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Hepatocellular carcinoma (HCC) is a unique type of liver cancer instigated by underlying
liver diseases. Pre-clinical evidence suggests that HCC progression, like other cancers,
could be aided by vitamin D deficiency. Vitamin D is a lipid-soluble hormone usually
obtained through sunlight. Vitamin D elucidates its biological responses by binding the
vitamin D receptor; thus, promoting skeletal mineralization, and maintain calcium
homeostasis. Other reported Vitamin D functions include specific roles in proliferation,
angiogenesis, apoptosis, inflammation, and cell differentiation. This review highlighted
studies on vitamin D’s functional roles in HCC and discussed the specific therapeutic
targets from various in vivo, in vitro and clinical studies over the years. Furthermore, it
described recent advancements in vitamin D’s anticancer effects and its metabolizing
enzymes’ roles in HCC development. In summary, the review elucidated specific vitamin
D-associated target genes that play critical functions in the inhibition of tumorigenesis
through inflammation, oxidative stress, invasion, and apoptosis in HCC progression.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a unique type of liver cancer instigated by underlying liver
diseases. In general, liver cancer constitutes a substantial public health problem that ranks as the sixth
most commonly diagnosed cancer and the third most common cause of cancer-related mortality in
2020 (1). Although liver cancer occurs in both genders, the incidence andmortality rates inmales are 2
to 3 times higher than in females (1). The loss of the liver’s regenerative ability exacerbates HCC
progression, which subsequently potentiates organ failure (2). This loss of regenerative capacity is
further compounded by the disruption of various pathways associated with the pathogenesis and
progression of HCC, thereby making HCC an outcome of a complex cascade of events (3).
Furthermore, the increasing incidence of HCC is mainly associated with viral infections, including
hepatitis B (HBV) and C viruses (HCV), as well as other risk factors like non-alcoholic fatty liver
disease (4, 5) and mycotoxin exposure (6–9). Aside from these biotic, lifestyle, and environmental
factors, pre-clinical evidence suggests that HCC progression, like many other cancers, could be
facilitated by vitamin D (VD) deficiency and germline genetic variants in the Vitamin D receptor
(VDR) gene, which has been shown to influence the progression of hepatitis to HCC (10, 11). Also, an
epidemiological study showed that increased maternal ultraviolet (UV) exposure is associated with a
reduced risk of hepatoblastoma in offspring (12). Additionally, evidence from the SEER data showed
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that the incidence of HCC in the United States is associated with
ambient UV exposure (13). Hence, this premise supports the VD -
cancer hypothesis and further augments the roles of vitamin D
metabolism in hepatocellular carcinogenesis (2).

Vitamin D (VD) is a lipid-soluble hormone usually obtained
through the exposure of skin to sunlight. Several factors, including
skin pigmentation and a modern lifestyle, could limit VD
formation, thus causing VD deficiency (14). In VD synthesis,
sunlight UV (B) (280–315 nm) exposure on the skin activates 7-
dehydrocholesterol to pre-vitamin D3 and eventually
cholecalciferol (VD3) (2). Similarly, UV (B) exposure to
ergosterol in plants and fungi produces another form of vitamin
D, ergocalciferol (VD2) (15). Asides from the endogenous
synthesis of VD, VD3 can also be obtained from diets while
VD2 is principally used during vitamin D fortification. Both
forms of VD are naturally inactive and are activated via
hydroxylation. After synthesis, VD binding protein (DBP) binds
VD and transports it to the liver, where hydroxylation at carbon-
25 metabolizes VD to 25-hydroxyvitamin D (25(OH)D) through
25-hydroxylase. In this first phase of VD metabolism,
hydroxylation occurs predominantly in the hepatic cells
although extrahepatic VD hydroxylation reportedly occurs in
other tissues with evident 25-hydroxylase activities (16, 17).
Most importantly, during this first hydroxylation step, an
ubiquitous mitochondrial 25-hydroxylase, CYP27A1 does not
hydroxylate VD2 whereas, CYP2R1 usually located in the liver
and testes hydroxylates both forms of VD (15). Equally, Zhu et al.
(18) reported CYP2R1 as a major but not the only 25-hydroxylase.
After the first hydroxylation, the glomerulus filters 25(OH)D
transported into the kidney and converts it to a steroid
hormone (the active form of VD), 1a, 25 (OH)2D (calcitriol),
through 25(OH)D-1a-hydroxylase (19). This metabolic activity in
the kidney signifies the second stage of VD hydroxylation.
Although 1a-hydroxylation occurs predominantly in the kidney,
peripheral tissues including the skin and lymph nodes exhibit
extra-renal production of the steroid hormone (20). Finally, in a
bid to activate VD’s biological response to regulate gene
expression, calcitriol binds VDR (17) in a binding sequence that
allows the effective functioning of retinoid X (RXR). RXR belongs
to the nuclear receptor family and a member of the steroid/thyroid
hormone, primarily functioning as transcription factors (21). RXR
also plays essential roles in metabolism and cell differentiation
(21). Hence, VD binding enables the VDR – RXR interaction,
leading to VD-related functions through gene transcription (22).
Thus, VD’s biological action is dependent on VDR, RXR, and the
availability of VD (23).

Asides from primary functions, which include promoting
skeletal mineralization and maintenance of calcium homeostasis,
VD performs pro-apoptotic, pro-differentiation, anti-
angiogenetic, anti-proliferative, anti-invasive, and anti-metastatic
functions (24). Reports show that VD is an indicator of HCC
prognosis and could be vital in predicting HCC patients’mortality
(25). Meanwhile, VD deficiency is fast becoming a global public
health challenge (26), and it is continuously associated with an ‘all-
cause and cause-specific mortality, despite differences in the VD
baseline levels across the world (27, 28). Consequently, there are
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pieces of evidence showing connections between VD deficiency
and HCC progression. For instance, Gaksch et al. (29) meta-
analysis proposed an inverse relationship between serum VD (25
(OH)D3) level andHCC risk; thereby, suggesting VD’s prospective
therapeutic ability in managing HCC. Moreover, increased
bioavailability of circulating 25(OH)D3 was also associated with
HCC survival as against total or free VD level (30). In contrast, Liu
et al. (31) reported that increased 25(OH)D level was associated
with an increased risk of HCC incidence. However, they observed
that genetic variations related to VD metabolism could influence
HCC tumor response, survival, and mortality.

Despite the reported association with HCC development,
contrasting reports suggest that baseline VD level could play
little or no role in cirrhosis-linked HCC (32). Therefore, this
review highlights the in vivo, in vitro, and clinical studies on VD
therapeutic targets in HCC. Furthermore, it discussed the
significant limitations and possible solutions in using VD
as therapeutics.
VD, VDR, AND HCC PATHOLOGICAL
CONDITIONS

The progression of HCC and pathological conditions like liver
cirrhosis are linked to VD deficiency; hence, suggesting that
decreased 25(OH)D is associated with poor liver disease
prognosis (33). According to Berkan-Kawińska et al. (34) and
Yang et al. (35), patients with liver cirrhosis, HBV, and HCV
have decreased 25(OH)D levels and could benefit from VD
supplementation. VD deficiency has also been linked with
infections in patients with HCV-associated liver cirrhosis (36) and
the VD deficiency-associated polymorphisms, like rs1993116,
rs10741657, rs2282679, rs7944926, and rs12785878, linked with
HCV-related HCC (37). This study by Lange et al. (37) also showed
that reduced 25(OH)D3 levels in HCV-related HCC patients is
associated with genetic variations of CYP2R1, GC, and DHCR7.
While the circulating form of VD (25(OH)D3) instigates the
hormone’s anti-HCV capacity (38), the active form of VD (1a, 25
(OH)2D3) induces CYP24A1 expression in a VDR-dependent
manner. However, VDR expression, repressed by HBV transcript
upregulation, affects VD’s binding to the receptor (39). Also,
chronic HBV patients are at a higher risk of increased VD
deficiency (40).

HCV and HCV-related HCC patients had lower levels of VD
and VDR compared to healthy individuals (41). In the same vein,
Falleti et al. (42) reported that VDR polymorphisms are associated
with the occurrence of HCC in liver cirrhosis patients, specifically in
those with alcoholic etiology. In the study, HCC was linked with the
b allele of the BsmI A>G (B/b) polymorphism and the T allele of the
TaqI T>C (T/t) polymorphism (42). Several studies have reported
relationships between VDR polymorphisms and HCC pathological
conditions. In a Chinese population hospital-based case-control
study, VDR rs2228570 and DBP rs7041 polymorphisms vary
between HBV-related HCC patients and healthy individuals thus,
suggesting a relationship with increased risk of HBV-related HCC
(11). A meta-analysis strengthened these observations, which
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indicated that VDR rs7975232 and rs2228570 polymorphisms are
associated with HCC (43).

Although a non-association of VDR polymorphism and risk
of HBV infection in Vietnamese HBV patients was reported by
Hoan et al. (44), they suggested that Apal VDR polymorphism
(rs7975232) could be associated with clinical outcomes and
disease progression. Incidentally, Apa1 VDR polymorphism
was shown to be associated with HCC in HCV-cirrhotic
patients (45). On the contrary, SNPs of VDR at BsmI, ApaI,
and TaqI loci showed no difference between HCC and non-HCC
patients, according to Yao et al. (46). However, the authors
reported a higher frequency of VDR FokI C > T polymorphism
in HCC patients. Also, HCC patients showed a higher prevalence
of FokI TT genotype, which is a risk factor for HCC development
(46). Interestingly, the FokI TT genotype was also associated with
HCC clinicopathology characterized by increased serum alpha-
fetoprotein (AFP), advanced tumor stage, cirrhosis, and lymph
node metastasis (47). Besides, the Fok1 T allele is linked with a
predisposition to reduced VD levels and an increased probability
of cancer development in HCV patients (47).

Since there are associations between VD, VDR, and HCC
pathological conditions, understanding VD-related mechanisms
and therapeutic targets in HCC progression could further
substantiate existing evidence and highlight the roles of the
hormones in hepatocarcinogenesis.
THERAPEUTIC EFFECTS OF VITAMIN D
IN HCC

In Vitro Studies
Over the years, there have been reports of HCC’s resistance to
many drugs. An example is resistance to Everolimus, which acts as
an mTOR (mechanistic target of rapamycin) inhibitor. mTOR is a
serine/threonine-protein kinase found in the PI3K-related kinase
(PIKK) family. mTOR’s activation plays critical roles in cell
metabolism, proliferation, and HCC progression (48). Hence,
inhibiting mTOR is one of the suggested therapeutic targets used
to prevent and manage HCC (49). A recent study reported that
calcitriol treatment could restore HCC cell sensitivity, thus
becoming less resistant to everolimus (50). The reduced cell
resistance modulated through the epithelial-mesenchymal
transition pathway increased expression of miRNA-375 and
decreased expression of target genes, including Metadherin
(MTDH), Yes-associated protein-1 (YAP-1), and cellular Myc
(c-MYC) (50).

Likewise, Huang et al. (51) investigated calcitriol’s effects on
Histone deacetylase 2 (HDAC2) and cell cycle markers to explore
the senescence and apoptotic pathway involved in HCC. According
to Huang et al. (51), silencing the HDAC2 gene, which is usually
highly expressed in HCC tumors, enhances calcitriol’s inhibitory
effects. Equally, 1,25(OH)2D3 treatment decreased the expression of
HDAC2 with a dose-dependent increased expression of cell cycle
marker, cyclin-dependent kinase inhibitor (p21(WAF1/Cip1)) (51).
This result suggests that VD could be a potential therapeutic agent
in managing HCC via cell cycle modulation. However, VD3
Frontiers in Oncology | www.frontiersin.org 3
treatment significantly increased Thioredoxin Interacting Protein
(TXNIP); thus, enhancing apoptosis while reducing cell
proliferation and thioredoxin activities (52). TXNIP is a tumor
suppressor gene usually downregulated in HCC; therefore,
instigating HCC progression (53). Furthermore, in its hormonal
form, VD (1,25(OH)2D3) exhibits anti-proliferative ability and
increases the apoptotic ratio in HCC cell lines (54). 1000 nM VD
treatment also showed potential cell growth ameliorating ability in
HCC cell lines according to the study of Xu et al. (51). Although VD
reduced cell viability and proliferation while activating apoptosis,
the effects were well enhanced when co-administered with
Astemizole (a non-sedating antihistamine). In the same study,
VD’s anti-invasive, anti-tumor, and cell migration inhibitory
properties were highlighted (55).

Recently, a combination of VD2 analog, Doxercalciferol, and
Carnosic acid-enhanced Sorafenib induced HCC cell death
through blockage of autophagosomes/lysosomes fusion while
also activating autophagy and apoptosis (56). To further
elucidate the more apparent HCC related mechanisms, Wang
et al. (57) showed that 1,25(OH)2D3 reversed biological
alterations of hepatic progenitor cells caused by Aflatoxin B1
(AFB1) in WB-344 cells. Furthermore, VD3 attenuated the
activation of Protein kinase B (Akt) while suppressing the
expression of cysteine-rich angiogenic inducer 61 (CYR61) and
connective tissue growth factor (CTGF), thus indicating anti-
tumor effects. Calcitriol, also showed inhibitory roles in HCC by
suppressing the hepatocyte growth factor (HGF) and its receptor,
c-met (58).

Therefore, it can be deduced from these in vitro studies as
summarized in Table 1 that VD acts as an anti-tumor agent in
HCC, and it could regulate tumor growth/progression through
cell cycle modulation and mTOR inhibition.

In Vivo Studies
VD’s anti-inflammatory role in carcinogenesis is now considered an
established mechanism of its anti-carcinogenesis property (68). For
example, in an activated inflammatory response, dietary VD
significantly ameliorated cytokine production observed with
diethylnitrosamine (DEN) effects in rats (69). Similarly, a deficient
state of 1,25(OH)2D3 triggers inflammatory cytokines production
through STAT3 activation (Figure 1) (50). Guo et al. (54) also
linked the anti-tumor ability of 1,25(OH)2D3 with the availability of
p27kip1 in mice (54). p27kip1 is a cyclin-dependent kinase inhibitor
known for its prognostic roles in carcinogenesis. Asides from
functioning as a tumor suppressor, p27kip1 promotes apoptosis,
regulates tumor drug resistance, protects against inflammatory
effects, and enhance cell differentiation as summarized in Table 1
(70). Also, the loss of p27kip1 could negatively affect the anti-tumor
ability of 1,25(OH)2D3. The ablation of kidney VD metabolic
enzyme, 25(OH)D3-1a-hydroxylase, resulted in tumor formation
and increased inflammatory responses inmice (54). However, in the
DEN-induced hepatocarcinogenesis mice model, loss of VD3

upregulated protein 1 (VDUP1) promotes carcinogenesis through
increased cell proliferation, expression of tumor necrosis factor-a
(TNF-a) and nuclear factor-kappa B (NF-kB) activation, thus
suggesting VDUP1 as a potential anti-proliferative therapy
target (71).
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TABLE 1 | Summary of the effects of vitamin D on HCC targets genes.
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Effects of vitamin D on in vitro HCC targets
S/
N

Vitamin D dosage (duration) HCC cell lines Target genes (method) Summarized findings on vitamin

1. 1, 10, 100 or 1000 nM (48
hours)

H22 and Hepa1–6 NA (Colony formation, Annexin V
and PI double-staining)

1,25(OH)2D3 reduced cell proliferation and induced apoptosis.

2. 0, 10, 100 or 500 nM
(24, 48, 72hrs)

Huh7, HepG2, and
Hep3B

TXN VD3 had no significant effect on TXN and CDNK1B
CDNK1B
CDNK1A VD3 downregulated the expression of CDNK1A.
TXNIP VD3 upregulated the expression of TXNIP.

3. 10−7 M (12/24 hrs pre-
treatment; 21 days co-
treatment with Everolimus)

PLC/PRF/5 EveR
and JHH-6 EveR

NA (Colony formation and cell
proliferation)

1a, 25 (OH)2D restored everolimus sensitivity to everolimus-resista

10−7 M for 6 days E-cadherin, cytokeratin 18, and
vimentin (WB and IF)

1a, 25 (OH)2D caused EMT induction through decreased express
of E-cadherin and cytokeratin-18.

12hrs and 6 days of treatment. MTDH, YAP-1, and c-MYC (WB) While 12hrs of 1a, 25 (OH)2D treatment upregulated miR-375 exp
expression of miR-375 targets MTDH, YAP-1, and c-MYC.

4. 0, 0.1, 1, 10, 100 or 1000 nM HpG2 HDAC2, p21(WAF1/Cip1)
(Reverse transcription, WB)

1,25(OH)2D3 caused a dose-dependent decrease in the HCC grow
the mRNA expression and protein level of HDAC2 and increased t
(WAF1/Cip1).

5. 1.0, 10.0 nM
(5hrs)

HepG2, Huh-Neo,
Huh5-15, and
Hep3B

CYP24A1, CYP27B1, and VDR
(qRT-PCR, IHC)

1,25(OH)2D3 increased the expression of CYP24A1

6. 0.1, 1, 10, 100 or 1000 nM
(24 hours)

HepG2 and
SMMC-7221

NA (Cell viability and proliferation) Astemizole (1–2 mM) increased VD-induced (>100 nM) cell viability
increased pro-apoptotic effects, and upregulated VDR expression-

7. 100nM
(14 days)

WB-F344 CD133, EpCAM, HNF4a, CK19
(FC, WB, Cell viability)

1,25(OH)2D3 inhibited colony formation, cell viability of WB-334 an

Cyclin D1, p27, lats1, YAP, TAZ,
CYR61, CTGF (WB)

1,25(OH)2D3 caused a partial reversal of AKT phosphorylation (at S
and p27kip.
1,25(OH)2D3 blocked YAP/TAZ activation and LATS1 dephosphor

8. 0.01–1 m M
(7 days)

HepG2 and Hep3B VD inhibited cell proliferation. VD also altered cadherin/catenin adh
catenin in Smad3+/− MEF cells as well as knockdown of Smad3 a

9. 100 nM Doxercalciferol Huh7 and HCO2 BIM, Cas 9, Cas 3, Beclin1,
Atg3, LC3-II

The combination of Doxercalciferol, Carnosic acid, and sorafenib i
and autophagy-related proteins.

Effects of vitamin D on in vivo HCC targets
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10. 0.1 mg/kg (14 days) Mice (HCC through
orthotopic
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Rats VD3 induced antioxidant defense system

12. N/A Human VDR, VDUP-1 (Reverse
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25(OH)D was reduced in HCC patients with concomitant increase
expression.

13. 200 IU/kg (daily for 16 weeks) Rats Nrf2, TGF-b1, Cas-3 (Reverse
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cancer progression through downregulation of Nrf2, TGF-b1 and i
Cas-3.
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Generally, inflammation induces oxidative stress by activating
neutrophils and Kupffer cells, which subsequently triggers cancer
progression (72). Oxidative stress is usually associated with the
pathogenesis and progression of HCC. However, reports suggest
that VD3 could be involved in the attenuation of oxidative stress
(61, 69). The physiological advantage of this abuts the vital role of
inhibiting oxidative stress in managing hepatocarcinogenesis (73,
74). Besides, VD3 protected against oxidative stress-induced
carcinogenesis by reversing different antioxidant enzymes
altered in 3’ methyl-4-dimethyl-amino-azobenzene-induced
hepatocarcinogenesis (61).

Furthermore, increased serum level and gene expression of
the M30 apoptotic marker in HCC patients, amongst others,
indicates alteration of the apoptotic pathway in carcinogenesis
(62). Thus, the co-regulatory interaction between VD signaling
and apoptotic pathway in HCC is imperative in the
understanding of VD-related mechanisms (62). Besides, VD3

(cholecalciferol) treatment activates caspase 3 (Cas-3) expression
while downregulating protein expression of tumor growth factor
(TGF-b) (63). Likewise, co-administration with 5-fluorouracil
alleviated the increased liver function enzymes, alpha-fetoprotein
(AFP), and nuclear factor erythroid 2-related factor 2 (Nrf2)
expression in thioacetamide-induced HCC (63).

Therefore, the in vivo studies showed that VD could regulate
HCC progression via activation of apoptosis, reducing oxidative
stress and inflammatory effects (Table 1).

Clinical Studies
Despite promising data from in vitro and in vivo studies
suggesting VD’s crucial roles in carcinogenesis, established
reports and data from clinical studies are still few and far
between. These clinical trials included a phase 1 pilot study on
VD administration’s effects on serum calcium, hepatic and renal
functions by Finlay et al. (75). In the study, HCC patients
received up to a 20-fold increased l,25-(OH)2D3 via hepatic
arterial infusion without hypercalcemic complications. The study
also reported 10 µg/day as a safe dosage with no renal or hepatic
complications (75).

However, to eliminate hypercalcemia effects of VD
administration, Morris et al. (74) reported in a relatively small
pilot study that co-administration of l,25-(OH)2D3 with lipiodol
in HCC patients could be an excellent therapeutic measure
through stabilization of tumor marker, AFP. From this clinical
research, the authors suggested that the use of lipiodol could
increase permitted l,25-(OH)2D3 dosage about 50 folds (100 µg)
without complications of hypercalcemia. Hence, this positive
outcome could have resulted from the intra-arterial hepatic
administration route used in the study (65). In addition,
Dalhoff et al. (66) administered a starting dose of 10 µg/day
seocalcitol (VD analog) and reported that seocalcitol could
function as an anti-tumorigenic agent in phase 2 clinical trials.
The analog can thus stabilize HCC patients due to its cytostatic
rather than cytotoxic capacity (66).

VD may also improve HCC by restoring initially lost tumor
growth factor-b (TGF-b) expression in liver tumor (60). In
support of this, Chen et al. (63) reported that dysregulated
VD-associated genes, including Foxhead box protein O4
T

A
B
LE

1
|
C
on

tin
ue

d

E
ffe

ct
s
o
f
vi
ta
m
in

D
o
n
in

vi
tr
o
H
C
C

ta
rg
et
s

S
/

N
V
it
am

in
D

d
o
sa

g
e
(d
ur
at
io
n)

H
C
C

ce
ll
lin

es
T
ar
g
et

g
en

es
(m

et
ho

d
)

S
um

m
ar
iz
ed

fi
nd

in
g
s
o
n
vi
ta
m
in

D
ef
fe
ct
s

R
ef
er
en

ce
s

16
.

20
0
IU
/k
g
an

d
10

00
0
IU
/k
g
(4

m
on

th
s)

M
ic
e

P
D
C
D
4,

p2
1,

p2
7,

p5
3,

A
kt
,
c-

M
yc
,
m
To

r,
S
ta
t5
A
,B

cl
-X
L,

P
EA

15
,c

yc
lin

D
1

R
ep

re
ss
io
n
of

tu
m
or

su
pp

re
ss
or
s
an

d
in
du

ct
io
n
of

on
co

ge
ni
c
pr
ot
ei
ns

ar
e
as
so

ci
at
ed

w
ith

VD
de

fi
ci
en

cy
.

(6
0)

E
ffe

ct
s
o
f
vi
ta
m
in

D
in

cl
in
ic
al

tr
ia
ls

17
.

50
,7

5,
10

0
µg

(4
w
ee

ks
)

H
um

an
N
A

C
o-
ad

m
in
is
tr
at
io
n
w
ith

lip
io
do

lc
ou

ld
in
cr
ea

se
a
sa
fe

do
sa
ge

w
ith
ou

t
hy
pe

rc
al
ce

m
ia
co

m
pl
ic
at
io
ns

.A
ls
o,

th
e
co

-a
dm

in
is
tr
at
io
n
st
ab

iliz
ed

H
C
C

pa
tie
nt
s
th
ro
ug

h
th
e
m
ed

ia
tio

n
of

tu
m
or

m
ar
ke

r,
A
FP

.
(6
5)

18
.

5
-
20

µg
/d
ay

se
oc

al
ci
to
l

H
um

an
N
A

C
om

pl
et
e
re
sp

on
se
s
in

so
m
e
pa

tie
nt
s
af
te
r
S
eo

ca
lc
ito

lt
re
at
m
en

t
sh

ow
ed

th
at

th
e
an

al
og

co
ul
d
he

lp
st
ab

iliz
e
H
C
C
pa

tie
nt
s
an

d
m
ay

po
ss
es
s
th
e
an

ti-
tu
m
or
ig
en

ic
ab

ilit
y.

(6
6)

19
.

50
00

0
IU

w
ee

kl
y
(2
6
w
ee

ks
)

H
um

an
TB

R
1,

TB
R
2,

S
m
ad

3,
S
m
ad

4,
an

d
b
2S

P
(IH

C
)

VD
tr
ea

tm
en

t
re
pr
es
se
d
b
–
ca

te
ni
n
ex
pr
es
si
on

w
hi
le
in
du

ci
ng

th
e
ex
pr
es
si
on

s
of

TB
R
2,

S
m
ad

3
in

H
C
C

pa
tie
nt
s.

Th
e
st
ud

y
sh

ow
ed

th
at

VD
tr
ea

tm
en

t
co

ul
d
re
st
or
e
TG

F-
b
si
gn

al
in
g
in

ci
rr
ho

si
s
an

d
liv
er

ca
nc

er
pa

tie
nt
s.

(6
0)

20
.

28
00

IU
da

ily
(8

w
ee

ks
)

H
um

an
In

ci
rr
ho

tic
ra
nd

om
iz
ed

co
nt
ro
lt
ria
lp

at
ie
nt
s,

VD
3
su

pp
le
m
en

ta
tio

n
si
gn

ifi
ca

nt
ly
in
cr
ea

se
d
25

(O
H
)D

se
ru
m

co
nc

en
tr
at
io
ns

.H
ow

ev
er
,t
he

su
pp

le
m
en

ta
tio

n
w
ith

VD
3
ha

d
no

si
gn

ifi
ca

nt
ef
fe
ct

on
liv
er

fu
nc

tio
n,

fi
br
ot
ic

an
d
m
in
er
al
m
et
ab

ol
is
m

pa
ra
m
et
er
s.

(6
7)

EM
T,

ep
ith
el
ia
l-m

es
en

ch
ym

al
tr
an

si
tio

n;
TX

N
,t
hi
or
ed

ox
in
;T

XN
IP
,t
hi
or
ed

ox
in
in
te
ra
ct
in
g
pr
ot
ei
n;

H
N
F4

a,
he

pa
to
cy
te

nu
cl
ea

rf
ac

to
r4

al
ph

a;
C
D
N
K
1,

cy
cl
in
-d
ep

en
de

nt
ki
na

se
in
hi
bi
to
r1

;Y
A
P
,Y

es
-a
ss
oc

ia
te
d
pr
ot
ei
n;

TA
Z,

tr
an

sc
rip

tio
na

lc
o-

ac
tiv
at
or

w
ith

P
D
Z-
bi
nd

in
g
m
ot
if;

H
D
A
C
2,

hi
st
on

e
de

ac
et
yl
as
e
2;

M
TD

H
,
m
et
ad

he
rin

;
Ep

C
A
M
,
ep

ith
el
ia
lc

el
la

dh
es
io
n
m
ol
ec

ul
e;

C
YP

24
A
1,

cy
to
ch

ro
m
e
P
45

0
fa
m
ily

24
su

bf
am

ilie
s
A
m
em

be
r
1;

C
YP

27
B
1,

cy
to
ch

ro
m
e
P
45

0
fa
m
ily

27
su

bf
am

ily
B
m
em

be
r1

;C
YR

61
,c

ys
te
in
e-
ric
h
an

gi
og

en
ic
in
du

ce
r6

1;
C
TG

F,
co

nn
ec

tiv
e
tis
su

e
gr
ow

th
fa
ct
or
;F

C
,fl
ow

cy
to
m
et
ry
;W

B
,W

es
te
rn

bl
ot
tin
g;

qR
T-
P
C
R
,q

ua
nt
ita
tiv
e
re
ve
rs
e
tr
an

sc
rip

tio
n
P
C
R
;A

FB
-1
,a

fl
at
ox

in
B
-1
;N

rf2
;T

G
F-
b1

,
tu
m
or

gr
ow

th
fa
ct
or

B
-1
;I
L-
6,

in
te
rle
uk
in

6;
TN

F-
a,

tu
m
or

ne
cr
os

is
fa
ct
or
-a
lp
ha

;C
as
-3
,c

as
pa

se
3;

V
D
R
,v

ita
m
in

D
re
ce

pt
or
;V

D
U
P
-1
,v

ita
m
in

D
3-
up

re
gu

la
te
d
pr
ot
ei
n-
1;

C
K
19

,c
yt
ok

er
at
in

19
;I
H
C
,i
m
m
un

oh
is
to
ch

em
is
tr
y.
May 2021 | Volume 11 | Article 642653

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Adelani et al. Vitamin D in Hepatocellular Carcinoma
(FOXO4) and signal transducer and activator of transcription 1
(STAT1), showed a strong correlation with TGF-b, while VD
supplementation reduces cell proliferation.

Furthermore, a selected European population Nested Case-
Control Study reported that increased concentration of
hormonal VD, l,25-(OH)2D3 decreased the risk of HCC (76).
This study informed the idea that l,25-(OH)2D3 treatment could
ameliorate HCC development. Likewise, a randomized controlled
trial also showed that l,25-(OH)2D3 supplementation of daily 2800
IU resulted in increased serum l,25-(OH)2D3 concentration in
cirrhotic patients without significantly altering the mineral
metabolism parameters (74).
THE ROLE OF VITAMIN D
METABOLIZING ENZYMES

Beyond the modulating roles of circulating VD hitherto described,
evidence is emerging that these effects are elicited through its
metabolizing genes. In this vein, Horvath et al. (59) reported that
1,25(OH)2D3 treatment causedaconcurrentdose-dependentmRNA
increased expression of CYP24A1 at specific time points in some
HCCcell lines.Theupregulated expressionofCYP24A1 through1,25
(OH)2D3 treatment suggests a positive correlation between the
enzyme and VD serum concentration. Chiang et al. (77) also
reported that 1,25(OH)2D3 cell line treatment induces upregulation
of CYP24A1 expression. Even though 25(OH)D-1a-hydroxylase,
CYP27B1 further augmented the upregulation of CYP24A1, as
reported by Bikle et al. (78), its transfection also induced cell arrest
at the G0/G1 phase through p21/p27; thus, inhibiting tumor cell
growth (76). Additionally, single nucleotide polymorphisms of
CYP24A1 are associated with an increased risk of HCV infection in
Frontiers in Oncology | www.frontiersin.org 6
some high-risk Chinese population (79). Specifically, rs6013897
(T>A) was significantly associated with an increased risk of HCV
infection. In contrast, rs6068816 (C>T), rs3787557 (T>C), rs6022999
(A>G), and rs2248359 (C>T) were associated with increased risk of
chronic HCV infection. Consequently, combining VD3 treatment
and CYP24A1 inhibitors could annihilate the increased cytoplasmic
expression of CYP24A1.
LIMITATIONS OF THE USE OF VITAMIN D
AS THERAPEUTICS

VD intoxication, usually characterized by hypercalcemia, is a
significant limitation to the therapeutic use of the hormone in
alleviatingpathological conditions. Consequently, VDanalogshave
been used in recent years to reduce hypercalcemic effects. For
example, a catabolic metabolite of the prodrug, 27 hydroxy BCI-
210 (27-OH BCI-210), was reported to inhibit cancer cell growth
(80). Although patients take various supplements, including
vitamins, to maintain and improve health and prevent disease
occurrences (81), there was no observed association between
these supplements and HCC patients’ survival (81).

The daily intake of 100,000 IU ormore could cause VD toxicity
(68), while an increased intake of up to 2000 fold against the
prescribed dosage could lead to renal failure (82). It has also been
reported that an annual treatment of 500,000 IU VD3 increases
fracture risk (83, 84). However, a short-term effect of an accidental
overdose of VD3 was minimal; the long-term effect could be
detrimental, as van den Ouweland et al. (83) reported. In the
study, a single overdose treatment of 2,000,000 IU VD3 caused no
short-termclinical toxicity.Therefore, terminatingVDandreduced
the consumption of calcium and phosphorus helps in managing
FIGURE 1 | l,25 (OH)2D3 signaling pathway involved in the regulation of HCC through apoptosis, invasion, proliferation, differentiation, tumorigenesis, oxidative
stress, and inflammation.
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hypercalcemia. Other interventions integral to controlling
hypercalcemia include glucocorticoids, intravenous hydration,
diuretics, and calcitonin (85, 86). Equally, to reduce the VD
dosage and improve efficacy, combination therapy of VD and its
analogs with other chemotherapeutic agents could be explored.
FUTURE PERSPECTIVES

It is important to note that VD as an anticancer therapeutic agent
could be associated with the administration route. Aside from the
hepatic arterial infusion of this lipophilic vitamin, intravenous
administration could determine, to some extent, the therapeutic
effects and rate of its effectiveness (64). Also, VD supplementation
andCYP27B1 gene transfection therapy are other plausible options
of exploration in managing and treating HCC (77). Although
dosage limitation exists, it will be beneficial to understand the
interaction of the VD signaling pathway and carcinogenesis at the
genetic level.Thegenetic interactionscould focusonspecific targets;
thus, alleviating risks that arise with the limitation.

Another line of thought in VD’s therapeutic use could involve
understanding the mechanisms in VD’s modulatory roles of the
tumor microenvironment (TME). Tumor growth, invasion, and
metastasis are generally affected by the interactions between the
tumors and their respective microenvironments (87).
Understanding these bidirectional interactions between the
tumor cells and the environment could open up therapeutic
targets and regimes in liver cancer treatment (88–90). Although
VD influences angiogenesis, metastasis, and cancer progression
in TME, the active form of VD, 1, 25 (OH)2D3 modulates a
couple of stroma cells explicitly, suppresses tumor growth, and
act as an anti-inflammatory agent within the TME, leading to
cancer reduction (91).
Frontiers in Oncology | www.frontiersin.org 7
CONCLUSION

Despite positive research findings on VD’s roles in HCC, resulting
limitations hinder its progress as a viable therapeutic agent.
Although there might be conflicting reports supporting the roles
of serum l,25-(OH)2D3 in HCC, there are ample in vitro, in vivo
data and some randomized clinical control trials suggesting
VD-related mechanism is vital in HCC progression. This
research gap could be vital in understanding the mechanisms
involved in the VD regulation of HCC. Clinical trials on various
combination therapies will also help resolve the research
deficiencies recorded in standardizing VD dosage. Therefore, it
is strongly recommended that more studies should be carried out
on combination therapies of various VD analogs and standard
therapeutic agents by targeting crucial genes and pathways
involved in VD’s non-classical functions.
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