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Early growth response factor 1 (EGR1) is a transcription factor that is mainly involved in the
processes of tissue injury, immune responses, and fibrosis. Recent studies have shown
that EGR1 is closely related to the initiation and progression of cancer and may participate
in tumor cell proliferation, invasion, and metastasis and in tumor angiogenesis.
Nonetheless, the specific mechanism whereby EGR1 modulates these processes
remains to be elucidated. This review article summarizes possible mechanisms of
action of EGR1 in tumorigenesis and tumor progression and may serve as a reference
for clinical efficacy predictions and for the discovery of new therapeutic targets.
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INTRODUCTION

Early growth response factor 1 (EGR1) is a member of the EGR family and is also known as EGR-1,
NEFI-A, Zif268, Krox-24, and TIS85. The EGR1 gene is located in human chromosomal region
5q23-31, and the protein is an important transcription factor (1), which contains an activation
regulatory region, repressive regulatory region, and three Cys2-His2 subclass zinc finger structures,
which specifically recognize and bind target genes and regulate their transcription. The EGR1
promoter region contains serum response elements. A variety of growth factors can start EGR1 gene
expression by interacting with this sequence, which contains the characteristic motif CC(A/T)6GG,
namely, the CArG box (2, 3). Furthermore, the EGR1 promoter contains an EGR1-binding sequence
(EBS), which forms a negative feedback loop to control EGR1 expression (4, 5) (Figure 1).

EGR1 is widely expressed in many cell types and participates in important physiological
processes, such as cell proliferation, differentiation, invasion, and apoptosis. When cells are
stimulated by growth factors, tumor necrosis factor, inflammatory factors, ionizing radiation,
reactive oxygen species, or other factors (6–9), EGR1 can be activated through the MAPK signaling
pathway. EGR1 transcription depends on the RAS–RAF–MEK1/2–ERK1/2 signal transduction
pathway, and activated EGR1 can either cause or inhibit the expression of its target genes, thus
playing a part in transcriptional regulation (10).

As a transcription factor, EGR1 performs a regulatory function in cell growth, but the roles of
EGR1 are different in different tumors. For example, EGR1 expression is higher in a prostate tumor
than in surrounding prostate tissue (11), and the expression of EGR1 in the prostate tumor positively
correlates with malignancy (12). Similar clinical associations have been found in gastric cancer (13).
The expression of EGR1 is significantly higher in a primary gastric tumor and metastases than in
normal gastric tissues, and EGR1 expression correlates with tumor size, depth of invasion, tumor
stage, and prognosis (14). Therefore, EGR1 plays an oncogenic part in prostate and gastric cancers.
Nonetheless, EGR1 upregulates tumor suppressor gene p21Waf1/Cip1 and leads to tumor cell apoptosis
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FIGURE 1 | The promoter region structure of EGR1.

Wang et al. Role of EGR1 in Cancer
in gliomas and melanocytomas (15, 16), and consequently, EGR1
serves as a tumor suppressor in these cancers.

EGR1 also plays a dual role in different signaling pathways.
EGR1 suppresses transformation and counteracts apoptosis via
coordinated activation of TGF-b1, FN, p21Waf1/Cip1, and FAK,
thereby leading to enhanced cell attachment and reduced caspase
activity (17). On the other hand, in cells with decreased adhesion,
EGR1 enhances PTEN-mediated downregulation of AKT
expression, thus increasing apoptosis (18). EGR1 regulates the
attachment and survival of normal cells but induces apoptosis in
abnormal cells with decreased adhesion.

Therefore, EGR1 performs important functions in tumor cell
proliferation, angiogenesis, invasion, and immune responses (19–
21). Research on the mechanism of action of EGR1 in cancer is
expected to point to a new cancer treatment strategy and/or a new
marker for theranostics. The purposes of this review are to
summarize the roles of EGR1 in tumor cell proliferation,
apoptosis, and metastasis and in the tumor microenvironment as
well as to discuss the possible signaling pathways in which EGR1 is
involved to provide a new perspective on cancer treatment.
THE ONCOGENIC EFFECTS OF EGR1

High expression of EGR1 has been observed in various tumors,
in which EGR1 can play an oncogenic role, e.g., glioma, lung
cancer, gastrointestinal tumors, and melanoma (22–25). As a
downstream protein of the MAPK signaling pathway (26), EGR1
can promote transcriptional activation of cyclin D1 in many
tumor types and maintain the mitosis of tumor cells (27).
Meanwhile, EGR1 contributes to tumor metastasis as well, by
starting SLUG and SNAIL expression (28, 29). Under hypoxic
conditions, EGR1 increases VEGFA expression, mediated by
HIF1a, and directly activates VEGFA transcription (30), thus
promoting the formation of blood and lymphatic vessels in the
tumor (31) (Figure 2).
THE ROLES OF EGR1 IN CELL CYCLE
REGULATION AND TUMOR CELL
PROLIFERATION

Various authors have shown that high EGR1 expression may
increase the proliferation of specific types of tumor cells by
affecting the cell cycle. For example, the high expression of EGR1
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in prostate cancer is a potential precancerous event. The level of
the EGR1 protein in prostate cancer tissue positively correlates
with the Gleason score, which predicts the tumor proliferation
ability, and negatively correlates with the differentiation degree
of prostate cancer cells (32). These data indicate that EGR1
participates in prostate cancer progression (33). There has been a
similar finding in gastric cancer: patients whose tumor is
histologically classified as malignant exhibit higher tumor
EGR1 levels and a stronger ability of tumor cells to
proliferate (24).

The MAPK–ERK pathway is a classic proliferation signaling
cascade that is triggered by growth factors. In C6 cells, estrogen
receptor b (ERb) can launch the RAF–MEK1–ERK–ELK1 signaling
pathway and upregulate EGR1 (10). EGR1 expression decreases
significantly after treatment with PD98059, a MAPK–ERK pathway
inhibitor, suggesting that EGR1 is a downstream gene of the
MAPK–ERK pathway (26). Through inhibition of MAPK
phosphorylation, the nuclear concentration of EGR1 can be
reduced while the proliferation of breast cancer cells can be
significantly suppressed (34). Cyclin D1 is necessary for the
progression of the G1 cell cycle phase and can shorten this phase,
whereas the RAS–RAF–MEK–ERK pathway plays an important
role in the initiation of cyclin D1 gene expression (35, 36). EGR1
activated by the MAPK cascade can directly bind to the cyclin D1
promoter, strengthen the expression of cyclin D1, and then may
result in cell proliferation by advancing cells from the G1 phase to
S phase (27). EGR1 is also able to induce tumor cell proliferation by
upregulating other cell cycle–related proteins such as cyclin D2 and
CDK4 (28). Overexpressed EGR1 may directly trigger the p38
MAPK signaling pathway too (24). In summary, the mechanism
behind the interaction between EGR1 and the MAPK–ERK
signaling pathway is a positive feedback process. EGR1
overexpression not only promotes tumor growth but also
launches the p38 MAPK signaling pathway. The EGR1-activated
MAPK–ERK signaling pathway further enhances EGR1 expression,
and the upregulated EGR1 accelerates cell proliferation by
controlling the expression of cyclin-dependent kinases (CDKs)
(24, 27, 28, 33).
THE PARTICIPATION OF EGR1 IN TUMOR
INVASION AND METASTASIS

Epithelial–mesenchymal transition (EMT)means a morphological
change of epithelial cells to mesenchymal cells, which is an
March 2021 | Volume 11 | Article 642547
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FIGURE 2 | The oncogenic effects of EGR1.
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important mechanism of tumor cell invasion and metastasis.
EGR1 contributes to tumor invasion and metastasis mainly by
starting the expression of E-cadherin transcriptional inhibitors
(SNAIL and SLUG). In other words, SNAIL and SLUG can inhibit
the expression of E-cadherin, and EGR1 plays an important role in
tumor EMT by regulating SNAIL and SLUG. In hormone-
independent prostate cancer, CXCL5 (also known as ENA78)
enhances EGR1 transcription via the RAF–MEK–ERK pathway,
thus increasing SNAIL expression, tumor cell metastasis, and
EMT (28). In hepatocellular carcinoma cells, EGR1 induced by
hepatocyte growth factor (HGF) can directly bind to the promoter
region of SNAIL, increase its expression, and lead to tumor cell
metastasis (37). In ovarian cancer cells, epidermal growth factor
(EGF) has been shown to induce EGR1 and upregulate SLUG,
which can decrease the expression of E-cadherin and then enhance
tumor metastasis (29). In hepatocellular carcinoma, EGR1 induces
SLUG through the ERK–AKT–EGR1–SLUG signaling cascade
and stimulates EMT of cancer cells (38).

Additionally, interstitial-space–related genes, such as matrix
metalloproteinase 1 (MMP1),MMP9, cathepsin, and zinc finger-
binding homeobox 1 (ZEB1), play an important part in tumor
metastasis. EGR1 can directly bind to the promoter region of
MMP1 and trigger its expression. SNAIL may enhance the
expression of interstitial-space–related genes, such as MMP9
and ZEB1. A variety of MAPK pathways, such as ERK1 and -2,
JNK, and p38 kinase cascades, participate in the expression of
MMP1 caused by tumor necrosis factor alpha (TNF-a) by
upregulating EGR1 and promote tumor invasion and
metastasis (39). EGR1 can synergistically act with SNAIL on
the promoter regions of MMP9 and ZEB1, thereby enhancing
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their transcription and initiating tumor cell invasion and
metastasis (40) . In oral squamous cel l carcinoma,
overexpression of hTERT activates tumor invasiveness by
raising the expression of cathepsin D via EGR1 (41). EGR1 is
also known to stimulate EMT of non–small cell lung cancer
(NSCLC) cells through the mut-p53–EGR1–cathepsin L
signaling cascade (42). EGR1 can directly bind to the promoter
sequences of a variety of interstitial-space–related genes to start
their expression and therefore performs an important function in
tumor invasion and metastasis.

In gastric cancer, EGR1 has been reported to enhance tumor
cell proliferation and invasion by increasing b-catenin expression
(43). In breast cancer, S100A4 drives the nuclear localization of
EGR1 by promoting the binding of EGR1 to importin 7, and
EGR1 next enhances tumor invasion and metastasis by
downregulating b-catenin through the PTEN–AKT–GSK3b
signal transduction (44). Consequently, EGR1 may control b-
catenin expression and enhance tumor invasion and metastasis,
but the specific mechanism is yet to be revealed.
THE ROLES OF EGR1 IN TUMOR
ANGIOGENESIS

Tumor angiogenesis is an important mechanism of tumor
growth and metastasis, and many achievements in the
treatment of cancers have been made through inhibition of
tumor angiogenesis. Due to the rapid growth of a tumor, its
central area is often in a state of hypoxia. The latter is a potent
March 2021 | Volume 11 | Article 642547
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angiogenesis-stimulating factor. Hypoxia-inducible factors
(HIFs) are upregulated by hypoxic conditions and increase the
expression of vascular endothelial growth factor (VEGF) family
proteins. Furthermore, HIFs stimulate angiogenesis and support
tumor cell survival. Under hypoxic conditions, EGR1 expression
in prostate cancer cells increases, and EGR1 directly binds to the
HIF1 promoter, causes HIF1 expression, and contributes to
tumor angiogenesis (45). EGR1 is reported to directly initiate
VEGFA expression in lung cancer cells by binding to the VEGFA
promoter and to increase angiogenesis by enhancing HIF1a-
mediated VEGFA expression (30).

EGR1 is important for the initiation of the growth and
migration of vascular endothelial cells and associated
angiogenesis because EGR1 acts via fibroblast growth factor
2 (FGF2) (46–48), which can launch EGR1 expression (49).
Furthermore, EGR1 may lead to angiogenesis through the
NT1–DCC–VEGF pathway (50). Many types of cancer cells
secrete extracellular vesicles, which are known to stimulate
the migration of vascular endothelial cells by upregulating
EGR1. This is an important angiogenesis-enhancing
mechanism (51).

The proliferation and migration of lymphatic endothelial
cells is another important adaptive response of tumor cells
to hypoxia. EGR1 can participate in hypoxia-induced
lymphangiogenesis through the VEGF signal transduction
pathway (31), but the underlying molecular mechanism needs
further investigation.
FIGURE 3 | The antitumor effects of EGR1.
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ANTITUMOR EFFECTS OF EGR1

In certain cases, EGR1 plays an antitumor part, e.g., in p53
(TP53)-deficient prostate cells, where EGR1 is believed to
promote apoptosis by activating TNF-a (52). EGR1 also
increases tumor cell apoptosis by directly upregulating tumor
suppressors called non-steroidal anti-inflammatory drug
(NSAID)-activated gene 1 (NAG1) and PTEN (53–55)
(Figure 3).
MECHANISMS WHEREBY EGR1 INDUCES
TUMOR CELL APOPTOSIS

Apoptosis is a process of programmed cell death under
physiological conditions, and EGR1 causes tumor cell
apoptosis through a variety of mechanisms. One such
mechanism is direct binding to promoters of various
apoptosis-inducing factors, such as BAX, NAG1, and PTEN,
and stimulation of their expression (8, 56, 57). NAG1 belongs to
the transforming growth factor b (TGF-b) superfamily and
inhibits the growth of tumor cells. Recently, it was found that
an EBS is present in the NAG1 promoter, and EGR1 expression
significantly increases NAG1-mediated apoptosis in colon, lung,
and liver cancers (53, 54). NSAIDs lead to apoptosis in a COX2-
dependent manner by launching the PPARg–EGR1–NAG1
March 2021 | Volume 11 | Article 642547

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Role of EGR1 in Cancer
signaling pathway. In addition, NSAIDs can directly strengthen
NAG1 expression that is mediated by EGR1 and promote
apoptosis in a COX2-independent manner (8). In pancreatic
cancer cells, d-tocotrienol triggers EGR1 expression via the JNK–
c-Jun pathway, and the upregulated EGR1 binds to the BAX
promoter to initiate the expression of BAX, which causes
apoptosis of pancreatic cancer cells (56). JUN is the upstream
transcription factor of EGR1 and is known to directly bind to the
promoter region of EGR1 and to start its expression. In multiple
myeloma, EGR1 that is induced by JUN triggers the EGR1–
survivin–caspase signaling cascade and drives tumor cell
apoptosis (58). PTEN is an important tumor suppressor gene,
and there is an EBS in the PTEN promoter. EGR1 may regulate
PTEN expression by targeting the PTEN promoter, thus resulting
in tumor cell apoptosis (55). Research suggests that vitamin D
receptor, EGR1, and p300 synergistically initiate PTEN
expression and apoptosis in cancer cells (57).

EGR1 may play a key role in the regulation of DNA repair
mechanisms by controlling key effectors, including p53, p21,
and BRCA1. As a tumor suppressor, p53 is mainly involved
in the monitoring of DNA damage and maintenance of
genomic stability and is highly implicated in human cancers.
EGR1 can act on the TP53 promoter and initiate the expression
of p53, which in turn further activates EGR1, thus forming a
feedback loop (59, 60). In vitro studies indicate that EGR1-
deficient cells are characterized by p53 inactivation and loss of
responsiveness to DNA damage, thereby revealing an important
function of EGR1 in upstream transcriptional regulation of
p53 (61). In p53-deficient prostate cancer cells, EGR1 is
thought to stimulate apoptosis by initiating TNF-a expression
(52). P21Waf1/Cip1 is the main target of p53 and controls the cell
cycle. On the other hand, EGR1 can induce p21Waf1/Cip1

expression independently of p53 through ERK and JNK
MAPK–ELK1–EGR1 pathways to launch DNA repair and
enhance apoptosis, suggesting that EGR1 is a good therapeutic
target in p53-mutant tumors (62). As a tumor suppressor, the
product of breast cancer susceptibility gene BRCA1 participates
in gene transcription and DNA repair. Three EBSs have been
identified in the enhancer region of BRCA1, and EGR1 is
able to directly bind to the EBSs and to start BRCA1 gene
expression thus initiating DNA repair and inhibiting cancer
progression (63).
MECHANISMS WHEREBY EGR1
SUPPRESSES TUMOR INVASION
AND METASTASIS

EGR1 has been reported to inhibit tumor invasion and
metastasis in many tumor types. TGF-b1 can downregulate
EGR1-induced NSCLC cell EMT, and high expression of EGR1
significantly reduces EMT (64). The mechanism may be related
to the regulation of SNAIL, SLUG, and E-cadherin expression by
EGR1. In head and neck squamous cell carcinoma, oxytocin is
thought to inhibit tumor invasion and metastasis by upregulating
Frontiers in Oncology | www.frontiersin.org 5
EGR1 through an EGFR-and-ERK–dependent pathway (65).
The mechanism in question may be related to E-cadherin
overexpression. In hepatocellular carcinoma, it has been
demonstrated that b-lapachone induces the expression of
EGR1, and the latter may suppress invasion and metastasis by
affecting the expression of TSP1, SNAIL, and E-cadherin (66).
Liu et al. have reported that the use of thalidomide against
leukemic cells may inhibit their metastasis, and this
phenomenon was attributed to upregulated EGR1 (67). In
subsequent studies, it has been revealed that LY294002 inhibits
the invasiveness and metastasis of leukemic cells by upregulating
EGR1, and this mechanism is independent of the PI3K–AKT
pathway (68). Overexpressed EGR1 can significantly repress
tumor cell invasion in fibrosarcoma, and the underlying
mechanism may be related to increased expression of tissue
inhibitor of metalloproteinase 2 (TIMP2), which is regulated by
EGR1 (69). Nasopharyngeal carcinoma–associated gene 6
(NGX6) is expressed in diverse tumors and is considered a
tumor suppressor. EGR1 can directly increase NGX6
expression by binding to its promoter region and in this way
inhibit tumor invasion and metastasis (70). Although EGR1 is
known to reduce invasion and metastasis of many types of
tumors, the specific mechanism needs to be further researched.
MECHANISMS UNDERLYING THE
ANTIANGIOGENIC ACTION OF EGR1

Angiogenesis is the formation of new blood vessels from the
existing vascular system and is necessary for many physiological
and pathological processes. Neovascularization provides
nutrition and oxygen and removes carbon dioxide and other
metabolic waste. When EGR1 is continuously expressed, a
variety of antiangiogenic genes are overexpressed, such as
CXCL14, TIMP1, TIMP3, and FLT1, which inhibit tumor
angiogenesis (71). EGR1 can also diminish tumor angiogenesis
by upregulating TIMP2 (69). According to colon cancer studies,
EGR1 controls mindin expression at the transcriptional level by
binding to its promoter. Overexpression of mindin both inhibits
the expression of HIF1a and VEGFA in colon cancer cells and
reduces VEGFR2 phosphorylation in endothelial cells, resulting
in antiangiogenic changes (72). NGX6 is a metastasis suppressor
gene whose functions are related to cell proliferation, cell cycle,
and tumor angiogenesis. Recent research suggests that there are
overlapping binding sites for Sp-1 and EGR1 in a NGX6
promoter region and that EGR1 increases NGX6 expression
and decreases tumor angiogenesis (70, 73). Fluorouracil is
widely used in many cancer therapies and is believed to
upregulate EGR1 through the p38 MAPK pathway; this drug
inhibits tumor angiogenesis. Overexpressed EGR1 binds to the
thrombospondin 1 (TSP1) promoter, enhances TSP1 expression,
and diminishes tumor angiogenesis (74, 75). EGR1 can interact
with a variety of antiangiogenic factors, such as mindin, NGX6,
and TSP1, and may be used as a major target of antivascular
therapy to develop relevant drugs.
March 2021 | Volume 11 | Article 642547
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APPLICATIONS OF EGR1 IN CANCER
TREATMENTS

The Mechanism of Action of the EGR1-
and-Radiotherapy Combination
The promoter of EGR1 contains the characteristic CArG box
sequence for SRF binding, which is activated by radiation (76,
77). EGR1 is reported to regulate target genes—after ionizing
radiation induces it—e.g., TNF-a, TP53, RB, and BAX, and to
cause tumor cell growth arrest or cell death (52, 78). Because
EGR1 can lead to the activation of apoptosis-associated factors
and downregulate survival-related factors to reduce radiation
resistance, EGR1 expression in primary tumors is related to the
tumor radiation response, and EGR1 expression in irradiated
tissues also correlates with residual tumor size and tumor
recurrence (79). The CArG box in the promoter of EGR1 is
key to the initiation of the EGR1-related antitumor effect by
radiotherapy. Bickenbach K.A. et al. have ligated the CArG box
to the transcription start site of TNF cDNA—to construct a
vector combining the EGR1 promoter and the tumor-killing gene
—and then transfected it into tumor cell lines (2). This vector
effectively enhances the killing of radiotherapy-resistant tumor
cells by radiation (2). The CArG box in the EGR1 promoter is an
effective anticancer tool for suicide gene therapy combined with
radiotherapy and has a great potential to improve the efficiency
of antitumor therapies.

The Mechanism of Action of EGR1 in
Combination With Various Antineoplastic
Drugs
One of the key mechanisms of action of CD20-targeting drugs is
direct stimulation of cell death, but the signal transduction
cascade at work here remains unclear. It has been found that
CD20-targeting drugs, such as rituximab and obinutuzumab,
strengthen EGR1 expression by increasing calcium influx via
different mechanisms and subsequently lead to cell death.
Inhibition of calcium influx by calcium channel blockers
(CCBs) can prevent EGR1 induction by CD20-targeting drugs
and weaken these drugs’ effects in vivo and in vitro. By analyzing
the actions of CCBs in patients treated with CD20-targeting
drugs in the GOYA and REMARC clinical trials, investigators
found that patients who received both a CCB and a CD20-
targeting drug showed shorter progression-free survival and
overall survival (80). These results mean that EGR1 is the key
mediator of cell death that is directly caused by CD20-targeting
drugs and offer a rationale for EGR1 use as a new predictive
quantitative biomarker of therapeutic responses to CD20-
targeting drugs (80).

Certain natural compounds affect the regulation of EGR1
expression too. Quercetin initiates the expression of NAG1 by
upregulating EGR1 and mediates apoptosis of colon cancer cells
(81). The EGR1-binding site in the promoter region of NAG1 is
the key point in the underlying mechanism. Resveratrol
stimulates cancer cell apoptosis by upregulating EGR1 (82). Shi
et al. have constructed a suicide-causing gene therapy vector by
inserting the EGR1 promoter upstream of the GADD45A cDNA
Frontiers in Oncology | www.frontiersin.org 6
gene, and a combination of this vector and resveratrol inhibited
the proliferation of lung cancer cells in vitro (83). Studies have
shown that resveratrol effectively triggers a suicide-causing gene
therapy vector constructed by means of the EGR1 promoter, and
the CArG box in the EGR1 promoter may be the target site of
resveratrol (84). The CArG box in the promoter of EGR1 can be
activated by cisplatin too. Wang et al. have constructed an
adenoviral vector that contains the CArG box and human
wild-type TP53 gene; this vector enhances the therapeutic
response to the antitumor treatment with cisplatin in NSCLC
cell-transplanted mice (85). The suicide-causing gene therapy
vector constructed by means of the EGR1 promoter sequence is
known to be activated by many compounds, such as resveratrol
and cisplatin; this knowledge may point to a new strategy for
targeted cancer treatment. The investigation into the mechanism
of action and molecular interactions of EGR1 in tumors should
lead to new breakthroughs in antitumor therapies.

Prognostic Value of EGR1
In lung cancer, the downregulation of PTEN and EGR1 expression
is related to tumor drug resistance (86, 87). The expression of
EGR1 predetermines PTEN levels, which may predict treatment
resistance resulting from PTEN pathway loss. Accordingly, low
EGR1 levels are associated with poor prognosis (86). Besides, the
EGR1 expression level is closely related to the pathological features
and prognosis of patients with nasopharyngeal carcinoma, and
high EGR1 expression correlates with a low histopathological
grade and good clinical prognosis (88). EGR1 expression is
higher in pituitary adenomas than in healthy control tissue
samples, and EGR1 levels in invasive pituitary adenomas are
even higher (89). EGR1 can serve as a prognostic factor in
pituitary adenomas (89). In gastric cancer, EGR1 status is
associated with malignancy, tumor stage, and prognosis (13, 14).
EGR1 is of great value in the prognosis of the above tumor types,
but the specific mechanism of action here and the prognostic value
of EGR1 in other cancers need to be further explored.
DISCUSSION

In summary, EGR1 is a key molecule implicated in many
signaling pathways. In some cases, EGR1 is a tumor suppressor
that helps to monitor DNA damage, promotes tumor cell apoptosis,
and enhances the anticancer effects of radiotherapy and
chemotherapy. By contrast, in certain tumor microenvironments,
such as hypoxic ones, EGR1 expression increases to maintain
tumor cell survival, proliferation, and metastasis and tumor
angiogenesis. Abnormal EGR1 expression is common among
diverse human tumors, but its role requires further research. At
present, the specific mechanism underlying the EGR1 “duality” is
still unclear but may be linked with the following: Sp-1 expression
(70), the expression of other EGR family members (90), the EGR1
self-inhibition zone, and other factors (91). Several of the EGR1
downstream target genes have multiple overlapping SP1 and EGR1
binding sites in their proximal promoter regions. The regulatory
relationship in this overlapping area is complex, in some genes the
March 2021 | Volume 11 | Article 642547
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two factors are synergistic, and antagonistic in others (70, 92, 93).
The duality of EGR1 is related to the regulatory relationship
between the two factors. EGR transcription factor family includes
EGR1, EGR2, EGR3, and EGR4. All of them have similar zinc
finger structures and can bind to the same EBS. Wang et al. have
reported that the EGR family genes can be verified after EGR4
knockdown in pGCs (94). Tourtellotte et al. showed that EGR4
loss upregulated EGR1 and slightly altered EGR2 and EGR3 (95).
When any one of the coding genes in the EGR family is
knockdown, there will be a competitive effect on the expression
of the other three. NAB1 and NAB2 are repressor proteins of
EGR1, which can bind to the zinc finger structures of EGR1.
EGR1 can bind to the promoter region of NAB1 and NAB2 to
induce their expression. When EGR1 was overexpressed, EGR1
upregulated the expression of NAB1 and NAB2, and negative
feedback regulated its own expression. Thus the expression of
downstream genes is regulated by EGR1 itself (91, 96). Thus, the
mechanisms of action of EGR1 in various cancers require
additional exploration. Determining and exploiting the
involvement of EGR1 in cancer will help develop new therapies
for patients with malignant tumors.
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