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Background: Clear cell renal cell carcinoma (ccRCC) is one of the most common
malignancies in urinary system, and radiomics has been adopted in tumor staging and
prognostic evaluation in renal carcinomas. This study aimed to integrate image features of
contrast-enhanced CT and underlying genomics features to predict the overall survival
(OS) of ccRCC patients.

Method: We extracted 107 radiomics features out of 205 patients with available CT
images obtained from TCIA database and corresponding clinical and genetic information
from TCGA database. LASSO-COX and SVM-RFE were employed independently as
machine-learning algorithms to select prognosis-related imaging features (PRIF).
Afterwards, we identified prognosis-related gene signature through WGCNA. The
random forest (RF) algorithm was then applied to integrate PRIF and the genes into a
combined imaging-genomics prognostic factors (IGPF) model. Furthermore, we
constructed a nomogram incorporating IGPF and clinical predictors as the integrative
prognostic model for ccRCC patients.

Results: A total of four PRIF and four genes were identified as IGPF and were represented
by corresponding risk score in RF model. The integrative IGPF model presented a better
prediction performance than the PRIF model alone (average AUCs for 1-, 3-, and 5-year
were 0.814 vs. 0.837, 0.74 vs. 0.806, and 0.689 vs. 0.751 in test set). Clinical
characteristics including gender, TNM stage and IGPF were independent risk factors.
The nomogram integrating clinical predictors and IGPF provided the best net benefit
among the three models.

Conclusion: In this study we established an integrative prognosis-related nomogram
model incorporating imaging-genomic features and clinical indicators. The results
March 2021 | Volume 11 | Article 6408811

https://www.frontiersin.org/articles/10.3389/fonc.2021.640881/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640881/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640881/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640881/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.640881/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:drmaxuelei@gmail.com
mailto:zhaoye525@cmc.edu.cn
https://doi.org/10.3389/fonc.2021.640881
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.640881
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.640881&domain=pdf&date_stamp=2021-03-08


Huang et al. Imaging-Genomics Features Predicting ccRCC Prognosis

Frontiers in Oncology | www.frontiersin.org
indicated that IGPF may contribute to a comprehensive prognosis assessment for
ccRCC patients.
Keywords: clear cell renal cell carcinoma, radiomics, genomics, machine learning, prognosis
INTRODUCTION

Renal cell carcinoma (RCC) is a common heterogeneous
malignancy originated from renal tubular epithelial cells, with
clear cell renal cell carcinoma (ccRCC) comprising about 80% of
RCC cases (1, 2). Owing to the insufficient clinical symptoms and
reliable diagnostic biomarkers at the early stage, about 30% of
ccRCC patients had metastasis at the time of diagnosis, and
about one-fifth of patients may experience metastasis or
recurrence after radical treatment (3, 4). Imageological
examinations such as conventional ultrasound, contrast-
enhanced ultrasound, CT, contrast-enhanced CT and MRI
have been applied to assess the overall profile of the tumor as
noninvasive methods. However, there are limitations in these
conventional imaging tests for differential diagnosis,
preoperative pathological grading and prognosis of ccRCC,
which also lack quantitative criteria.

Radiomics was first proposed by Lambin et al. (5) in 2012,
which exploits high-throughput feature extraction algorithms to
extract quantitative image features from standard medical
images. Radiomics managed to perform the conversion from
images into mineable data, which could then be applied to
clinical decision support systems to achieve precise prediction,
diagnosis, and prognostic evaluation of cancers (6, 7). A number
of studies have reported that radiomics has been successfully
applied in renal tumors researches, including Fuhrman staging of
ccRCC (8–10), assessment of cancer phenotype and tumor
microenvironment (11), differentiation of RCC and benign
renal tumors (12, 13) and efficacy and prognosis evaluation
(14, 15).

However, most studies regarding radiomics were primarily
focused on the selection of image features and the quantitative
analysis of tumors at the macroscopic level, and there has been
little research into the mechanisms of deeper molecular biology.
Combined with machine learning algorithms, we can further
correlate the imaging data that reflects the quantitative
phenotype of the disease with the genotype feature data which
reveals the molecular activity. Correlation analysis between gene
mutation, expression and imaging characteristics has been
proved effective in the research of liver cancer (16), lung
cancer (16–18), glioblastoma (19, 20) and Alzheimer’s disease
(21). Therefore, it is of vital importance to analyze the correlation
and integration between imaging and genomic features of
ccRCC, so as to understand the biological mechanism and
furthermore obtain biomarkers for prognosis prediction, which
will be more rewarding in personalized precision therapy.

Previous studies have proven that certain molecules and the
activation of a series of signaling pathways are in close relation
with the tumorigenesis and progression in ccRCC. For instance,
the overexpression of vascular endothelial growth factor (VEGF)
2

and platelet derived growth factor (PDGF) receptor tyrosine
kinases are of great significance in promoting tumor
angiogenesis and cell division. In addition, PI3K/AKT/mTOR
pathway also results in affecting tumor cell growth and
metabolism. Nevertheless, the associated gene expression
profiles have not been thoroughly studied.

Standard treatments for ccRCC patients encompass surgery,
radiotherapy and chemotherapy, and specific treatments
including targeted therapy in combination with immune
checkpoint inhibitors have shown efficacy in improving the
overall survival (OS) of ccRCC patients (22, 23). However, the
response of personalized therapy does vary and the prognosis is
not as satisfactory. So far no routine genetic tests have been
conducted, and these molecules concerning the mechanism of
ccRCC development may provide opportunities to investigate
potential biomarkers for diagnosis and prognosis. Therefore, it’s
essential to establish an effective model that conduce to risk
stratification, treatment strategy support and prognostic
prediction for patients with ccRCC.

In this study we concentrate on analyzing the radiomics
features of contrast-enhanced CT and their association with
genomics profiles of ccRCC samples, which has not been
extensively researched. In order to select the imaging features
significantly correlated to the prognosis of ccRCC, we applied
several machine learning algorithms. Through machine-learning
algorithms, we further estimated the correlation between
prognosis-related image features (PRIF) and expressed genes
profiles. Furthermore, the integration of radiomics and gene
features was conducted to enhance the accuracy of prognostic
evaluation. Eventually, we conducted validation of the imaging-
genomic prognostic factors (IGPF) model, and the results
suggested that these features may be of help in the prediction
of prognosis in ccRCC patients. The potential connection and
integration of macroscopic radiomics and genetic characteristics
at the microscopic level needs further exploration.
MATERIALS AND METHODS

Data Source and Processing
The overall structure of our study was demonstrated in Figure 1.
The detailed information of each section will be interpreted as
follows. We downloaded the available enhanced CT images from
the Cancer Imaging Archive (TCIA) portal (http://www.
cancerimagingarchive.net/) and the information containing
clinical features and mRNA sequencing data of corresponding
ccRCC samples from the Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov). In total 205 available
samples were gathered. For data normalization, we firstly
acquired the raw count data of the ccRCC patients from the
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FIGURE 1 | The overall framework of data analysis and model integration. 1) The segmentation of tumor region of interest (ROI) of contrast-enhanced CT images
was performed by 3D slicer. Radiomics features of the ROIs were then extracted. 2) The selection of prognosis -related radiomics features was implemented by
LASSO-COX Regression and SVM-RFE machine learning methods. The identification of prognostic gene modules was carried out by co-expression gene network
analysis through WGCNA, and gene pathway analysis was subsequently performed. 3) The integration and assessment of prognosis-related radiomics features and
gene signature was conducted by random forest (RF). Finally, the nomogram incorporating clinical predictors and imaging-genomic prognostic factors (IGPF) of
ccRCC patients was constructed via R package rms.
Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 6408813
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TCGA-KIRC project. Then we normalized the raw count data
using variance stabilizing transformation through the vst
function of DESeq2 package.

Extraction of CT Image Features
Tumor segmentation and feature extraction were performed
using 3D slicer (Version 4.7) software. 3D slicer is an open
source software platform which functions in medical image
processing, analysis (including registration and interactive
segmentation) and versatile visualization for image-guided
therapy (24). We loaded deidentified transverse CT images
(DICOM) of ccRCC into the software and conducted
segmentation of area for each lesion with a paint function. The
delineation of the region of interest (ROI) was firstly conducted
by Xuelei Ma, an oncologist with experience in CT
interpretation. To access the intra- and inter-rater feature
stability against ROI delineation variations caused by human
factors, Xuelei Ma and another experienced oncologist Ye Zhao
conducted the delineation of the ROI again. Through the icc
function of R package irr, we calculated the intraclass correlation
coefficient and accessed the repeatability and stability of the
radiomics features based on the ROI conducted by Xuelei Ma
twice and that conducted by Ye Zhao (used for accessing the
inter-rater stability of radiomics features).

Next we performed feature extraction calculations of ccRCC
patients via pyradiomics package (https://pyradiomics.
readthedocs.io/en/latest/), an extension via the 3D Slicer
ExtensionManager. The pyradiomics is an open-source python
package for the extraction of radiomics features from medical
imaging, and most features are in compliance with feature
definitions as described by the Imaging Biomarker
Standardization Initiative (IBSI). Notes are added to specify the
differences where the features vary in the website (25).
Eventually, we obtained a total of 107 features in various
classes. For instance, first order statistics describe the
distribution of voxel intensities within the image region,
including skewness, maximum, minimum, mean, range, and
entropy etc. Shape-based category depicts shape eigenvalue of
ROI and in 3-dimentional size. Gray Level Cooccurrence Matrix
(GLCM) features and Gray Level Run Length Matrix (GLRLM)
represent the eigenvalue of high-order texture characteristics.
Other features extracted were contained in Gray Level Size Zone
Matrix (GLSZM), Neighboring Gray Tone Difference Matrix
(NGTDM) and Gray Level Dependence Matrix (GLDM).

Selection of Prognosis-Related Radiomics
Features
All the ccRCC samples were randomly assigned to training and
test cohorts on a scale of 1:1. Based on the training set, we applied
the least absolute shrinkage and selection operator COX
(LASSO-COX) and support vector machines-recursive feature
elimination (SVM-RFE) algorithm in R package “glmnet” and
“e1071” respectively using 5-fold cross-validation approach to
filtrate prognosis-related imaging features (PRIF). LASSO-COX
reduces feature space dimension and filters variables by
performing a penalized function that compresses insignificant
Frontiers in Oncology | www.frontiersin.org 4
coefficients to zero, and therefore contracts subsets and processes
data with complex collinearity. The cv.glmnet function of glmnet
package provides an argument for K-fold cross validation called
“nfolds”, and this argument was set at 0.04396 for 5-fold
cross validation.

SVM arranges the extracted image features in descending
order according to the variable importance and inputs them to
the training model in sequence in each iteration of the cross-
validation calculation, thus measuring the overall accuracy of the
training sets during the accumulation course. SVM-RFE is a
sequence backward selection algorithm based on the maximum
interval principle of SVM. We applied the 5-fold cross validation
algorithm as the resampling method for SVM-RFE. The final
importance of features was based on the average importance of
each feature in each iteration. Afterwards, we compared the
features displayed in the outcome of two methods and selected
those within the intersection of two subsets as PRIF for
subsequent analyses.

Gene Co-Expression Network Analysis
To further explore the molecular biological mechanisms of the
prognostic-related CT image features and obtain gene expression
modules, we conducted weighted gene co-expression network
analysis (WGCNA) based on training dataset. WGCNA is a
systematic analytical tool which describes the correlation
patterns among genes across microarray samples and clusters
genes into modules, hence investigating the association between
gene sets and clinical traits. The main workflow started with
measuring adjacency coefficient which computes the joint
strength between two nodes. Next we reduced the co-
expression similarity to ensure a scale-free network. The
topological overlap measure (TOM) was performed to
eliminate false correlation, and then we conducted average
linkage hierarchical clustering and classified functional gene
modules in the co-expressed network. The module eigengenes
(ME) was the first principal component of the expression matrix
which represented the gene expression profile of the entire
module. Afterwards we assessed the correlation between MEs
and previously screened image features to identify the most
relevant clinically significant module. Then to assess the
preservation of the connectivity and density between each
couple of modules (from the train and test networks), we
carried out a permutation test through the function
modulePreservation from the WGCNA package. This function
provides a summary preservation Z-score for each module.
Furthermore we applied Gene ontology (GO) enrichment
analysis via Metascape (http://metascape.org) to evaluate the
interlinkage between key modules.

Construction of Integrative Imaging-
Genomic Prognostic Model
We utilized random forest (RF) algorithm with 1,000 decision
trees (DTs) through “randomForestSRC” (rfsrc) in R to obtain
optimal prognostic factors. RF algorithm constructs and
assembles multiple decision trees based on data samples to
attain a more precise prediction, which can reduce the over-
March 2021 | Volume 11 | Article 640881
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fitting by averaging the result. The default arguments of the rfsrc
function contained a resampling method argument “bootstrap”.
The default value of the “bootstrap” argument was “by.root”,
which bootstraps the data by sampling with replacement at the
root node before growing the tree. Based on training set we firstly
constructed two prognostic models, one of which incorporated
prognosis-related imaging features (PRIF) and the other
integrated PRIF and the expressed genes profiles. The latter
was defined as imaging-genomic prognostic factor (IGPF)
model. Meanwhile we evaluated the prediction performance of
the two models with test set using 5-fold cross-validation.
Subsequently, we performed the discrimination of the
signature by plotting the receiver operating curve (ROC) and
calculating the corresponding area under curve (AUC) based on
average accuracy of 5 iterations. ROC curve analysis obtained
generalization abilities based on the means computed by all cross
validation sets and the average 1-, 3-, and 5-year AUCs were then
assessed. Furthermore, we calculated the risk scores for all
ccRCC patients using RF, and patients were then separated
into high-risk group and low-risk group based on the median
cut-off value of risk scores. The overall survival (OS) of the two
groups was acquired and displayed via Kaplan-Meier survival
curve analysis and then compared by log rank test.

Univariate and multivariate Cox regression analyses were
performed to further identify the predictive factors of survival
outcome. Variables with p < 0.05 in univariate Cox regression
analysis were considered statistically significant and selected for
multivariate analysis. On the grounds of the results of Cox
regression analysis we established a nomogram based on the
training dataset, which comprised the IGPF and certain clinical
factors including stage and gender through R package rms.
Calibration plots were then applied based on training set to
evaluate the predictive performance of the nomogram by
illustrating the consistency between predicted OS and observed
OS and model discrimination was estimated by the concordance
index (C-index). Moreover we employed the decision curve
analysis (DCA) based on training set to assess the clinical
availability of the nomogram by calculating the net benefit
under a range of threshold probabilities.
RESULTS

Acquisition of Prognosis-Related
Radiomics Features
We initially obtained the patient data containing clinical features
and mRNA sequencing data of 537 ccRCC samples from TCGA
database and the matched CT images of 237 ccRCC patients
from TCIA portal, among which 205 samples with available and
complete data were enrolled for subsequent analyses. The patient
clinical characteristics are listed in Table 1. The results of the
repeatability and stability assessment showed that most of the
radiomics features (104 of 107) were stable against ROI
delineation variations caused by human factors (icc > 0.75 and
p < 0.05). The raw data of the ROI delineation by two oncologists
were presented in Supplementary Material 1. A total of 107
Frontiers in Oncology | www.frontiersin.org 5
features of six categories were firstly extracted from original CT
images from the ROIs using pyradiomics package, and the results
adhered to the IBSI recommendations (Supplementary Material
1, icc data). To acquire a reliable and robust model, we randomly
divided the ccRCC samples into a training set (n=103) and a test
set (n=102) in a 1:1 ratio and proceeded to the further selection
based on the training dataset. In an attempt to diminish the
possibility of module overfitting by too many radiomics features
and select the ones with higher prediction accuracy for OS, two
machine-learning approaches including LASSO-Cox regression
and SVM-RFE were employed for mutual authentication. The
tuning parameter l was settled at an optimal value of 0.04396
with the minimum criteria in LASSO regression, and 6
prognostic features were identified with nonzero coefficients
out of 107 radiomics features (Figure 2A). As the extracted
features ranked and excluded sequentially in SVM classifier
during each iteration by contribution value, we found that the
best prediction performance appeared when the first 14
radiomics features were included during the 5-fold cross
validation (Figure 2B).

Therefore, the top 14 features in contribution value were
filtrated as prognosis-related features for further module
construction, covering six in GLCM, three in GLSZM, one in
GLDM, two in shape, one in NGTDM and one in first order.
TABLE 1 | Demographic and clinical characteristics of patients.

Characteristics Total (n=205) Train (n=103) Test (n=102) P
value

NO. NO. (%) NO. (%)

Age at
diagnosis
(years)

0.081

Mean ± SD 59.7 ± 12.2 58.4 ± 12.7 61.0 ± 11.7
Gender 0.433
Male 134 70(68.0) 64(62.7)
Female 71 33(32.0) 38(37.3)

T classification 0.179
T1 109 56(54.4) 53(52.0)
T2 22 15(14.6) 7(6.9)
T3 70 31(30.1) 39(38.2)
T4 4 1(0.9) 3(2.9)

N classification 0.856
N0 83 43(41.7) 40(39.2)
N1 5 2(1.9) 3(2.9)
Unknown 117 58(56.4) 59(57.9)

M classification 0.146
M0 176 93(90.3) 83(81.4)
M1 28 10(9.7) 18(17.6)
Unknown 1 0(0.0) 1(1.0)

TMN stage 0.200
I 106 56(54.4) 50(49.0)
II 18 12(11.6) 6(5.9)
III 51 24(23.3) 27(26.5)
IV 30 11(10.7) 19(18.6)

Grade 0.227
G1 1 1(1.0) 0(0.0)
G2 80 40(38.8) 40(39.2)
G3 91 50(48.5) 41(40.2)
G4 33 12(11.7) 21(20.6)

OS (days) 0.090
Mean ± SD 1371.0 ± 925.1 1493.5 ± 996.7 1247.2 ± 833.5
March 2021 | Vol
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Eventually four features with predictive efficiency (glszm_Large
AreaHighGrayLevelEmphasis, gldm_GrayLevelNonUniformity,
shape_SurfaceVolumeRatio, glcm_Correlation) within the
overlap of the results produced by the two methods were
identified as prognosis-related imaging features (PRIF)
(Figure 2).

Identification of Co-Expressed Gene
Modules Related to Prognostic Image
Features
To identify the gene modules highly correlated to PRIF in the
ccRCC samples, we performed WGCNA to build a gene co-
expression network based on training dataset. Threshold powers
were set from 1 to 20 to choose an applicable soft-thresholding
power, and the top 25% most variant genes (4,936 genes) ranked
in descending order of SD sequence were included for
subsequent analyses. A total of nine co-expressed gene
modules were identified via the hierarchical clustering
dendrogram (Figures 3A, B). Relationships of the modules
Frontiers in Oncology | www.frontiersin.org 6
were illustrated in a heatmap drawn by adjacencies (Figure
3C). Afterwards, we conducted correlation analysis to estimate
the association between nine MEs and image traits (Figure 3D).
The correlation coefficients and FDR values between each of the
nine gene modules and PRIF were displayed in Supplementary
Material 2. Of all the nine gene co-expression modules, the green
module (625 genes) displayed the most significant correlation
with the prognosis-related image features of ccRCC, including
glszm_LargeAreaHighGrayLevelEmphasis, gldm_GrayLevel
NonUniformity, shape_SurfaceVolumeRatio and glcm_
Correlation. The module preservation analysis presented by the
summary preservation Z-score showed that all the modules were
rather stable and the green module was the most robust between
training and test sets (Figure 3E). Thus we identified the green
module as the key module of significant prognostic importance
for continuous research.

Furthermore we carried out enrichment analysis to describe
the biological interpretations of the genes in green module
(Supplementary Material 3). As illustrated in Figure 4, the
A B

FIGURE 2 | Selection of prognosis-related imaging features (PRIF). (A) A total of six features were identified by LASSO-COX regression analysis. The horizontal axis
represents the lambda value and vertical axis represents independent variable coefficient. (B) A total of 14 features selected by SVM-RFE. And four imaging features
within in the overlap were defined as PRIF.
March 2021 | Volume 11 | Article 640881
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genes were significantly related to certain biological processes
such as blood vessel development, circulatory system process,
cell morphogenesis involved in differentiation, cell-substrate
adhesion, and extracellular structure organization. The results
suggested that these genes may be involved in tumor
angiogenesis and cell adhesion, which have been proved to be
associated with tumorigenesis and progression.

Construction and Validation of Integrated
Imaging-Genomic Prognostic Model
In order to establish an integrative model of PRIF and prognostic
co-expressed gene profile, we applied RF algorithm based on
training dataset, and furthermore performed model verification
with the test dataset. Initially we presented PRIF as an
independent variable to analyze its impact on prognosis and
found a significant correlation. Then to explore the combined
effect of genomics and imaging features, we assessed gene
expression profiles in the prognostic-related green module and
selected the top four genes with the highest module membership
(MM) va lue (RPS6KA2 , CYYR1 , KDR, GIMAP6)
(Supplementary Material 4, Figure S1).

Furthermore, we integrated the four genes with PRIF which
were identified as imaging-genomic prognostic factors (IGPF)
and calculated the risk score of each ccRCC patient. The patients
Frontiers in Oncology | www.frontiersin.org 7
were divided into high-risk and low-risk groups in light of the
median value of risk scores and then estimated with time-
dependent ROC. To evaluate the statistical differences between
different models, we applied the compare function of timeROC
package in both training and test sets. The result showed that
there were statistically significant differences between RPIF and
IGPF models in 1-, 3-, and 5-year OS (P<0.05) (Table 2). The
outcome illustrated a more satisfactory predictive performance
of IGPF model compared to the RPIF model alone (Table 3). In
the training set, the average AUCs for 1-, 3-, and 5-year OS were
0.845, 0.772, and 0.737 in PRIF model compared to 0.898, 0.849
and 0.808 in IGPF model respectively (Figures 5C, 6C). In the
test set, the average AUCs for 1-, 3-, and 5-year OS were 0.814,
0.74 and 0.689 of PRIF model compared to 0.837, 0.806 and
0.751 of the combined IGPF module (Figures 5D, 6D).

Establishment and Evaluation of
Nomogram Model
According to Kaplan-Meier survival curves, a distinctly
significant difference of p < 0.0001 can be seen between the
two groups in both test and train cohorts, and patients in the
low-risk group showed a more promising OS than the high-risk
group (Figures 5A, B, 6A, B). In consideration of the
relationship of IGPF and certain clinical predictors, we
A

D E

B C

FIGURE 3 | Identification of prognosis-related co-expressed gene module. (A) The cluster dendrogram of genes in training dataset. (B) The cluster dendrogram of
genes in test dataset. Each branch represents one gene and each color below denotes one co-expression gene module. (C) Heatmap plot of relationship analysis
between co-expression gene modules. (D) Heatmap of the correlation analysis between module eigengenes and PRIF. The green module showed the most
significant correlation. (E) The summary preservation Z-score for each module. The higher the Z-score is, the higher the module preservation will be, whereas values
below 10 indicate a moderate-to-low preservation.
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performed univariate and multivariate Cox analysis. The results
indicated that clinical characteristics including gender, TNM
stage and IGPF were independent risk factors for OS of ccRCC
patients. In order to acquire a quantitative prediction method for
disease progression and survival probability of ccRCC, we
established a nomogram on the basis of the independent
predictors of OS (gender, TNM stage, and IGPF) identified
earlier (Figure 7A). Calibration plots were then applied to
assess the consistency between the nomogram-predicted values
and actual values, and the calibration curves in Figure 7B
A

B

FIGURE 4 | Enrichment analysis of the prognosis-related gene co-expression green module. (A) Metascape enrichment network visualization cluster of genes in green
module. Each circle node denotes one term and the color of node indicates its cluster identity, representing the intra-cluster and inter-cluster similarities of enriched terms.
Cluster annotations and the most significantly enriched terms are shown in color code. (B) GO enrichment analysis of the co-expressed genes in green module.
TABLE 2 | Comparison of PRIF and IGPF models in training set and test set.

Dataset Time (d) P value

Train
(n=103)

t=365 0.294493777

t=1095 0.012522423

t=1825 0.006498863

Test
(n=102)

t=365 0.048720526

t=1095 0.02381105

t=1825 0.007957811
PRIF, prognosis-related imaging features; IGPF, imaging-genomic prognostic factors.
March 2021 | Volume 11 | Article 640881
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denoted good performance of 1- and 5-year nomogram model
which showed a closer tendency to the 45-degree standard line.
Meanwhile, the decision curves analysis evaluated the clinical
utility of IGPF model containing radiomics and gene features,
clinical model that involved TNM stage and gender and
nomogram which integrated the former two models (Figure
7C). As depicted in the results, nomogram provided the best net
benefit among most of the threshold probabilities range.
DISCUSSION

In this study, we extracted radiomics features from contrast-
enhanced CT images of ccRCC, and subsequently selected
Frontiers in Oncology | www.frontiersin.org 9
prognosis-related image features (PRIF) with significant
prognostic value via several machine-learning algorithms.
Furthermore we identified gene modules that are most relevant
to PRIF through co-expression network. Based on the PRIF
(screened by LASSO and SVM-RFE) and genes (screened by
WGCNA and MM value), we constructed a robust imaging-
genomic prognostic factors (IGPF) model incorporating
prediction features in the two categories through random
survival forest algorithm. The random survival forest algorithm
acts as a bootstrap algorithm and can predict the overall survival.
The OS prediction analysis demonstrated a notable performance
of the integrative prognostic model, and thus the IGPF based risk
score was considered as an independent prognostic factor.
Afterwards, through nomogram we integrated the IGPF model
TABLE 3 | Survival models based on PRIF and IGPF in training set and test set.

Model HR z P value lower upper c-index se(C-index)

Train
(n=103)

IGPF 9.555645221 3.663583845 0.000248711 2.856506317 31.96574608 0.7435393 0.0303249
PRIF 5.890757826 3.171763552 0.001215163 2.833927216 14.04278158 0.68764045 0.04130209

Test
(n=102)

IGPF 7.624785255 4.189170631 0.000027998 2.947573776 19.72379815 0.74161074 0.02908009
PRIF 4.461795265 3.522355167 0.000427731 1.941329799 10.25462907 0.68504314 0.03922711
March 20
21 | Volume 11 | A
PRIF, prognosis-related imaging features; IGPF, imaging-genomic prognostic factors.
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FIGURE 5 | Univariate analysis of prognosis-related radiomics features model. Patients were divided into high-risk group and low-risk group according to the
median value of IGPF risk score. (A, B) Kaplan-Meier curves demonstrating overall survival (OS) of patients in high-risk group and low-risk group in (A) training set
and (B) test set. (C, D) The 1-, 3-, and 5-year area under curve (AUC) of receiver operating curve (ROC) in (C) training set and (D) validation test set.
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and clinical predictor model, and then made comparisons of the
three prognostic models. Ultimately, the prediction capability of
the nomogram model outweighed the other two.

On the basis of the initially obtained 107 imaging features, we
employed two machine-learning methods LASSO-Cox and
SVM-RFE in combination aiming to achieve a group of
prognostic radiomics features with more robust and accurate
prediction abilities. Four conspicuous prognosis-related image
features in our study were included in Gray Level Size Zone
Matrix (GLSZM), Gray Level Dependence Matrix (GLDM),
shape and Gray Level Cooccurrence Matrix (GLCM)
respectively. As illustrated in the results, features based on
intensity discretization were not screened out in the end. The
results suggested that under these two unsupervised feature
selection algorithms, the gray level-based features and shape-
based features had a better prognostic performance than
intensity discretization-based features in this cohort. However,
considering the differences and limitations among multiple
algorithms and cohorts, we cannot completely deny the
importance of intensity discretization-based features.

A gray level zone is described as the number of connected
voxels which show the same intensity. The texture feature Large
Area High Gray Level Emphasis from GLSZM quantifies the
Frontiers in Oncology | www.frontiersin.org 10
proportion in the image of the joint distribution of smaller size
zones with higher gray-level values, which has been formerly
adopted in the assessment of the robustness or patient response
in different imageological examinations (26, 27). The GLDM-
based textural feature Gray Level Non Uniformity (GLN)
calculates the similarity of gray-level intensity values, where a
lower GLN refers to a higher intensity value in the image (28).
Surface Area to Volume Ratio is a shape feature that is not
dimensionless and is partly dependent on the volume of the
ROI. It has been utilized in differentiating the benign and
malignant tumors based on shape and margin of the lesions
(29, 30). GLCM conduces to reflecting the comprehensive
information about pixel distribution containing direction,
distance, gray value, and the pattern of gray level
arrangement (28), and Correlation represents the linear
dependency of gray level values to their respective voxels in
the GLCM textural features. It has been applied previously in
the evaluation of breast cancer, osteosarcoma, lung cancer and
gliomas in imaging modalities such as CT, MRI, and PECT
(31–35).

In our study, the predictive efficacy of the elected prognostic
related radiomics features based on training set were found to be
in accordance with some of the reference research above (30, 33,
A B

C D

FIGURE 6 | Multivariate analysis of the integrative prognostic model incorporating radiomics and genomics features. Patients were divided into high-risk group and
low-risk group according to the median value of IGPF risk score. (A, B) Kaplan-Meier curves demonstrating OS of patients in high-risk group and low-risk group in
(A) training set and (B) test set. (C, D). The 1-, 3-, and 5-year area under curve (AUC) of receiver operating curve (ROC) in (C) training set and (D) validation test set.
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34, 36). However, a lot of former studies have concentrated on
the performance of textural features of radiographic images,
which may lack a comprehensive explanation of the biological
mechanism and potential biomolecular features of the disease.
While in our study, we conducted the identification of the
prognostic gene co-expression module and then evaluated the
association between the imaging phenotype and genomic
characteristics. The results demonstrated that the green
module was most related to all the PRIF, and gldm_gray level
non uniformity feature could be mostly affected by gene
expression pattern. In addition, the red and yellow modules
also had a relatively high correlation with the gldm_gray level
non uniformity feature. This may be related to the objective
attributes of this feature, and further studies are still needed to
explain the potential relevance and biological mechanism
Frontiers in Oncology | www.frontiersin.org 11
between gene modules and radiomics features. Moreover, we
implemented enrichment analysis in order to elaborate the latent
molecular pathways relevant to the prognostic significant green
gene module.

The results indicated that the most prominent enrichment
leans towards pathways involved in tumor angiogenesis, cell
adhesion and extracellular structure organization. Formation of
new vascular networks is a pivotal step in tumor progression and
also expedites the metastasis of cancer cells (37). At present,
tumor microvessel density (MVD) and VEGF are important
immunohistochemical indicators for tumor angiogenesis, and
studies have reported that three-phase dynamic enhanced CT
and MRI can be utilized as auxiliary evaluation methods for
tumor angiogenesis, malignancy and prognosis in ccRCC (38–
40). Cell-substrate adhesion has been widely demonstrated as an
A

B C

FIGURE 7 | Construction and validation of prognostic nomogram model. (A) The nomogram prediction of the 1-, 3-, and 5-year OS of ccRCC patients.
(B) Calibration plots of the nomogram for 1- and 5-year OS prediction. The horizontal axis represents nomogram-predicted survival probability and the vertical axis
represents actual survival. (C) Decision curve analyses of IGPF, clinical and nomogram model. The gray oblique line represents the net benefit of all intervening
patients, and the horizontal gray line indicates the net benefit of no intervening patients. The nomogram model showed the best net benefits in the vast majority of
the threshold probability range.
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indispensable process of metastasis in vivo (41). The
modification of cell adhesion status has significant impact on
biophysical patterns of tumor microenvironment (TME) and
structure of extracellular matrix (ECM), which has been reported
to be related to the prognosis of colorectal cancer, lung cancer
and gastric cancer (42–45). In accordance with previous
researches, the results may provide a chance to understand the
upstream biological mechanisms of tumor development in
ccRCC (46–48). RPS6KA2, CYYR1, KDR, and GIMAP6 were
discovered to be most correlated with the prognostic-related
module eigengene, which was also found relevant to blood vessel
development and cell proliferation in existing researches. For
instance, KDR has been reported to acts as an important
mediator of VEGF-induced endothelial proliferation, tubular
morphogenesis and sprouting and associate with signaling by
GPCR pathway (49, 50). RPS6KA2 has been found to act
downstream of EGFR, RAS, and ERK signaling, which
mediates mitogenic and stress-induced activation of
transcription factors and thus regulate the proliferation and
differentiation of cells (51, 52).

Subsequently, we integrated the prognosis-related image
features and gene profiles into an IGPF model and obtained
corresponding risk scores. The clinical model took in gender and
TNM stage as the common tumor assessment indicators for
prognosis, but the predictive accuracy is still limited. The
nomogram which integrated IGPF and clinical predictors was
validated to outperform all the models with the best
prediction performance.

There were several limitations to this study. First of all, the
sample size was comparatively small because patients with
available identified transverse CT images and gene expression
profiles were limited. Secondly, the data of patients we enrolled
may be incomplete, which might create discrepancies and lead to
potential bias. To better promote the conclusions and
understand the underlying biology molecular mechanism, a
larger scale of multi-center data verification is necessarily
needed. Thirdly, since we used random survival forest
algorithm to build survival prognosis model in this study, the
bootstrap step was a built-in process and the bootstrap corrected
results could not be reported. Fourthly, more clinical trials and
experimental researches are needed to assess the prove the
Frontiers in Oncology | www.frontiersin.org 12
adaptability of the imaging-genomic prognostic model, and the
molecular mechanisms remain to be further explored.

In conclusion, in this study we constructed an integrative
prognosis-related model incorporating radiomics features,
genomic profile and clinical indicators. The results illustrated
that IGPF may improve the prognostic modalities on the basis of
conventional clinical indexes, and the nomogram prediction
model can serve as an advantageous measurement tool which
may be conducive to personalized treatment and prognosis for
ccRCC patients.
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