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Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal
gastrointestinal malignancies with an overall 5-year survival rate of 8%–9%. The intra-
tumor heterogeneity and special tumor microenvironment in PDAC make it challenging to
develop effective treatment strategies. Exosomes are extracellular vesicles that originate
from the endosomes and have a diameter of 40–160 nm. A growing body of evidence has
shown that exosomes play vital roles in tumor initiation and development. Recently,
extensive application of exosomes as biomarkers and drug carriers has rendered them
attractive in the field of PDAC. This review summarizes the latest progress in the
methodologies for isolation, modification, and tracking of exosomes, exosome-
mediated cell-to-cell communication, clinical applications of exosome as minimally
invasive liquid biopsy and drugs carriers, as well as their involvement in the angiogenic
regulation in PDAC. In spite of these advancements, some obstacles are still required to
be overcome to use the exosome-based technologies for early diagnosis or improvement
of prognosis of patients with PDAC.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal gastrointestinal
malignancies with an overall 5-year survival rate of 8%–9%, which brings great challenges for
developing effective therapeutic strategies (1). Although radical excision is the only potentially
curative therapy for PDAC, only 15%–20% of PDAC patients are eligible for radical excision at the
time of diagnosis due to either major vascular invasion or distant metastasis (2, 3). Even after
curative resection, the majority of patients still encounter local recurrence or systematic metastasis
within just 12 months, with a 5-year survival rate after surgery of 20%–30% (4). Nowadays, the
paradigm shift from the traditional “surgery first” approach to the modern “multi-disciplinary team
(MDT)” treatment significantly improved the short-term prognosis of patients with PDAC;
however this MDT approach is not sufficient enough to markedly increase long-term survival of
the majority of patients with PDAC (5). Thus, it is imperative to develop new diagnostic and
treatment strategies for PDAC.

Exosomes are members of the extracellular vesicle (EV) family and have an endosomal origin.
Exosomes have a diameter of 40–160 nm (average, 100 nm). Under physiological or pathological
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conditions, all the cells inside the human body secrete exosomes
into the body fluid – plasma, urine, saliva, ascites, and bile (6, 7).
Similar to their parental cells, exosomes contain cell-derived
biological molecules such as DNA, miRNA, mRNA, lncRNA,
proteins, lipids, and metabolites (Figure 1). The constituents of
exosomes vary a lot under different circumstances due to diverse
original cell types and status. Because of the features of wide
distribution and cell specificity, identification of cancer-specific
exosomes via minimally invasive liquid biopsy might be critical
for the early diagnosis, prognosis prediction and development of
therapeutic strategies related to malignancies (7). Meanwhile, a
growing body of evidence has revealed that the cell-to-cell
communication via exosomes in different types of cells plays a
vital role in the physiological and pathological processes such as
immune response, tissue fibrosis, reproduction, tumorigenesis,
and metastasis (8–11). Recently, exosomes have become a
popular research area of PDAC. Studies have highlighted the
Frontiers in Oncology | www.frontiersin.org 2
clinical value of exosomes as biomarkers and drug carriers in
PDAC patients (12–14). In this review, we describe the recent
progress in the basic research of exosomes and discuss its clinical
applications in PDAC.
NEW METHODOLOGIES IN EXOSOME
RESEARCH

Isolation of High-Quality Exosomes
Isolation of high-quality exosomes is a prerequisite of all the
exosome-related studies. The International Society for
Extracellular Vesicles (ISEV) classified the exosomes isolation
strategies into four categories according to the recovery rate and
specificity. Further, the society declared there is no gold standard
for the isolation of exosomes at present (15). Although ISEV did
not provide clear guidelines on the use of specific exosome
FIGURE 1 | Exosomes involve intercellular communication. Exosomes derived from the parental cells affect the biological function of the recipient cells through
ligand-receptor interactions and uptake of exosomal cargo. Exosome transport ways can be autocrine, paracrine, or endocrine.
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isolation methods, it suggested that the investigators should give
the detailed protocol in the ensuing scientific publications to
guarantee the reliability and reproducibility of results. The most
popular technology for purifying exosomes is ultracentrifugation
(UC). UC is extensively used in almost all exosome-related studies.
For isolating the high-quality exosomes from complicated body
fluids such as plasma or urine, researchers also prefer a combination
of isolation methods, including UC or polymer precipitation plus
size exclusion chromatography (SEC). Unfortunately, the collection
of pure exosomes is impossible because of the unavoidable
contamination with soluble proteins and larger vesicles. Each
isolation method has its specific advantages and disadvantages
and results in heterogeneity in terms of size, surface markers,
and contaminants in the isolated exosomes (Figure 2) (16, 17).
Besides the traditional isolation methods such as UC, SEC,
polymer precipitation, and immunocapture, some novel isolation
technologies also yield high-quality exosomes (18, 19). Zhang and
colleagues (20) developed the Asymmetric Flow Field-Flow
Fractionation (AF4) technique, which can identify three diverse
exosome subsets, including large exosome vesicles (Exo-L, 90–120
nm), small exosome vesicles (Exo-S, 60–80 nm), and non-
membranous nanoparticles (exomeres, 35 nm). The proteomic
profiling revealed that the biological function carried out by each
subset of exosomes varies considerably. Thus, the AF4 can separate
the specific subsets of vesicles for understanding the heterogeneity
of exosomal populations. Niu et al. (21) introduced a new exosome
isolation platform involving integrated microfluidic chip with a
combination of the traditional immunomagnetic bead-based
technology and the latest microfluidic method. This platform is
automatic and more efficient, which is helpful in obtaining highly
Frontiers in Oncology | www.frontiersin.org 3
pure and intact exosomes. Moreover, this platform can also isolate a
certain subset of exosomes with a specific protein marker (CD63).
In addition, Lee and colleagues (22) developed an acoustic nano
filter system that can separate nanoscale vesicles (<200 nm) in a
continuous and contact-free way. The differential acoustic force was
created on the basis of the size and density of the nanoparticles by
ultrasound standing waves. This system can isolate exosomes with
high separation yield and resolution. In recent years, novel
purification methods to achieve high-quality isolation of
exosomes have progressed rapidly. With the innovation in
technology, efficient isolation of exosomes with high purity and
quality should be the fundamental benchmark for exosome-
related research.

Engineering Exosomes
Exosomes modification through genetic or nongenetic methods
can change exosomal components and improve the targeting
capability of therapeutic agents. The techniques of engineering
exosomes include modifications of nucleic acid, protein, and
glycoprotein, which provide a new targeted strategy for tumor
precision medicine. Because genetic manipulation is relatively
easier to implement at a cellular level, the complicated exosome
engineering mainly focusses on the genetic modification of the
parental cells at present.

The small RNAs (siRNAs or miRNAs) can be directly
inserted into the exosomes through temporary permeation of
the exosomal membrane using either physical or chemical
methods, thereby modifying the exosomal nucleic acids. The
most common methodology of delivering the target siRNAs or
miRNAs into exosomes is electroporation (23, 24). The nucleic
FIGURE 2 | Different isolation methods of exosomes. Each method has their own advantages and disadvantages based on recovery, purity, operation, and cost.
February 2021 | Volume 11 | Article 644358

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Exosome in Pancreatic Cancer
acid-modified exosomes can serve as drug carriers because they
interfere with the expression of target genes in vitro or in vivo.
However, the current technique of exosomal nucleic acid
modification still needs further optimization, since it often
causes RNA aggregation, which limits the transfection
efficiency. Meanwhile, the surface proteins of the parental cells
can also be modified using gene editing methods, and the
exosomes would then express these modified membrane
proteins. These exosomes can be used to target specific cells or
tissues and exert the required therapeutic effects with reduced
off-target effects. Alvarez-Erviti et al. (23) engineered dendritic
cells to express Lamp2b, an exosomal membrane protein that
was fused with the neuron-specific RVG peptide to produce
brain-specific exosomes. They loaded the purified brain-specific
exosomes with exogenous siRNAs against BACE1 using
electroporation, and successfully knocked down the specific
gene in the brain of a murine Alzheimer’s disease model.
Except for the membrane proteins, the ubiquitinated proteins
can be sorted into the endosomal sorting complexes required for
transport, and entrapped in the exosomes. Based on this sorting
mechanism, Sterzenbach and colleagues (25) designed a fusion
protein of Cre recombinase and WW tag that recognized the L-
domain containing protein Ndfip1 and resulted in ubiquitination
of the target protein (Cre). The fusion protein was successfully
loaded into the exosomes, demonstrating a potential strategy to
load specific proteins into exosomes.

Besides the modification of nucleic acids and proteins,
changing the structure of glycoproteins present on the surface
of exosomes may also significantly influence the exosomal
physicochemical properties and biological functions. Royo et al.
(26) reported that a modification of glycosylate complexes through
the degradation of terminal sialic acid residues present on the
surface of mouse liver-derived EVs resulted in the accumulation of
EVs in the lungs. Moreover, Lee et al. (27) developed a targeting
strategy to engineer EVs. The investigators observed that, when 3-
(diethylamino) propylamine (DEAP) was anchored to EVs, the
structure of EVs was maintained in physiological conditions (pH =
7.4); however, this structure collapsed in the acidic environment
(pH < 7.0), and the contents inside the EVs were released. Using
this strategy, they developed a pH-responsive drug vehicle using
nano-sized vesicles. These modified vehicles remained stable in the
blood circulation. The encapsulated drugs were released after the
vesicles reached the acidic tumor microenvironment and were
engulfed by the tumor cells. The results from the xenograft
model have demonstrated that DEAP-EVs could significantly
increase the concentration of doxorubicin inside the tumors and
inhibit tumor growth effectively (27). These novel modification
strategies may act as breakthroughs for exosome-mediated targeting
of tumors.

Exosome Tracking
Exosome tracking is a visualization technique to label exosomes
with specific materials and investigates their bio-distribution at
cellular or animal levels using optical, magnetic resonance, or
radionuclide imaging. This technique opens up the possibility to
measure the metabolic kinetics parameters of exosomes inside
Frontiers in Oncology | www.frontiersin.org 4
the body. The exosome tracking technique consists of three
features – labeling, imaging, and data processing.

The labeling of exosomes is classified into two categories –
indirect labeling and direct labeling. The indirect labeling method
refers to the genetic manipulation, and the modification of
metabolites and membranes of the parental cells. The direct
labeling method includes click-chemistry-based lipophilic staining
and membrane modification for purified exosomes. Investigators
have constructed a fusion protein using eGFP, luciferase, and
tetraspanins (CD9, CD63, and CD81– anchored on the surface of
exosomes), which was then expressed inside the parental cells to
mark the exosomes and enable their tracing via an imaging system
(28–30). Recently, Tung and colleagues (31) reported a facile
exosome labeling strategy. They added tetra-acetylated N-
azidoacetyl-D-mannosamine (Ac4ManNAz) to the culture
medium. Ac4ManNAz was spontaneously incorporated into the
process of glycometabolism and loaded into the exosomes. These
azido-containing exosomes were then conjugated with fluorescent
dyes via click reaction, so the distribution of the labeled exosomes
can be observed in vivo. Busato et al. (32) developed an innovative
exosome labeling approach based on magnetic resonance imaging
(MRI). The adipose stem cells (ASCs) were incubated with
ultrasmall superparamagnetic iron oxide nanoparticles (USPIO,
4–6 nm) for 72 h. Then the ASCs-derived exosomes labeled with
these nanoparticles were visualized via MRI. Further, their
morphological and physiological features were also preserved.
These indirect exosome labeling methods by modifying parental
cells have little effect on exosomal properties. However, the
efficiency is usually lower, and the procedure is more complex
and time-consuming as compared with the direct labeling method
using purified exosomes. The most common method of labeling
purified exosomes is directly incubating the exosomes with
lipophilic fluorescent dyes such as PKH67 and Dio to uniformly
stain the exosomal membrane. However, most of these lipophilic
dyes tend to aggregate into a mass, thus reducing the imaging
quality. So, the aggregation effect must be treated carefully.
Furthermore, a recent study showed that gold-carbon quantum
dots (GCDs), a novel fluorescent nanomaterial, can serve as a
labeling dye for tracing exosomes. GCDs could conjugate with
antibodies and label the exosomes via the antigen-antibody
reaction. Using this exosome-specific nanoprobe, investigators
successfully analyzed the tracks of labeled exosomes after the
exosomes were engulfed by live cells (33).

The dynamic visualization of the distribution and biological
process of exosomes in high resolution in vitro and in vivo is
vital. Real-time imaging for nano-sized vesicles poses a challenge
for the spatial and temporal resolution of imaging systems. MRI
has a great advantage in spatial resolution as compared with
traditional optical imaging. In addition, the latest exosome-
tracking method based on radionuclide imaging holds a great
promise for dynamic detection of the bio-distribution of
exosomes. Hwang et al. (34) used SPECT/CT to continuously
observe the distribution of macrophage-derived exosomes labeled
with (99m) Tc-HMPAO under physiological conditions. The
investigators observed the redistribution of labeled exosomes
from liver to brain.
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Most of the current imaging techniques for exosome tracking
are adapted from the mature cell tracking or medical imaging
protocols and lack the specific imaging platform. The
multimodal exosome imaging systems are being developed to
integrate the advantages of optical, magnetic resonance, and
radionuclide imaging (34). These systems can improve the
quality of image reconstruction, broaden the scope of their
applications, and hence, would play a significant role in the
field of exosome research.

Role of Exosomes on Tumor
Microenvironment – Cell Messengers
Many studies have indicated that exosomes participate in the
process of tumorigenesis and tumor progression. Nowadays,
researchers are trying to explore the in vivo biodistribution,
content heterogeneity, and biological function of these nano-
sized vesicles. The exosomes originating from different cells
inside a tumor have built up a unique tumor nano environment
(TNE) and act as significant cell-to-cell communication
mediators. The living cells shed a large number of exosomes,
not only to communicate with themselves and adjacent cells
through autocrine and paracrine mechanisms, but also to
communicate with distant tissues or organs, playing a regulatory
role, through endocrine signaling (Figure 1). Via shedding
exosomes, cancer cells promote their own proliferation and
migration (7). The low-grade malignant chemosensitive
tumor cells may develop a malignant and chemoresistant
phenotype after endocytosing exosomes from the high-grade
malignant chemoresistant cells (35, 36). Moreover, tumor
metastasis model experiments indicated that the exosomes from
primary tumor location traveled to the target organs such as the
liver and brain by the circulatory system and induced pre-
metastasis niche formation, resulting in increasing the possibility
of tumor metastasis (37, 38). The exosomes mediate cell-to-cell
communication primarily in two ways: (A) The specific proteins
on the surface of exosomes directly regulate the signaling pathway
inside the recipient cell via receptor-ligand interaction; (B)
The recipient cells engulf the exosomes loaded with miRNAs,
proteins or metabolites through receptor-mediated endocytosis,
clathrin-coated pits, lipid rafts, phagocytosis, or macropinocytosis,
then these payloads involve intracellular signaling regulation
(Figure 1) (39).
Frontiers in Oncology | www.frontiersin.org 5
The physiological significance of cells shedding the exosomes
remains largely unclear. Early studies hypothesized that similar
to garbage bags, exosomes help in the removal of excess waste
products from the cell to maintain cellular homeostasis (40). It is
hard to discern if the package of exosomal constituents is
accurately controlled by the specific sorting system or random
assortment. However, nowadays researchers have confirmed that
exosome contents play a vital role in cell-to-cell interaction,
among which miRNAs are the most widely studied components
(41). MiRNAs are small and endogenous non-coding RNA
molecules containing about 19-24 nucleotides, which
completely or partially bind the 3’ UTR within mRNA via
base-pairing principle, resulting in target gene silencing or
degradation in the post-transcriptional level (42). Recently, a
growing body of studies has revealed that the cell-to-cell
communication networks mediated by exosomal miRNAs act
as cell messengers in PDAC, highlighting the complex tumor
microenvironment of PDAC (Table 1). Wang et al. (43) reported
that the exosomes derived from hypoxic pancreatic cancer cells
(PCCs) could be engulfed by macrophages and release miR-301a
to induce M2 polarization via activation of PTEN/PI3K signaling
pathway. The macrophages with the M2 phenotype promoted
malignant behaviors in pancreatic cancer cells (PCCs) by
secreting TGFb, IL10, and arginase in return. Natural killer
(NK) cells can regulate the expression level of IL-26 in PCCs
by shedding exosomes loaded with miR-3607-3p and inhibiting
pancreatic cancer progression in vitro and in vivo (44). Exosomes
loaded with miR-210 mediate the horizontal transfer of a drug-
resistant phenotype from gemcitabine-resistant PCCs to
chemosensitive PCCs (36). Cancer-associated fibroblast (CAF)
derived exosomal miR-106b enhanced the proliferation and
gemcitabine resistance of PCCs by directly targeting TP53INP1
(45). Activated pancreatic stellate cells (PSCs) continuously
released exosomes containing high levels of miR-21. PCCs
internalize these exosomes, resulting in the upregulation of
miR-21. PSC-derived exosomal miR-21 was able to promote
epithelial-to-mesenchymal transition (EMT), migration, and
enhanced Ras/ERK signaling pathway activity in PCCs (46).
Exosomal miR-194-5p shed from the dying tumor cells under
radiotherapy was found to induce G1/S arrest and promote
DNA damage repair of residual tumor repopulating cells
(TRCs) to potentiate pancreatic cancer repopulation (47).
TABLE 1 | Exosome miRNA-mediated cell-to-cell communication network in pancreatic ductal adenocarcinoma (PDAC) microenvironment.

Parental cell Recipient cell Cargo Isolation method Culture
conditions

Biological function Reference

PCCs Macrophages miR-301a Ultracentrifugation Hypoxia Induce M2 polarization (43)
NKs PCCs miR-3607 Ultracentrifugation Normoxia Inhibit progression (44)
Gemcitabine-resistant PCCs Chemosensitive PCCs miR-210 ExoQuick-TC Normoxia Transfer of drug-resistant phenotype (36)
CAFs PCCs miR-106b ExoQuick-TC Normoxia Promote proliferation and Gemcitabine resistance (45)
PSCs PCCs miR-21 Ultracentrifugation Normoxia Induce EMT (46)
Dying tumor cells TRCs miR-194-5p Ultracentrifugation Normoxia Promote G1/S arrest

and DNA damage repair
(47)
February 2021 | Volume 11 | Art
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In summary, exosomal miRNA mediates complicated cell-to-cell
communication network inside the PDAC microenvironment
involving PCCs, NK cells, macrophages, and CAFs. However,
the interaction mechanisms involving other components such
as endothelial cells (ECs) in PDAC are currently unknown.
Further research is needed to study the bi-directional
communication among these components in PDAC, which
even forms a positive feedback loop for promoting the tumor
progression. Besides miRNAs, LncRNAs and proteins in
exosomes, although with low abundance, also play a pivotal
role in PDAC microenvironment.
CLINICAL APPLICATIONS OF EXOSOMES

Exosomes as Biomarkers for Early
and Non-Invasive Diagnosis of PDAC
The blur clinical signs and symptoms of PDAC result in a
very low diagnosis rate during the early stages. Moreover, the
current diagnostic techniques are insufficient to screen out
early asymptomatic patients, and the serum tumor markers of
PDAC, such as carbohydrate antigen 19-9 (CA19-9) and
carcinoembryonic antigen (CEA), have limited specificity and
sensitivity. Thus, the development of new and reliable biomarkers
of PDAC is critical to improve the early detection and radical
resection rates. Recently, the new liquid biopsy strategy mediated
by exosomal markers has showed potential value as a non-
invasive diagnostic method (Figure 3). Under the protection
of endogenous membrane of the exosomes, the diagnostic
markers can remain stable inside the blood circulation, which
makes the diagnosis more reliable. Therefore, this strategy may
become crucial for the non-invasive diagnosis of PDAC in the
near future.

Exosomes loaded with multiple diagnostic molecules can be
isolated from different types of body fluids, making the exosomal
markers-based liquid biopsy more attractive for early tumor
detection, tumor progression monitoring, and prognosis
assessment. Many studies have highlighted the possibility of
clinical translation of exosomal biomarkers in PDAC (Table 2).
Plasma exosomal miR-21 could be used to differentiate patients
with PDAC, intraductal papillary mucinous neoplasm (IPMN)
and healthy participants (HP) (48, 49). Goto et al. (50) reported
that exosomal miR-21 isolated from pancreatic juice using
ultracentrifugation could also differentiate PDAC and chronic
pancreatitis (CP). The patients with PDAC had a higher level of
exosomal miR-451 than the HP, and the expression level of miR-
451 wassignificantly correlated with recurrence and survival time
(48, 51). Plasma exosomal miR-196a and miR-1246 also showed
diagnostic value for localized pancreatic cancer (52). Moreover,
the combination of multiple exosomal biomarkers to create a
predictive model significantly improved the accuracy of diagnosis
and prognosis (53, 55). In a clinical study with large cohorts,
Melo et al. (54) found that Glypican-1 (GPC1), a cell surface
proteoglycan, was specifically enriched in tumor cell-derived
exosomes, and GPC1+ exosomes in the serum served as a non-
invasive diagnostic and screening biomarker with absolute
Frontiers in Oncology | www.frontiersin.org 6
sensitivity and specificity (AUC = 1.0). GPC1+ exosomes could
also distinguish patients with early and late PDAC from HP and
patients with benign pancreatic disease (BPD) (56–58).

In summary, the exosome-mediated non-invasive diagnosis
strategy may overcome the shortages of traditional serum tumor
markers for early detection of PDAC. However, a single
exosomal marker used for diagnosis is usually associated with
high specificity and low sensitivity (59). Thus, comprehensive
diagnostic strategies combining exosomal miRNAs, proteins and
traditional serum tumor markers are urgently needed to improve
the specificity and sensitivity of PDAC diagnosis.

Exosomes as a Therapeutic Vehicle
of PDAC
In recent years, researchers have made great progress in the
development of exosomes as drug carriers (60, 61). As compared
with liposomes and other nanoparticles, exosomes possess better
biocompatibility as drug carriers (62). Injected exosomes shed
from endogenous cells of the body are tolerated with minimal
immune reaction and toxicity (63, 64). The cargos can be
efficiently delivered into the tumor microenvironment using
exosomes since these vesicles have the ability to penetrate the
blood-tissue barrier. For instance, Alvarez-Erviti et al. (23)
demonstrated that the self-derived exosomes were able to
deliver siRNA to the brain through the blood-brain barrier. The
therapeutic exosomes were found to be taken up by the target
tissues in mice with low immune clearance rate via intravenous
injection (55, 63). Mesenchymal cells- or epithelial cells- derived
exosomes did not cause toxic side effects even after being
repeatedly injected in mice (14). Kordelas et al. (65) isolated
exosomes from the mesenchymal stem cells (MSCs) to treat
graft-versus-host disease (GvHD) and found that the exosomes
were well tolerated.

Since exosomal miRNAs have the potential capability to
suppress the expression of target genes in recipient cells,
investigators have tried to engineer the exosomes by loading
target specific miRNA or siRNA to block the abnormal
signaling pathways in PDAC cells in recent years. With the
protection of the bilayer lipid membrane, exosomal RNAs can
be safely transported to the lesion sites without any degradation by
natural ribonucleases in the blood (66). The first clinical-grade
MSCs-derived exosomes loaded with siRNA against KrasG12D was
reported in 2017, which served as a promising therapeutic strategy
in PDAC animal models (13). By targeting KrasG12D mutation of
PDAC cells in vivo, these engineered exosomes showed a
significantly increased overall survival without any toxicity.
Moreover, this strategy has found its way to a Phase-I clinical
trial in PDAC patients with KrasG12D mutation (NCT03608631).

In order to develop exosomes with a better target ability, we
can conduct the modification of exosomes by direct or indirect
methods, as discussed previously. For example, mouse immature
dendritic cell-derived exosomes loaded with doxorubicin showed
targeted av integrin positive cancer cells with high efficacy,
though engineering exosomes to express a fusion protein of
Lamp2b and av integrin-specific RGD (67). Thus, to achieve
high targeting of PDAC tumor cells, a new therapeutic strategy
February 2021 | Volume 11 | Article 644358
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can be developed by engineering exosomes and loading specific
payloads such as siRNAs, inhibitors, or chemotherapy drugs
followed by verifying the safety and efficacy of the exosomes in
organoid and patient-derived tumor xenograft models.
Frontiers in Oncology | www.frontiersin.org 7
Exosomes and Tumor-Associated
Neovasculature in PDAC
Tumor-associated neovasculature helps tumor cells in acquiring
nutrients and oxygen and clearing metabolic wastes efficiently
FIGURE 3 | The clinical application of exosomes in pancreatic cancer. Exosomes are isolated from complex body fluids, including portal vein blood, peripheral
blood, pancreatic juice, ascites, and urine. Exosomal miRNAs or proteins are identified as biomarkers for early diagnosis and the evaluation of prognosis. It is feasible
to collect clinical-grade exosomes on a large scale to culture stem cells. The strategy of using exosomes as drug carriers holds significant therapeutic value when
combined with exosome modification techniques.
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(68, 69). In the process of tumor development, angiogenesis-
related signaling pathways are highly activated to support the
continued growth of tumor lesions, which pave the way for local
invasion and distant metastasis of tumor cells. However, PDAC
is characterized by a lower microvascular density (MVD) with a
high desmoplastic stromal reaction as compared with other
tumors. The desmoplastic reaction results in a high pressure
and collapse of the vascular structure inside PDAC. Thus, the
limited vascular bed causes severe hypoxia stress in the tumor
cells (70, 71). In order to adapt to the hypoxic environment, the
endothelial cells (ECs) in PDAC develop hairy-like base
microvilli to extend the vascular surface area, enhancing the
glucose uptake rate. In addition, the basement membranes of
blood vessels usually lose their integrity and develop various
abnormal features such as variable diameters, excessive
branching, and destroyed inter-endothelial junctions (69). All
these features increase the possibility of early tumor metastasis.
Thus, anti-angiogenesis therapy may bring hope for patients
with PDAC. Unfortunately, the underlying mechanism of how
the PDAC cells regulate angiogenesis is still not fully understood.
Some clinical trials have demonstrated that anti-angiogenesis
therapies failed to improve the prognosis of patients with PDAC
(72–75). The complex tumor microenvironment and cell-to-cell
communication among different components may contribute to
the angiogenic regulation network in PDAC. Serving as a cell
messenger, exosomes may play an essential role in cell-to-cell
communication between ECs and other cells.

Accumulating evidences have suggested that angiogenesis
inside tumors is regulated by cell-to-cell communication
between ECs and other components of the tumors, including
tumor cells, CAFs, and tumor-infiltrating lymphocytes (TILs),
through soluble cytokines, gap junctions, and physical contact
(68). Stromal cells and TILs were found to promote tumor
growth via secreting VEGF (76). Masamune et al. (77) found
that PSCs in the hypoxic environment release multiple
angiogenic factors such as VEGF, MMP9, IL-8, and FGF-2 to
induce ECs proliferation, migration, and angiogenesis in vitro
and in vivo. In recent years, exosome-mediated cell-to-cell
Frontiers in Oncology | www.frontiersin.org 8
communications between ECs and other components inside
tumors have attracted considerable attention (78). Hsu and
colleagues (79) found that lung cancer derived exosomal miR-
23a under hypoxic condition could inhibit the expression of
PHD and ZO-1, resulting in an increase in angiogenesis and
vascular permeability. Umezu et al. (80) demonstrated that
exosomal miR-135b shed from hypoxic multiple myeloma cells
enhanced angiogenesis via targeting HIF-1a. In addition,
hypoxic glioblastoma derived exosomes were found to contain
multiple angiogenic factors such as VEGFA, to promote the
proliferation of ECs and increase the permeability of the blood-
brain barrier (81, 82). However, in the field of PDAC, exosome-
mediated interactions between ECs and other cells have not been
elucidated. Fully understanding of these interactions under
hypoxia is critical for the investigation of the special
angiogenic regulation in PDAC, which will also help develop
new anti-angiogenesis therapeutic strategies.
CONCLUSIONS

PDAC is still one of the most lethal human cancers. The
development of novel biomarkers and therapeutic targets is
essential to improve the prognosis of patients with PDAC.
Exosomes are becoming a promising tool for the early
detection, prognosis assessment, and even therapeutic modality
of PDAC. The studies on exosomes have progressed very
rapidly in recent years. In this review, we have summarized the
latest progress in the methodologies for isolation, modification,
and tracking of exosomes, exosome-mediated cell-to-cell
communication, clinical applications of exosome as minimally
invasive liquid biopsy and drugs carrier, and their contribution
to the angiogenic regulation in PDAC. Despite a lot of
advancements, enormous challenges also exist. Firstly, there is
still no gold standard for the isolation and identification of
exosomes. The reported methods for purifying exosomes in
reported studies vary a lot, making the results less reproducible
or convincing. Secondly, the development of ideal exosome
TABLE 2 | Exosomes as biomarkers for diagnosis and prognosis of pancreatic ductal adenocarcinoma (PDAC).

Exosomal cargo Body fluid Isolation method Sample size Clinical application Reference

miR-21 PVB and
PB

Ultracentrifugation 55 PDAC Evaluation of recurrence and prognosis (48)

PB ExoQuick-TC 32 PDAC, 29 IPMN, and 22 HP Early diagnosis (49)
Pancreatic
juice

Ultracentrifugation 27 PDAC and 8 CP Early diagnosis (50)

miR-451a PVB and
PB

Ultracentrifugation 55 PDAC Evaluation of recurrence and prognosis (48)

PB Ultracentrifugation 56 PDAC and 3 HP Evaluation of recurrence and prognosis (51)
miR-196a, miR-1246 PB ExoQuick-TC 15 PDAC and 15 HP Screen localized PDAC (52)
Panel: CD44v6, Tspan8,
EpCAM, MET, CD104 and
miR-1246, miR-4644, miR-
3976, miR-4306

PB Sucrose-gradient
centrifugation

131 PDAC, 25CP, 22 BPD and
42 HP

Early diagnosis (53)

Glypican-1 PB Sucrose-gradient
centrifugation

246 PDAC, 24 CP, 5 IPMN, 8
BPD, and 20 HP

Early screening tool and evaluation of tumor
burden and prognosis

(54)
February 2021 | Volume 11 | Art
PVB, Portal vein blood; PB, Peripheral blood; PDAC, Pancreatic adenocarcinoma; IPMN, Intraductal papillary mucinous neoplasm; HP, Healthy participants; CP, Chronic pancreatitis;
BPD, Benign pancreatic disease.
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isolation strategies with high purity and efficiency is currently
unachievable and hence clinical-grade exosomes are difficult to
acquire on a large scale. Most of the exosome engineering
applications for the treatment of PDAC are only limited to cell
or animal experiments. Thirdly, biogenesis and sorting
mechanisms for exosomes have to be further explored to
efficiently engineer exosomes with specific nucleic acids,
proteins, and even exogenous drugs. Finally, most of the recent
exosome-related mechanistic studies were conducted in
normoxic conditions that only involved cancer cells. These
situations do not represent the actual hypoxic microenvironment
and the complicated components of PDAC. Considering the
fact that exosome-mediated cell-to-cell communications
among the different entities in PDAC may form a feedback
loop instead of unidirectional signaling transmission, in vitro
experimental results should be verified using animal models,
or in patients with PDAC. In conclusion, there are still a few
obstacles to be overcome before exosome-based technologies can
Frontiers in Oncology | www.frontiersin.org 9
be used for early diagnosis or improving the prognosis of patients
with PDAC.
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