence of treatment failure and other cancer- related
complications. This dismal scenario is also reflected in South
American patients (2), and highlights the importance of
developing novel therapeutic approaches for CC and achieving
a more personalized medical care.

The heterogeneous cellular composition of tumors leads to
extreme genetic and epigenetic diversity and thereby produces a
plethora of biological factors that can result in a poor prognosis
and low survival rates (3). Cancer Stem Cells (CSCs) are a
pivotal participant in these processes. In normal tissues, stem
cells are generally defined by a controlled self-renewal feature,
with the ability to produce both specialized and undifferentiated
tissue-maintaining cells. Conversely, CSCs can display perturbed
growth properties, leading to cancer initiation, chemoresistance,
and metastasis (4). Tumor heterogeneity can therefore be
supported by the CSC paradigm, where a subset of cells,
organized into hierarchical structures based on differentiation
capacity, drive malignancy and therapeutic refractoriness (5).

Given the importance of CSCs in cancer pathogenicity, it is
not unexpected that many studies have sought to uncover the
molecular pathways related to stemness. As observed in normal
stem cells, CSCs exhibit genetic markers and pathways typically
associated with proliferation (6). Aberrant expression of
transcription factors SOX2, NANOG, OCT3/4, c-Myc (7), and
disruption of Wnt/f-catenin, Hedgehog, Notch and PI3K/AKT/
mTOR signaling pathways are representative hallmarks that
sustain the stem cell phenotype in CSC and support therapy
resistance (8). Alternatively, mutations encompassing the tumor
suppressor genes TP53, PTEN, and INK4A-ARF locus have been
implicated in stem cell DNA damage pathways and self-renewal
deregulation (6).

Given the importance of CSCs in the tumorigenic process of
solid tumors, we aimed to study differential expressed genes
(DEG) in cervical cancer stem-like cells (CCSC) from tumor
biopsies taken before treatment began in a cohort of CC

Abbreviations: CC, cervical cancer; CSC, cancer stem cell; CCSC, cervical cancer
stem-like cells; CCNSC, Cancer non-stem cell; FACS, Fluorescence-activated cell
sorting; DEG, Differentially expressed gene; Log2FC, Log2 fold change; AUC, Area
under the curve; pAUGC, partial area under the curve; ROC, Receiver operating
characteristic curve; GLOBOCAN, Global Cancer Observatory; HPV, Human
papillomavirus; RNA, Ribonucleotide; SCC, Squamous cell carcinoma; ADC,
Adenocarcinoma; FIGO, International Federation of Gynecology and Obstetrics;
FDR, False Discovery Rate; NR, Non-Responder; R, Responder; LR,
Logistic Regression.

patients that responded or not to chemoradiotherapy. The
analysis of DEGs from sorted CCSC between responder vs.
non-responder patients points to a set of potential biomarkers
for prediction of response to chemoradiotherapy, as well as
offering new insights into the potential role of CCSCs in
therapy failure.

MATERIALS AND METHODS

Patient Recruitment and Sample Selection
A total of 31 patients with CC and referred to Mario Penna
Institute (Belo Horizonte, Brazil) from August 2017 to May 2018
were recruited to the study. Inclusion criteria was
histopathological diagnosis of Squamous cell carcinoma or
Adenocarcinoma, no previous history of cancer or immune
diseases. Cervical biopsies (FIGO stages II and III) were
collected after participation agreement and signed the consent
form. All patients were further submitted to radiotherapy
concomitantly with chemotherapy, and clinical data were
collected from medical records. The study was approved by the
local Institutional Review Board (Number 1.583.784).

Patients were screened as Responders (R) or Non-
Responders (NR) based on Gynecologic Oncology parameters of
absence/persistence of cervical lesions 8 months after the
chemoradiotherapy. Clinical examination (vaginal, pelvic,
abdominal), laboratorial analysis (cytology, new biopsy) and
imaging (Ultrasound, Computer Tomography and Magnetic
Resonance Imaging, when available) were assigned up to 8
months after treatment. Patients were considered R when
cervical lesions were undetected after chemoradiotherapy.
Patients with persistence of lesions after the treatment (partial
response, tumor progression or stable disease) were classified
as NR.

Fluorescence-Activated Cell Sorting
Fluorescence-activated cell sorting (FACS) was used to isolate
enriched CCSCs from a complex mixture of tumor cells based on
their light scatter and fluorescent staining profiles. CC tissue
fragments (5mm) from the 31 patients were fragmented using
Med Machine® according to manufacturer’s instructions (BD-
Biosciences). Cell suspension containing CCSCs was frozen in
20% HES cryoprotective solution (100 mL anhydrous glucose 1.7
g/L; Na(+1) 140 mEq/L; ClI(-1) 98 mEq/L; K(+1) 5 mEq/L; Mg
(+2) 3 mEq/L; Gluconate 23 mEq/L; Acetate 27 mEq/L) and
stored in liquid nitrogen until use. Considering the scarcity of
CCSCs, two monoclonal antibodies, cell surface markers CD45
(APCHY7 Clone 2D1) and CD34 (PE Clone 563) were used in the
cell suspension for further FACS selection.

Cell concentration was increased to 5 x10° cells/mL. CCSCs-
enriched subpopulations were isolated using FACSAria® flow-
sorter (BD-Biosciences). Yield mode was performed at 45 psi
with 85-um nozzle at a frequency of ~51 kHz. Two fluorescence
channels were analyzed (APC-H7 and PE). Cells were
distinguished from debris in the sample by distinct FSC values,
since debris can be identified as particles with lowest FSC values.
Sorting of CCSCs was performed using a gate containing the
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CD45-/CD34+ population to eliminate contamination with
hematopoietic stem cells, thereby enriching for CCSC-like cells
(Supplementary Figure 1). Cells were considered positive above
10° for each parameter based on negative populations defined by
their autofluorescence. The CCSCs were sorted into cytometry
tubes containing 1 WL of Lysis Solution (Lysis buffer and RNAse
inhibitor from Takara® Kit Smart Seq V4 RNA) for genomic
library construction and sequencing.

cDNA Synthesis

SMART-Seq v4 Ultra-low Input RNA Kit for Sequencing
(Takara Bio USA, CA) was used to generate the full-length
cDNA from the selected sorted cells following the
manufacturer’s instructions. Reactions with positive (Control
Total RNA, provided by SMART-Seq v4 Ultra-low Input RNA
Kit) and negative controls were carried out for quality control.
Successful cDNA synthesis and amplification were considered
when an Agilent High Sensitivity DNA Chip run on the Agilent
Bioanalyzer 2100 (Agilent, CA) showed an electropherogram
with a distinct peak spanning from 400 bp to 10,000 bp, and
cDNA concentration > 0.3 ng/ul detected with Qubit " dsDNA
HS Assay Kit on a Qubit 3 Fluorometer (Thermo Fisher
Scientific, MA). Purified ¢cDNAs were stored at -20°C for
further processing.

Sequencing Libraries

Library preparation of suitable cDNAs were performed using
Nextera® XT Library Prep Kit (Illumina, CA) with Nextera® XT
Index Kit V2 Set A (Illumina, CA). Samples were normalized to
40 pg/ul for a total 200 pg input of amplified cDNA. The
protocol was performed as described by the manufacturer.
Libraries were purified with 0.6 x bead ratio using Agencourt
AMPure beads XP (Beckman Coulter, IN) and eluted in 52.5 ul
of elution buffer. Quality parameters as size (440 bp average) and
concentration (1.03 ng/ul average) were measured using High
Sensitivity D1000 ScreenTape and reagents run on 2200
TapeStation System (Agilent, CA) and QubitTM dsDNA HS
Assay Kit on a Qubit 3 Fluorometer (Thermo Fisher Scientific,
MA), respectively. Good quality libraries were normalized to 1
nM. Thirteen samples were pooled to further perform 101 cycles
of single read sequencing using a NextSe%® 500/550 High
Output Kit v2 (150 cycles) and NextSeq~ 550 sequencer
(Ilumina, CA). Sixty-two libraries with more than 20 million
reads each were considered for analysis.

RNA-Seq Data Analysis

Sequencing quality control and adapters were analyzed in the
FastQ files using FastQC version 0.11.9. Trimming of the adaptor
content and overrepresented sequences was performed using
Trimmomatic (9). Quality check using FastQC was also
performed on the trimmed sequences. Reads from the fastq
files were aligned to the human reference (build GRCH38 and
annotation file Homo_sapiens.GRCh38.83.gtf) using the 2-Pass
protocol from the STAR software (10). The resulting alignment
file was compressed, indexed and name-sorted using the
samtools (version 0.1.19- 44428cd). The count table was
generated using GeneCounts mode from STAR. All steps are

summarized in the Supplementary Figure 2; command lines
and Pearl scripts of the workflow are available upon request.

Differentially Expressed Genes (DEG)
Analysis and Biomarkers Selection

Count data were imported to R software (11) and DESeq2 package
(12) were used to perform differential expression analysis.
Benjamini and Hochberg procedure, implemented in DESeq2,
were used for p-values adjustment and a False Discovery Rate
(FDR) cutoft of 0.05 was applied for assigning a given gene as a
DEG between the groups NR and R. The panel of biomarkers were
proposed based on the following criteria: (i) 22 highest values of
AUC (area under the curve), (ii) 21 highest values of pAUC
(partial area under the ROC curve statistic - (pAUC - 0.10) (13)
and lastly, (iii) the common loci between the two selection criteria.
All statistics were calculated using the R package “genefilter”.

Stemness Genes

The transcript abundance of stemness genes described in CC
studies (Supplementary Table 1) across NR and R samples were
compared by using Wilcoxon rank-sum test. Distribution of
regularized log2 expression for statistically significant genes
(p<0.05) were displayed as boxplots.

Screening microRNA Targets

To assess the putative regulation of target genes of miRNA, we
downloaded all predictions for representative transcripts
performed by targetScan - v72 (14). Only both miRNA and
targets differentially expressed (adjusted p-value<0.05) with
opposite regulation among NR and R according to Rfold
change values were used in the further analysis.

Gene Enrichment Analysis and Networks
GO (Gene Ontology) function enrichment analyses of the 1050
DEGs and gene targets of miRNA were performed through
clusterProfiler package (15). STRING (https://string-db.org)
was employed to predict potential interactions between ILF2
and other proteins.

Statistical Analysis

Survival outcomes and the hazard ratio for disease progression or
death were assessed via Kaplan-Meier methods and compared
using Log-rank tests, using GraphPad Prism 5.0 (GraphPad
Software Inc., La Jolla, Ca, USA). Forest plots represent the
hazard ratio analysis of gene expression, obtained using a
univariate Cox regression model in R (version 3.6.3, (Team,
2020 #3817); https://www.R-project.org, within survival package
(version 3.2-3, https://CRAN.R-project.org/package=survival).
Genes were selected by pAUC analysis.

RESULTS

Clinicopathological Characteristics

of the Cohort

Samples from 31 women with an average age of 52.3 + 16.8
years-old (range 24-82) were submitted to NGS analysis.
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Approximately 96% of patients had squamous cell carcinoma,
only one patient had adenocarcinoma, stages FIGO II-B (48.3%)
and III-B (48.3%). The mean tumor size was 6.8 cm. Most
patients had bilateral parametrial (71%) and vaginal
involvement (90%) and tumor lesions were moderately (42%)
or poorly differentiated (42%). The overall response was
evaluated 8 months after the end of treatment and 21 patients
were classified as Responders (R) and 10 as Non-responders (NR).
Clinical information from the patients and histopathological
analysis are summarized in Supplementary Table 2. Kaplan-
Meier curves highlighted the poorer survival outcomes of NR
patients with 12% survival at 12 months, whereas the R group
showed 79% survival (Hazard Ratio [HR]: 6.44 95% CI: 0.11-3.62,
p<0.0001). (Figure 1).

Differential Expressed Genes (DEGs) in
Cervical Cancer Stem-Like Cells (CCSC)
DEGs between NR and R patients were analyzed using an
adjusted p value of < 0.05. This analysis returned 1050
differentially expressed transcripts. Ninety-one percent (91%;
633/694) of the coding genes were under expressed in NR
patients; conversely, 86% of long non-coding RNAs (IncRNAs;
132/154) and 81% of pseudogenes (121/150) were overexpressed
in the NR group. The snoRNA (Small nucleolar RNA),
Mt_tRNA (Mitochondrial transfer RNA), misc_RNA
(miscellaneous RNA), miRNA (microRNA), TEC (To be
Experimentally Confirmed) and snRNA (Small nucleolar RNA)
were grouped as “Other RNA” (n=52). The proportion of the
DEGs and functional classes are detailed in Figure 2A.

An unsupervised clustering analysis of the 1050 DEGs revealed
four main clusters related to the patients’ treatment outcome (NR
vs. R) (Figure 2B). A heterogeneous expression profile is apparent
across the genes as exemplified by the heatmap. The patients
segregated into clusters based on an expression pattern in
agreement with the failure/success to chemoradiation treatment,
with few exceptions. Clinicopathological characteristics of the
patients, including pathologic parametrial involvement, FIGO

stages and tumor pathological grades did not differentially
segregate between the groups.

Gene Ontology (GO) Classification and
Functional Enrichment Analysis

Analysis and visualization of enriched functional profiles from
the 1050 DEGs was performed to explore gene-related
biological processes using the clusterProfiler package. Overall,
transcripts were statistically assigned to 171 GO terms with all
downregulated in the NR group (Supplementary Table 3). Genes
were enriched for transcriptional/translational processes,
metabolism, and respiratory pathways (Figure 3). Specifically, the
top gene ontology (GO) terms were related to “RNA catabolic
process”, “Oxidative phosphorylation”, “Protein targeting to ER”
and “Mitochondrial ATP synthesis” (Figure 3A). The enrichment
map shows two main functional modules, clustering the GO terms
related to nucleic acids/protein metabolism and energetic activity in
disconnected networks (Figure 3B). The genes composing the two
networks and their associations with the GO Biological Processes
are shown in Supplementary Figure 3.

Stemness Genes

The distribution of regularized gene expression levels (rlog) from
51 stemness genes described in CC studies and tumor suppressor
genes related to stemness TP53 and PTEN (Supplementary
Table 1) was compared between NR and R patients. Wilcoxon
rank-sum test revealed that CCSCs transcript levels of the genes
CDKN2A (p=0.038) and PTEN (p=0.048) were decreased, while
NANOG (p=0.006) was increased in the NR group. (Figure 4).

Non-Coding RNAs and Epigenetic
Findings in CCSC

The long-noncoding RNAs (IncRNAs) differentially expressed in
NR and R (n=154) represent 14.7% of all transcripts. From those,
we detected nine transcripts previously related to CC progression
(Table 1) and 15 related to diverse cancers (Supplementary
Table 4). From the small non-coding transcripts (snoRNA,
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FIGURE 1 | Kaplan-Meier survival curves showing higher percentage survival in Responder patients with cervical cancer. Log-rank test (Chi square 22.34,
p<0.0001). Hazard ratio 0.64 (95%, Cl 0.11-3.62).
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FIGURE 2 | (A) Frequency of DEGs from cervical cancer stem-like cells in Non-Responder (n=10) compared to Responder patients (n=21). From the 1050 DEGs
(adjusted p-value < 0.05), 694 protein coding, 150 pseudogenes, 154 long non-coding RNAs (LncRNA) and 52 transcripts classified as “Other RNA” (snoRNA,
miRNA, miscRNA, TEC, snRNA and mitochondrial rRNA) were identified. Orange and blue colors represent the proportion of under and overexpressed DEG
transcripts in each category, respectively. (B) Heatmap showing 1050 differential expressed genes (adjusted p-value < 0.05) in cervical cancer stem-like cells.
Responder patients (R; n=21) are represented in blue and Non-Responders (NR; n=10) are colored in green. Clinical features of Parametrial involvement, FIGO
Stages and Histological grades are detailed in the figure.
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most significantly enriched Biological process terms. The GO terms are depicted as nodes, connected by overlapping gene sets. The node color and size
correspond to statistical significance of a GO term enrichment and the number of genes in the set, respectively.

Mt_tRNA, TEC, misc_RNA, miRNA and snRNA), we identified
four microRNAs (MIR4278, MIR4422, MIR4779, MIR1268B)
and one snoRNA (SNORA12) with aberrant expression
previously associated with cancer pathogenesis (Table 1;
Supplementary Table 4).

miRNA-Target Gene Pairs Analysis
Analyses of the putative regulation of target genes for the four
miRNAs overexpressed in NR (MIR4278, MIR4422, MIR4779,

MIR1268B) returned a total of 411 interactions. We restricted
the targets by selecting those with significant (p<0.05) negative
correlation values. This selection revealed 16 genes with
putative regulation by MIR4278, MIR4422 and MIR4779
(Figure 5; Supplementary Table 5). Gene ontology biological
processes were enriched with cell cycle transition, immune
response cell surface signaling, protein targeting/localization,
and mitochondrial membrane organization pathways
(Figure 5).
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(p=0.038), NANOG (p=0.0086), PTEN (p=0.048), Wilcoxon rank-sum test. **<0.05 **<0.01.

Selection of Biomarkers

Based on the 1050 DEGs from the comparison between NR and
R CCSC, we evaluated the prediction performance based on the
partial area under the ROC curve statistic (pAUC; Pepe et al.,
2013). The 21 transcripts with the highest pAUC (0.1) values and
their cancer pathogenesis role are described in Table 2. Of these
genes, six IncRNA (AL360091.3, AL360175.1, AC025254.1,
AC093801.1, AC092354.1 and AC016722.1); four pseudogenes
(RBM22P2, AC073324.1, ORIXI1P, RPL7P52 and MTND5P25)
and coding SLC36A2 and SDS and have not previously been
shown to be transcripts in cancer.

The 21-top ranked pAUC genes from the CCSC DEGs
separated into two groups using unsupervised cluster analysis,
reflecting the treatment status between NR and R patients
(Figure 6A). The only exception was patient PCU124 who
clustered with the NR group.

The Hazard ratios (HR, 95% CI) for the 21 highest pAUC
genes under a univariate analysis are shown in Figure 6B. Of
those, the expression of ILF2 (HR=0.44, p=0.025), SCANDI
(HR=0.56, p=0.033), AK6 (HR=0.34, p=0.007) and REXO2
(HR=0.48, p=0.041), demonstrated a protective effect on
patient survival, while the genes SDS (HR=2.82, p=0.025),
ORIXI1P (HR=3.49, p=0.001), pseudogenes RBM22P2
(HR=2.96, p=0.019), MTND5P25 (HR=2.43, p=0.007),
AC073324.1 (HR=2.34, p=0.077), IncRNA AC016722.1
(HR=4.77, p<0.0005), AL360091.3 (HR=5.43, p<0.0005),
AC093801.1 (HR=2.64, p=0.002) and AL360175.1 (HR=1.96,
p=0.043), presented an increased risk with increased expression.

To refine the number of robust biomarkers with potentially
diagnostic utility, we also identified the highest 22 AUC values
from the 1050 DEGs (Supplementary Table 6). Then, selecting
the common genes between the pAUC and AUC analysis we
identified seven loci as potential biomarkers for distinguishing
NR vs. R patients: ILF2, SNX2, HNRNPAO, RBM22P2,
ACO16722.1, AL360175.1 and AC092354.1 (Figure 6C; Tables
2, 3). Of these seven potential biomarkers for distinguishing NR
vs. R patients, four also returned a significant HR for protection
(ILF2) or for increased risk (RBM22P2, ACO16722.1 and
AL360175.1). To assess the quality parameters of prognostic
prediction, accuracy, sensitivity, and specificity were evaluated
using a univariate Logistic Regression (LR) for the seven loci

(Table 3). All parameters showed predictive values higher than
70%. The genes ILF2 and RBM22P2 presented with the highest
accuracy (93%) and specificity (100%); AL360175.1 had the best
sensitivity (90%).

Gene interaction network analysis identified ten proteins with
the highest likelihood of functional relationships with ILF2:
HNRNPAI, HNRNPA2BI, HNRNPC, PTBPI, ERH, HNRNPHI,
ILF3, CDC5L, HNRNPL and HNRNPR. Amongst these, the first
three genes are DEGs under expressed in NR.

DISCUSSION

Nearly half a million new cases of CC occur each year, with the
majority of cases being diagnosed in developing countries and at
advanced disease stages (1). In addition, the number of deaths
from CC is expected to increase to 410,000 by 2030 (37). It is
evident that CC continues to be an important public health
challenge globally. Despite screening programs and the recent
advent of HPV vaccines, the quality of screening and treatment
options must be improved. Based on cancer stem cell research
and deep sequencing approaches, molecular alterations in CC
have been widely explored including tumor heterogeneity, which
has brought new insights with the potential to impact
clinical practice.

CSCs are self-renewing cancer cells responsible for expansion
of the malignant mass in a dynamic process shaping the
tumor microenvironment. CSCs have multiple differentiation
capacities, anchorage independent growth, and chemoresistance
(38). They represent approximately 0.1-10% of all tumor cells
and express low levels of typical tumor-associated antigens
compared to other tumor cells (39). After cytotoxic therapy
regimens, residual tumor cells are enriched with CSCs,
suggesting the importance of these cells in chemoresistance
and disease relapse. CSCs may hijack host immune
surveillance to escape the toxic effects of chemotherapy and
evasion of apoptosis, resulting in typically aggressive tumors
with poor prognosis (40). Despite representing a minimal
number in the bulk tumor, CSCs actively coordinate intrinsic
and extrinsic adaptation throughout carcinogenesis and therapy
refractoriness. These unique properties place CSCs as a key
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TABLE 1 | Long non-coding RNAs (IncRNA) and small RNA (snoRNA%) differentially expressed in cervical cancer stem-like cells from Non-responders (NR) and

Responders (R) related to cancer pathogenesis.

Gene Log2FC PADJ Role in Cervical Cancer Expression and cell types
MIR205HG -2.75 5.00E-04 Modulates biological activities of CC cells targeting T CaSki, MS751, Hel.a and SiHa (16)
SRSF1 and regulating KRT17
MALAT1 -2.09 2.00E-04 Predicts a poor prognosis of CC, promotes cancer cell T CC tissues, SiHa, ME-180, C4-I and CA-Il (17); Hela
growth and invasion/cisplatin resistance
and C-33A (18)
SNHG8 -2.26 2.78E-02 Accelerates proliferation and inhibits apoptosis in HPV- T HeLa, SiHa, MS751, CaSki and C33-A (19)
induced CC
NEAT1 -2.07 8.70E-03 Overexpression associated with radiosensitivity and CC T Non-sensitivity CC tissues, HeLa and SiHa (20)
poor prognosis
SNHG6 -1.83 3.39E-02 Enhances the radio resistance and promotes growth of ? CC tissues, C-33A, SiHa, Hela, CaSki, HT-3 (21)
CC cells
GAS5 -1.78 1.06E-02 Increases proliferation and migration; low expression in ¢ CC tissuss, Hela, SiHa (22, 23) metastatic lymph
chemoradioresistant CC tissues
nodes, C-33A, Caski (22); 293T cells (23)
NORAD -1.73 1.43E-02 Up regulated in CC tissues and cell lines ? SiHa, Hela, ME180, C-33A, CaSki (24)
LINCO1133 -0.75 4.97E-02 Associated with CC progression and survival T TCGA-cervical squamous cell carcinoma dataset (25)
SNORA12* 2.38 1.10E-02 Downregulated in CC

¢ Cervical tumors, HelLa and SiHa (26)

Based on IncRNAs and small RNAs from public databases and literature, 9 transcripts associated with CC tumorigenesis were detected. Log2 fold change (Log2FC) values represent the
difference in expression observed in NR when compared to R. (PADJ, Adjusted p-value <0.05; CC, cervical cancer).
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FIGURE 5 | Functional enrichment map of 16 putative target DEGs for the miRNAs (MIR4278, MIR4422 and MIR4779) in cervical cancer stem-like cells from Non-
Responders (n=10) patients compared to Responders (n=21). Associations among GO Biological processes are represented by their shared genes. Node size
indicates the number of genes contained in the pathway, and color gradient shows the corresponding log2 fold change.

component to be investigated, since their unique molecular
signature might uncover effective therapeutic strategies in
CC (41).

CD34 is a sialomucin family-related transmembrane protein
that is involved in the modulation of cell adhesion and signal
transduction (42). While it was first identified as a hallmark of
hematopoietic stem cells, studies demonstrated that CD34 is also
present on nonhematopoietic cell lines, including embryonic

fibroblasts and vascular endothelial progenitors (43). Here we
used CD34+ CD45- to sort subpopulations of tumor cells using
flow cytometry as the most effective approach towards enriching
stem-like tumor cells, thereby eliminating hematopoietic stem
cells which are CD34+CD45+.

Based on the enriched CCSC from the bulk tumor biopsy,
we conducted a low input RNA sequencing in patients with
success (n=21) and refractoriness (n=10) to conventional
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TABLE 2 | Description of the 21 highest values of pAUC (partial area under the ROC curve) from the differential expression genes of cervical cancer stem-like cells in
patients with responsiveness (n=21) and failure (n=10) to chemoradiotherapy (NR vs R).

Gene Gene name Log2FC  PADJ GO Molecular func- Cancer pathogenesis
tion
SNX2* Sorting Nexin 2 -3.01 4.76E-03 Epidermal growth factor ~ Silencing alters sensitivity to anticancer drugs targeted to c-
receptor binding Met/EGFR in lung cancer cells (27).
ILF2* Interleukin enhancer-binding factor 2 -2.73  2.60E-05 DNA/RNA binding Overexpression associated with poor prognosis in CC (28).
PDCD10 Programmed Cell Death 10 -2.45  8.32E-04 Protein binding Downregulation associated with Akt signaling protein in
glioblastoma (29); dual role in drug resistance (30).
SCAND1 SCAN domain-containing protein 1 -1.97  7.76E-05 DNA-binding Expression reduced in prostate cancer cells, suggesting a
transcription factor tumor suppressor role (31).
activity
REXO2 RNA Exonuclease 2 -1.83 1.09E-02 Exonuclease activity High expression levels correlated with high pathological grade
and Gleason score in prostate cancer (32).
HNRNPAO*  Heterogeneous nuclear -1.71 3.86E-03 Nucleic acid binding Activated by DNA damage checkpoint kinases and regulator
ribonucleoprotein AO of diverse cancer cells growth (33).
AK6 Adenylate Kinase 6 -0.94  6.94E-03 Nucleotide binding Highly expressed in cancers and correlated with a worse
prognosis (34).
OPA3 Outer Mitochondrial Membrane Lipid 1.04 1.88E-02 Regulation of lipid High expression observed in pancreatic cancer tissues (35).
Metabolism Regulator OPA3 metabolic process
SLC36A2 Solute carrier family 36 member 2 1.25 3.54E-02 Amino acid -
transmembrane
transporter
SDS Serine Dehydratase 1.38 3.13E-02 L-serine ammonia-lyase -
activity
CCR4 C-C chemokine receptor type 4 1.67 2.38E-02 Chemokine binding Lower mRNA levels in local immune microenvironment of
normal cervix than in CC (36).
ACO073324.1 Solute Carrier Family 19 Member 3 1.67 4.23E-02 - -
Pseudogene
RBM22P2*  RNA Binding Motif Protein 22 1.72 7.49E-03 - -
Pseudogene 2
AL360091.3 LncRNA 1.82 1.43E-02 - -
AL360175.1* LncRNA 2.05 1.90E-03 - -
AC025254.1 |ncRNA 210  4.34E-03 - -
OR1X1P Olfactory Receptor Family 1 Subfamily 213 3.76E-03 - -
X Member 1 Pseudogene
AC093801.1 LncRNA 2.20 1.90E-03 - -
AC016722.1* |ncRNA 2.39 1.23E-03 - -
MTND5P25 MT-ND5 Pseudogene 25 2.53 1.13E-03 - -
AC092354.1* LncRNA 259  8.53E-04 - -

Log?2 fold change (Log2FC) values represent the difference in expression observed in NR when compared to R. Transcripts are sorted by ascending number of Log2FC values. (PADJ,
Adjusted p- value < 0.05; GO, Gene Ontology; CC, Cervical Cancer). The genes in common with AUC analysis are highlighted with “*".

chemoradiotherapy. The landscape of DEGs between the Non-
responders (NR) and Responders (R) revealed 1050 genes
(Figure 2A), characterized by coding, pseudogenes, long and
small non-coding transcripts.

Interestingly, most of the coding DEGs from CCSC showed
negative values of expression when comparing NR to R patients
(Figures 2A, B). The wide-ranging pattern of under expression
in CCSCs might suggest a state of dormancy/quiescence, a key
feature of tumor plasticity that protects stem-like cells from
antiproliferative chemotherapeutic agents (44). While CCSCs
represent a key driving factor of tumorigenesis and metastasis,
the majority maintain in a quiescent or dormant state until
changes occur in the microenvironment (45). Two main
mechanisms account for tumor resistance to classical
therapeutic approaches: Darwinian selection of cells harboring
novel genetic variations (extrinsic resistance), or epigenetic
events (chromatin remodeling and activation of pathways to
cell stress), where dormancy and/or tumor quiescence can be
achieved (46, 47).

Gene Ontology (GO) analysis revealed enrichment of
biomolecule synthesis GO terms, where pathways of DNA/
RNA and protein processing, as well as cell metabolism are
overrepresented by suppressed genes (Figure 3). This is
consistent with previous studies that suggest regulatory gene
networks are downregulated in quiescent stem cells in
glioblastoma (48) and ovarian cancer (49).

Indeed, epigenetic adaptations are often reflected in CCSCs
resistance capabilities. Non-coding elements in the genome
hold a diversity of regulatory factors responsible for the
expression of proto-oncogenes or tumor-suppressor genes
(50). Given that the deregulation of small and IncRNAs are
strongly implicated in the tumorigenesis of CC, we performed
a thorough investigation of these RNAs in our dataset.
Amongst the 24 DEGs reported (Table 1; Supplementary
Table 4), the canonical oncogenic IncRNAs MALATI (17,
18), NEATI (20) and NORAD (24) showed negative
expression values in NR as compared to R patients. Our
finding differs from that seen in some of these studies, but it
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is noteworthy that we are comparing expression levels from
purified CCSCs, which represented a small percentage of cells
in the entire tumor mass. Interestingly, decreased expression of
the oncosupressive IncRNA GAS5 is correlated with tumor
development and worse clinical outcome in CC patients (22,
23). These apparently opposing findings are not unexpected in
cancer studies, especially due to the molecular heterogeneity of
tumors, diverse sample sources (cervical tissues, cell exfoliates,
mucus, serum, cell cultures, and purified cell populations) and
the variety of methodologies used. In fact, non-coding RNA in
CC are mainly evaluated from immortalized cell lines (HeLa,
CaSki, SiHa) and cervical tissues (Table 1), and gene
expression analyses were performed using non-cancerous
cells and tissues as the reference. In our study we are using
purified human biopsy derived CCSCs and comparing between
NR vs. R groups.

Correlation analysis and binding prediction were
conducted to investigate the relationship between the
miRNAs from CCSCs transcriptome and their potential
target genes. The miRNAs MIR4278, MIR4422 and
MIR4779 have been reported to exert a role as tumor
suppressors, induction of apoptosis, cell cycle arrest and in
overall cancer survival (51-53). Sixteen genes, enriched for the
functions of cell cycle transition, immune response cell
surface signaling, protein targeting/localization, and
mitochondrial membrane organization pathways showed
negative correlations with overexpression of these miRNAs
(Figure 5 and Supplementary Table 5). Noteworthy, a subset
of genes directly involved in translational machinery
(ZFP36L1, RSP8, SEC62), proteolytic degradation of
intracellular proteins (PSMBI) regulation of centrosome
cycle and progression (CALMI), cell surface structure
adhesion, migration and organization (EZR) and oxidative
stress (HEBP2) are included in the potentially down-
modulated genes (Figure 5).

The molecular mechanisms of non-coding RNAs in CC
requires further characterization, particularly regarding the
interplay between the diverse classes of RNAs and deregulation
of metabolic pathways. Furthermore, the detection of these
molecules in the serum of CC patients might lead to
biosignatures of clinical relevance in non-invasive liquid
biopsies (54).

The CSCs model and single-cell technologies have provided
an opportunity to study a heterogeneous collection of cells with
distinct genetic and phenotypic properties within tumors and
investigate what roles they play in disease processes and
therapeutic response (55). For CC, numerous markers have
been associated with stemness properties of these cells
(Supplementary Table 1), mainly regarding cellular self-renew
and pluripotency maintenance features. When comparing rlog2
expression of stemness markers in NR and R samples, a statistical
difference in three genes was observed (Figure 4). The
overexpression of the canonical transcriptional factor NANOG
is a well-known marker in CCSCs (56), and it shows an increased
expression in the NR cells. Conversely, higher expression of
tumor suppressors CDKN2A and PTEN were observed in R cells.

CDKN2A (P16/INK4A) acts as critical regulators of stem cell
functions and defines a worse prognosis in CC (57). The PTEN
gene is involved in key mechanisms specific for CSCs, such as
self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-
Transition (EMT) and treatment refractoriness (58), with
decreased expression associated with aggressive cancer
phenotypes (59). These findings support a speculation that
higher stemness features in CCSCs are associated with
treatment failure. In addition to driving cells to an
undifferentiated stage with high proliferative capacity, stemness
can poise cells to enter a senescence/quiescent state to escape
death and reach a state of reversible cell cycle arrest (60, 61).

Here we focused on a set of genes with the highest potential
for classifying NR vs. R patients using a combination of pAUC
and AUC analyses. The 21-gene signature selected using the
pAUC analysis (Table 2) clearly separated the NR and R patients
in a cluster analysis (Figure 6A). The transcriptional profile of a
subgroup of these genes; ILF2, SCANDI, AK6, REXO2, SDS,
ORIXIP, RBM22P2, MTND5P25, AC073324.1, AC016722.1,
AL360091.3 and AC093801.1 indicate significant prognostic
capacity for CC pathogenesis (Figure 6B). Choosing genes that
overlapped between the pAUC and AUC analysis led to a
collection of seven genes that strongly segregated the NR vs. R
groups: ILF2, SNX2, HNRNPAO, RBM22P2, ACO16722.1,
AL360175.1 and AC092354.1 (Figure 6C and Table 3). The
parameters of accuracy, specificity and sensitivity highlights the
strong potential of these molecules to predict failure or success to
chemoradiotherapy (Table 3). Moreover, single gene or multi-
gene signature assays can be used to measure specific molecular
pathway perturbations that could guide therapeutic decisions in
the future. Thus, our approach using high-throughput RNAseq,
where thousands of individual molecules were investigated, offers
an initial set of biomarkers with the potential for clinical use
upon further validation.

The Interleukin enhancer-binding factor 2 gene (ILF2,
NF45) forms a complex with ILF3 (NF90) involved in
transcription regulation (62), mitosis (63), and DNA repair
by nonhomologous end joining (64). ILF2 acts as a tumor
promoter, with overexpression associated with poor prognosis
in CC, pancreatic ductal adenocarcinoma, non-small cell lung
cancer and breast cancer (28, 65). However, our CCSC analysis
revealed the opposite association with ILF2 overexpressed in
CCSCs from patients with no CC recurrence after the
chemoradiotherapy (Figure 6). This pattern of higher
expression related to better survival in CC patients is also
seen in The Human Protein Atlas database (p=0.087; https://
www.proteinatlas.org/ENSG00000143621-ILF2/pathology/
cervical+cancer). Interestingly, from the ten proteins with the
highest functional interactions with ILF2, network interaction
analysis revealed three transcripts also under expressed in
NR patients. The genes HNRNPAI, HNRNPA2BI and
HNRNPC are ubiquitously expressed heterogeneous nuclear
ribonucleoproteins (hnRNPs) involved in mRNA metabolism,
splicing and regulation of alternative splicing events. Indeed,
these genes are associated with carcinogenesis and metastasis
with a diverse set of tumor types (66, 67). The spliceosomal
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host machinery is especially important for the high-risk HPV
life cycle and transformation in CC. The viral oncoproteins E6
and E7 are responsible to abrogate P53 and RB functions, with
the prevalence of different E6 isoforms linked to lesion

severity (68).

Overall, our findings point towards a highly elaborated
mechanism of treatment refractoriness and metastasis in
cancer: the plasticity of CSCs in regulating the inter-conversion
between dormancy and proliferation. When compared to R
patients, NR patient CCSCs tend to show a comprehensive
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TABLE 3 | Quality parameters of univariate Logistic Regression analysis (LR).

Gene Accuracy Sensitivity Specificity
SNX2 0.90 0.70 1
ILF2 0.93 0.80 1
HNRNPAO 0.90 0.80 0.95
RBM22P2 0.93 0.80 1
AL360175.1 0.90 0.90 0.90
AC016722.1 0.90 0.80 0.95
AC092354.1 0.90 0.80 0.95

Gene Function Log2FC
Intracellular protein trafficking -3.01
Transcription factor for T-cell IL2 expression -2.73
Pre-mRNA processing, mRNA metabolism and transport -1.71
Autophagy and intracellular protein trafficking -1.62
LncRNA 2.05
LncRNA 2.39
LncRNA 2.59

Seven loci intersect between the highest 21 values of pAUC and AUC analysis from the differential expression genes in cervical cancer stem-like cells. Log2 fold change values (Log2FC,
adjusted p-value <0.05) represent the difference in expression in Non-responders (n=10) compared to Responders (n=21) to the chemoradiotherapy.

decrease in gene expression, mostly related to transcriptional and
translational processes. We speculate that therapy resistance in
CC amongst these patients is mediated by molecular signatures
of growth arrested in CCSCs, where a quiescent/slow cycling
state could promote survival and disease recurrence.

In conclusion, we performed a comprehensive transcriptome
analysis of CC stem-like cells enriched from fresh tumor
biopsies. Despite numerous efforts, the discovery and
establishment of new biomarkers for CC prognosis are lacking.
Currently, overall prediction is mainly defined by clinical
parameters, and our results bring novel insights to the field.
First, the landscape of intrinsic resistance to conventional
chemoradiotherapy revealed seven distinguishing genes as
novel putative biomarkers for predicting response to therapy in
CC patients, with four returning significant HRs. Second, we
defined a distinct subset of non-coding transcripts in stem-like
cells from CC, adding to our knowledge concerning the
epigenetic factors driving treatment refractoriness. Third, the
selected genes, in addition to standard clinical parameters, offer
new insights towards prognostic assessment and therapeutic
support in clinical practice. Importantly, further molecular
characterization in a larger cohort of cervical cancer patients is
required to validate our findings and possibly develop their use as
clinically actionable biomarkers in the future.
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