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Glioblastoma (GBM) remains one of the most lethal primary brain tumors in both adult and
pediatric patients. Targeting tumor metabolism has emerged as a promising-targeted
therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs).
Neoplastic cells, especially those with high proliferative potential such as GSCs, have been
shown to upregulate UCP2 as a cytoprotective mechanism in response to chronic
increased reactive oxygen species (ROS) exposure. This upregulation plays a central
role in the induction of the highly glycolytic phenotype associated with many tumors. In
addition to shifting metabolism away from oxidative phosphorylation, UCP2 has also been
implicated in increased mitochondrial Ca2+ sequestration, apoptotic evasion, dampened
immune response, and chemotherapeutic resistance. A query of the CGGA RNA-seq and
the TCGA GBMLGG database demonstrated that UCP2 expression increases with
increased WHO tumor-grade and is associated with much poorer prognosis across a
cohort of brain tumors. UCP2 expression could potentially serve as a biomarker to stratify
patients for adjunctive anti-tumor metabolic therapies, such as glycolytic inhibition
alongside current standard of care, particularly in adult and pediatric gliomas.
Additionally, because UCP2 correlates with tumor grade, monitoring serum protein
levels in the future may allow clinicians a relatively minimally invasive marker to correlate
with disease progression. Further investigation of UCP2’s role in metabolic
reprogramming is warranted to fully appreciate its clinical translatability and utility.

Keywords: uncoupling protein 2 (UCP2), cancer, glioma, biomarker, metabolism, Warburg effect, Glioblastoma,
precision-medicine
INTRODUCTION

In recent years, oncologic treatment plans have continued to emphasize the importance of highly
specific, personalized, and targeted therapeutic modalities to combat malignancies in the clinic.
Whereas some cancers have seen drastic improvements in prognostic outcomes, certain primary
brain tumors have proven to be particularly refractory to most drugs. Very little improvement has
been made in the management of patients with gliomas and Glioblastomas, specifically, with 5-year
survival in adults and children remaining dismally low (at 7.2% and 17.7%, respectively) (1–3).
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With very few efficacious drugs available to these patients, there
exists an obvious and desperate need for novel approaches and
new potential interventions to improve patients’ quality of life.
Challenges that have historically hindered glioblastoma drug
discovery and utility are impermeability of the blood brain
barrier, drastic intra-tumoral heterogeneity, being extremely
invasive in nature, and the presence of neurocritical structures
commonly surrounding the tumor. Isolating and targeting
populations of common progenitor cells, or glioma stem-like
cells (GSCs), within the tumor has recently emerged as a
potentially effective strategy to eliminate the cells responsible
for much of the rapid proliferation commonly observed in these
pathologies (4, 5).

Neoplastic cells exhibit a multitude of mitotic, biochemical,
and cellular aberrancies. Many solid tumors have been shown to
exhibit an increased dependency on glycolytic metabolism and
may even forgo oxidative phosphorylation in the presence of
oxygen. In fact, it is this often-overlooked increased glycolytic
flux on the part of cancer cells that enables clinicians to
effectively localize tumors and metastatic outgrowths via
fluorodeoxyglucose positron emission tomography (PET scan)
on a regular basis. This phenomenon, originally described by
Otto Warburg nearly a century ago, has been highlighted as one
of the central tenants of tumorigenesis and an “emerging
hallmark of cancer” (6–8). While this switch in metabolism has
been well documented in the literature for some time, the
underlying mechanism by which malignant cells undergo this
transition is still in question.

Existing hypotheses concerning the Warburg effect posit that
forgoing oxidative phosphorylation and generating energy
exclusively via glycolysis may be a more efficient way to generate
metabolic intermediates, nucleotides for further proliferation, and
drive angiogenesis to the hypoxic, acidic microenvironment.
Another theory is that increased competition for shared metabolic
resources in the tumor’s vicinity cause the neoplastic cells to seek the
path of less resistance and opt for the “evolutionarily less efficient
pathway” to generate energy (9). Additionally, this shift in
metabolism has been shown to increase cell proliferation as long
as the supply of glucose is not limiting. Recent literature suggests
that cells may be shutting off mitochondrial cellular respiration by
increasing the expression of mitochondrial uncoupling protein 2
(UCP2), in an effort to mitigate the effect of cytotoxic reactive
oxygen species (ROS), thereby inducing the Warburg effect via
UCP2 upregulation (10, 11). In non-cancerous cells, UCP2
upregulation may facilitate, rather than inhibit, continued fatty
acid metabolism by mitigating increased ROS generation and
actually result in decreased glycolytic flux (12, 13). However, in
neurons where basal ROS levels are consistently elevated, as is the
case in many cancerous cells, UCP2 upregulation has shown to
decrease the cell’s ability to sense glucose appropriately and results
in disruption of carbohydrate homeostasis (14, 15).

Rapidly dividing stem cells with high proliferative and anabolic
capabilities have been shown to overexpress UCP2, whereas
induction of neuronal differentiation causes a loss of UCP2
expression (16). Similarly, human pluripotent stem cells have
been shown to overexpress UCP2 and metabolize primarily via
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glycolysis until differentiation, wherein they repress UCP2
expression and switch to primarily oxidative phosphorylation
(17). These data suggest that UCP2 may be upregulated in
situations where proliferative resources are limited, in situations
where cells need to generate metabolites quickly to aid in division,
and in states of developmental regression into a more anaplastic
phenotype as seen in oncogenesis. The central role of UCP2 in
driving the metabolic switch in aggressive neoplasms, and its
potential therapeutic implications have yet to be thoroughly
investigated. Here we sought to investigate the potential role
UCP2 could serve as a biomarker to stratify glioma patients for
adjunctive metabolic therapies as well as review the implications of
prolonged ROS elevation leading to UCP2 overexpression
in malignancy.
NORMAL FUNCTION OF UNCOUPLING
PROTEIN 2

Three homologous mitochondrial uncoupling protein domains
exist at locus 11q13.4. These three isoforms, UCP1, UCP2, and
UCP3 all pertain to a family of mitochondrial anion carrier
proteins. Although they are differentially expressed in different
tissue types, they all function to diminish the proton gradient
across the inner mitochondrial membrane in mammalian cells
by releasing energy in the form of heat rather than by ATP
anabolism. Whereas UCP1 is predominantly expressed in brown
adipose tissue and facilitates thermogenesis, UCP2 and UCP3
expression is greatest in skeletal muscle and is thought to be
more involved in protecting against the cytotoxic effects of ROS
(18, 19). UCP2 is located on the inner mitochondrial membrane
(IMM) and acts to uncouple the proton gradient across this
membrane, of which the primary function is to drive ATP
synthesis via ATP synthase. Under normal circumstances,
protons accumulate in the inner membrane space and ATP
synthase facilitates them to readily flow into the matrix,
generating ATP in the process. When UCP2 is upregulated,
the opposite occurs, in that the exit of anions and protons from
the matrix is facilitated. Although the mechanism by which
UCP2 facilitates this proton transport is not fully understood,
by allowing protons to leak across the IMM, the driving force
behind ATP production via the electron transport chain is
decreased, resulting in heat-energy release.

As is seen in many cancers, this metabolic shift away from
mitochondrial cellular respiration causes cells to increasingly
depend on glycolysis to meet their metabolic demands.
Additionally, recent studies have suggested that UCP2 may have a
role in global homeostatic glucose regulation due to its expression in
the arcuate nucleus and pro-opiomelanocortin neurons which
project into the hypothalamus (14, 20, 21). Consistent with its
potential homeostatic role in metabolic function, UCP2 over-
expression has been linked to both a and ß-cell dysfunction and
increased mRNA transcripts for UCP2 have been detected in the
pancreatic islets of several animal models with type 2 diabetes (22–
24). A common UCP2 promoter polymorphism -866G/A has been
shown to increase transcriptional activity by allowing for easier
March 2021 | Volume 11 | Article 640720

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Vallejo et al. UCP2 Utilization in Glioma Treatment
binding of the pancreatic transcription factor PAX6, increasing the
risk of glucose dysregulation and type II diabetes in several human
populations (25–29).
UNDERSTOOD ROLE OF UNCOUPLING
PROTEIN 2 IN GLIOMAS AND OTHER
MALIGNANCIES

Several cancers, including gliomas, have been observed to
upregulate UCP2 expression when compared with their non-
neoplastic cells of origin. Upregulation of this protein has been
shown to directly increase AKT pathway signaling and enhance
glycolysis by activating phosphofructokinase 2, a key regulatory
protein in the glycolytic pathway (30). Recent studies suggest
that UCP2 plays a critical role in protecting the cell from
metabolically generated reactive oxygen species (ROS), which
are known to become increasingly present as cells develop more
malignant phenotypes. Neoplastic cells are therefore engaged in a
cytotoxic positive feedback loop in which they increase
carbohydrate metabolism, dramatically increasing intracellular
ROS, leading to the upregulation of UCP2, which further
dysregulates glycolytic function allowing cells to continue
taking in glucose even in states of “satiety” (31, 32).

This phenomenon in which cells shunt metabolic away from
oxidative phosphorylation to protect themselves from free radical
damage induced by ROS illustrates one possible reason why cancers
exhibit high glycolytic dependence even when oxygen is available.
UCP2 has also been shown to facilitate mitochondrial Ca2+

sequestration from the endoplasmic reticulum specifically (33).
While the link between high intracellular Ca2+ and apoptosis has
long been understood, recent work posits that multiple potentially
apoptogenic Ca2+ influx pathways exist, due to entering from the
extracellular matrix or release from the endoplasmic reticulum (34–
37). Therefore, the dramatic increase in UCP2 expression seen
across multiple malignancies may also be, in part, due to aiding in
sequestering rising intracellular Ca2+ in the mitochondria to protect
the cell against apoptosis.

By facilitating apoptotic evasion, overexpression of UCP2 may
similarly aide in chemotherapeutic resistance. Overexpression of
UCP2 in multiple human cancer cell lines has consistently shown to
favor a highly glycolytic phenotype, inhibits ROS accumulation, and
prevents apoptosis after exposure to chemotherapeutic agents (38–
40). Temozolomide is the chemotherapeutic drug of choice in
glioma management and has been shown to trigger dramatic
bursts of ROS leading to potential autophagy secondary to ERK
activation (41). Previously, our lab has shown that GSCs are
resistant to Temozolomide doses well above the peak therapeutic
doses reportedly achieved in patient brain tissue and cerebrospinal
fluid (42, 43). This resistance may be, in part, due to an increase of
UCP2 to protect against ROS accumulation. Taken together, these
findings suggest that the upregulation of UCP2 as a cytoprotective
mechanism may be largely responsible for inducing this metabolic
switch towards aerobic glycolysis, rather than being a consequence
of an upstream metabolic alteration (Figure 1A).
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UNCOUPLING PROTEIN 2 AS A
POTENTIAL BIOMARKER IN GLIOMA

Rising levels of cytotoxic ROS have been shown to directly correlate
both with increased glioma grade and with UCP2 expression. We
sought to analyze if UCP2 expression alone would correlate with
tumor grade. Genomic data on GBM patients from TCGA were
analyzed using an open-access brain tumor database, GlioVis
(gliovis. bioinfo.cnio.es) (44). Consistent with previous findings,
UCP2 expression was shown to be significantly greater in GBM
tissue than non-tumor tissue in an analysis of the TCGA GBM
database containing 10 non-tumor samples and 528 Glioblastoma
samples (p<0.05, Figure 1B). UCP2 expression was shown to
positively correlate with tumor grade in both the CGGA RNA-seq
database containing 625 low-grade glioma samples and 388 high-
grade glioma samples and the TCGA GBMLGG database
containing 515 low grade and 152 high-grade glioma samples
(p<0.05, Figure 1C).

More notably, in an analysis of Kaplan-Meyer curves based on
gene expression the TCGA GBMLGG shows that, across low- and
high-grade gliomas, higher UCP2 expression is associated with
significantly shorter median survival when compared to low UCP2
expression (High=26.4, Low=87.5 months, Figure 1D).
Additionally, in a combined analysis of samples from
oligodendrogliomas, oligoastrocytomas, astrocytomas, anaplastic
oligodendrogliomas, anaplastic oligoastrocytomas, anaplastic
astrocytomas, and GBMs the CGGA shows a significant and
dramatically poorer median prognosis in tumors which have high
UCP2 expression (High=19.5, Low=80.1 months, Figure 1E). In
short, UCP2 expression increases with increased WHO tumor-
grade and is associated with much poorer prognosis across a cohort
of brain tumors.

Additionally, high UCP2 expression is known to favor a
highly glycolytic metabolic profile, therefore suggesting that
more aggressive gliomas may have an increased dependency on
glycolysis and may be more susceptible to anti-glycolytic
treatments. This finding has large implications for metabolic
management of high-grade gliomas. Liquid biopsy has recently
been proposed as a method of monitoring or diagnosing tumors
via non-invasive, low-cost methodology by detecting circulating
neoplastic cells, DNA, RNA, or proteins secreted by tumor cells
(45). The feasibility of measuring UCP2 levels in patient serum
has been previously demonstrated (46–48). Theoretically,
patients may be able to establish baseline UCP2 measurements
after surgical resection and monitor UCP2 trending upward,
indicating disease progression, or trending downward, indicating
efficacy of treatment due to either cell death or induction of
differentiation. Similarly, following UCP2 levels may aide in the
surveillance of low-grade gliomas progressing into more
aggressive phenotypes. While UCP2 protein levels have been
shown to decrease via western blot in response to cellular
differentiation, the level of mRNA transcripts were shown to
remain relatively stable (16). The consistent presence of mRNA
is due to an upstream open reading frame in exon 2 of the UCP2
gene coding for ORF1 which has been shown to strongly inhibit
the protein’s expression (49). By regulating this factor, cells are
March 2021 | Volume 11 | Article 640720
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able to quickly increase UCP2 expression in response to
metabolic stress without having to generate entirely new
transcripts (50, 51). Because of this, UCP2 should be
investigated at the protein level should clinicians wish to
follow it as a tumor marker in the future. Importantly,
determining an individual’s intratumoral UCP2 expression
level can lead to targeted metabolic therapeutic interventions.
Multi-modality treatment plans incorporating metabolic
therapies such as glycolytic inhibition or exogenous ketone
body supplementation may be more seriously considered in
application to more advanced disease with more dramatic
glycolytic demands.
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THERAPEUTIC IMPLICATIONS OF
UNCOUPLING PROTEIN 2 EXPRESSION
LEVEL IN GLIOMAS
The role inflammation plays in glioma progression has yet to be
fully understood. While the link between glucose and
inflammation has been well documented in the scientific
literature, the effect on the tumor’s microenvironment of the
metabolic shift accompanying UCP2 upregulation also warrants
further investigation. Several studies have demonstrated that, in
UCP2 knockout mice, macrophages mount a higher immune
response to pathogens when compared with the UCP2 wild-type
A

B C

D E

FIGURE 1 | High UCP2 expression is indicative of advanced tumor-grade and is associated with decreased survival. (A) UCP2 upregulation has many downstream
consequences including worse prognosis. (B) TCGA_GBM database platform HG-U133A containing 10 non-tumor and 528 GBM tumor samples shows UCP2 is
upregulated in tumor vs. non-tumor (p= 1.3E-05). (C) UCP2 expression correlates with tumor grade as seen in query of CGGA database including 625 low-grade
and 388 high-grade gliomas (Grade II vs. Grade III p= 4.2E-02, Grade II vs. Grade IV. p= 2.4E-13, Grade III vs. Grade IV p= 6.3E-07). (D) Elevated UCP2 expression
is indicative of worse prognosis in survival data from the TCGA GBMLGG dataset containing 515 low-grade and 152 high-grade tumors. (E) Elevated UCP2
expression is indicative of worse prognosis in survival data from the CGGA dataset. (Expression data were analyzed via pairwise group comparison using p-value
with Bonferroni correction. Kaplan–Meyer data were analyzed via computation of Log-rank p-values).
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macrophage response, potentially due to the increased peroxide
and superoxide generation inside mitochondria (52–54).

This finding suggests that UCP2 upregulation may be due to
not only increased need for ROS mitigation, but also as a way to
dampen the immune response to the tumor, allowing evasion of
immune-system recognition. This potential effect of UCP2 on
the microenvironment is consistent with previous studies
showing that gliomas and GBMs are “immuno-cold”, and are
oftentimes not engaged or targeted by patients’ immune systems
in immunotherapy clinical trials. Conversely, by inducting this
metabolic shift which increases glucose availability in the tumor
microenvironment, UCP2 may also have a relationship to pro-
inflammatory cascades which favor tumorigenesis and
progression. Inflammatory tumor associated macrophages
(TAMs) in the microenvironment have been associated with
more aggressive malignancies with decreased patient survival
(55, 56).

Two strategies exist in the metabolic targeting of UCP2
over-expression (Figure 2). One strategy is to target tumors
with high levels of expression, exhibiting uncoupled oxidative
phosphorylation with extremely high levels of glycolytic
metabolism, with glycolytic inhibitors or glucose starvation as
is suggestive with ketogenic therapy (57). An in vitro study on
five different GBM cell lines by our lab found that UCP2 was
Frontiers in Oncology | www.frontiersin.org 5
directly upregulated in response to exogenous acetoacetate
supplementation, and concurrent glycolytic inhibition
produced a dramatic synergistic loss of cell viability (58).
Treating UCP2-overexpressing HCT116 cells with 2-deoxy-D-
glucose was also shown to halt cell growth, further suggesting the
efficacy of glycolytic inhibitor therapy where levels of UCP2 are
increased (59). By increasing the glycolytic flux to the tumor,
clinicians can aim to lower the supply of glucose available to the
tumors while also utilizing anti-glycolytic drugs with minimal
toxicity to peripheral tissues.

Another strategy is to inhibit UCP2 directly or preventing
its transcription in an effort to slow rampant carbohydrate
uptake and restore a more normal metabolic phenotype. In
one study, lactate accumulation was diminished after siRNA
knockout of UCP2, albeit not to a statistically significantly extent.
However, the same study found that a 33% reduction of UCP2
expression resulted in a 22% protection from the proglycolytic-
loss of mitochondrial membrane potential, suggesting that
UCP2 knockout can restore normal metabolic phenotype via
enabling oxidative phosphorylation (60). Also, although purine
nucleotides are known to inhibit UCP2 expression under normal
physiological conditions, the compound genipin successfully
inhibited UCP2-mediated proton leak and reversed high-
glucose induced ß cell dysfunction in both isolated kidney
FIGURE 2 | Therapeutic implications of tumor UCP2 expression. UCP2 can be directly measured in tumor tissue and compared to baseline UCP2 expression levels.
Tumors with high expression likely to exhibit carbohydrate dysregulation may benefit from adjunctive metabolic treatments such as glycolytic inhibition. Basal levels of
UCP2 can be used to monitor tumor progression with potential serum measurements at follow-up. In tumors where UCP2 is inhibited or tumoral expression of UCP2
is very low, mitochondrial metabolism may remain intact suggesting an oxidative phosphorylation inhibitor may be warranted.
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mitochondria and pancreatic islets (61, 62). Lending to the idea
that UCP2 is expressed in highly proliferative, embryonic, stem-
like states, UCP2 knockout was shown to suppress murine skin
carcinogenesis of both benign papilloma and malignant
squamous cell carcinoma (63). Recently, a series of in-vitro
experiments demonstrated that UCP2 knockdown inhibited
migration, invasiveness, clonogenicity, proliferation, and
promoted via ROS-mediated cell apoptosis, in addition to
reducing tumorgenicity in nude mice by inhibiting the p38
MAPK pathway (64). As previously described, stem cells with
high proliferative potential have increased UCP2 expression
which is only downregulated upon differentiation. Therefore,
knocking out UCP2 may be a promising strategy to induce
differentiation and halt cell-division or conversely facilitate
apoptosis via ROS accumulation.

In regard to intratumoral heterogeneity, some subpopulations of
glioblastoma cells may actually exhibit decreased glycolysis,
underscoring the need for multi-modal treatment approaches and
regular monitoring of the tumor’s metabolic profile to adjust
therapy accordingly. One proposed escape mechanism by which
cancer cells may evade glycolytic therapy is via the p53-mediated
induction of SCO2, pushing for oxidative phosphorylation, and
TIGAR, which lowers the levels of glycolytic substrate fructose-2,6-
bisphosphate (65–67). The mitochondrial permeability transition
pore (mPTP) mitigates ROS accumulation via transient opening,
stabilizing the mitochondrial membrane potential (68). Shi et al.
recently demonstrated that glioblastoma and other cancers lack
properly functioning mPTP, and that treating these cells with a
metabolically stable analogue of Gboxin, an inhibitor of oxidative
phosphorylation, inhibits glioblastoma allograft and patient-derived
xenografts (69). Therefore, monitoring the expression of UCP2 can
help clinicians understand the metabolic profile associated with
each unique tumor and give insight as to whether certain metabolic
therapies may be effective. Highly glycolytic tumors expressing high
levels of UCP2 may benefit from glycolytic inhibition synergizing
with glucose deprivation, whereas tumors with low UCP2
expression or with UCP2 knockout metabolizing primarily via
oxidative phosphorylation may benefit from differentiation and
OXPHOS inhibition with Gboxin-like compounds. Patients are in
desperate need of novel approaches to combat these malignancies,
glioblastoma in particular. UCP2’s implications on tumor
metabolism warrants more investigation. Just as PET scans are
commonplace in oncologic medicine, further understanding of
glioma metabolism may allow full clinical exploitation of these
aberrant pathways by implementing targeted therapies into future
multi-modal treatment plans.
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSION

Although it has been common scientific knowledge that cancers and
gliomas specifically are highly glycolytic, the clinical utility of this
tendency has yet to be fully exploited. As ROS increases and gliomas
advance in grade, so too does UCP2 expression rise and the tumor
become more dependent on glycolytic metabolism. Additionally,
high UCP2 expression has shown to correlate with poorer survival
outcomes. This finding suggests that more aggressive tumors with
high levels of UCP2 expression, which are highly dependent on
glycolysis, may benefit from multi-modal treatment approaches
which aim to shut down glycolysis. Conversely, UCP2 knockout
may aide in restoring normal metabolic phenotype and pushing
stem-like cancer cells towards differentiation. UCP2 expression
could potentially serve as a biomarker to stratify patients for
adjunctive anti-tumor metabolic therapies, particularly in adult
and pediatric gliomas.
FUTURE PERSPECTIVE

Clinicians in the future may be able to harness UCP2 expression
profiles to better direct targeted treatments against aberrant tumor
metabolism. Further investigation of UCP2’s role in metabolic
reprogramming, the ability to monitor it’s expression as a serum
tumor marker, and in vivo experiments exhibiting a survival benefit
with appropriate stratification for additional therapies is warranted
to fully appreciate it’s clinical translatability and utility.
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