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In the recent decade, gut microbiota has received growing interest due to its role in human
health and disease. On the one hand, by utilizing the signaling pathways of the host and
interacting with the immune system, the gut microbiota is able to maintain the homeostasis
in human body. This important role is mainly modulated by the composition of microbiota,
as a normal microbiota composition is responsible for maintaining the homeostasis of
human body, while an altered microbiota profile could contribute to several pathogenic
conditions and may further lead to oncogenesis and tumor progression. Moreover, recent
insights have especially focused on the important role of gut microbiota in current anticancer
therapies, including chemotherapy, radiotherapy, immunotherapy and surgery. Research
findings have indicated a bidirectional interplay between gut microbiota and these
therapeutic methods, in which the implementation of different therapeutic methods could
lead to different alterations in gut microbiota, and the presence of gut microbiota could in
turn contribute to different therapeutic responses. As a result, manipulating the gut
microbiota to reduce the therapy-induced toxicity may provide an adjuvant therapy to
achieve a better therapeutic outcome. Given the complex role of gut microbiota in cancer
treatment, this review summarizes the interactions between gut microbiota and anticancer
therapies, and demonstrates the current strategies for reshaping gut microbiota
community, aiming to provide possibilities for finding an alternative approach to lower the
damage and improve the efficacy of cancer therapy.
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INTRODUCTION

Cancer is one of the leading causes of death worldwide. It arises as a result of accumulated genetic
disorders that leads to dysregulations in cell cycle, having the potential to undergo unlimited times
of division and imposing a strong negative impact on the normal physiological functions of the host
(1). As the mutations accumulate, the life quality of the patient is largely impaired, and most
importantly the life span is reduced (2).

Finding a cure for cancer to prolong the lifespan has long been the greatest challenge during the
development of medical research. Over the years, researchers have worked out a variety of
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therapeutic methods against cancer, including chemotherapy,
radiotherapy, immunotherapy, surgery and so on. Although
these methods are able to inhibit the progression or even
eliminate some types of cancer cells, there are still limitations
due to acquired resistance as well as undesirable side effects
caused by the low selectivity of anti-cancer agents between
normal cells and cancer cells (3). For example, previous
research findings suggest that collateral damage in the
abdominopelvic region caused by radiotherapy can lead to
bowel injury (4), and 80% of cancer patient suffer from
chemotherapy-induced gastrointestinal toxicity (CIGT), with
symptoms of diarrhea and abdominal pain (5). As these
adverse effects seriously interfere with the anticancer therapy,
finding an adjuvant method to ultimately overcome these
complications becomes urgent for the clinical research.

The human microbiota consists of microoganisms (bacteria,
archaea, fungi and viruses) present in the epithelial barriers of the
host (6), with the most abundant being the commensal bacteria
that coexist with human cells in the gastrointestinal tract (7). With
the development of high-throughput sequencing technology, the
composition of gut microbiota can be clearly identified. It mainly
consists of 5 bacteria in healthy individuals: Firmicutes,
Bacteriodes, Actinobacteria, Proteobacteria and Fusobacteria (8).
This microbiota profile stays relatively unchanged throughout life
once established (9), forming a unique “signature” in each
individual with important functions associated with both innate
and adaptive immune systems (9). In recent years, the gut
microbiota has increasingly come under focus due to its
impact on many human diseases, including diabetes, obesity,
psychiatric disorders and gastrointestinal diseases (10). They
regulate the balance between health and disease by maintaining
local homeostasis to systematically regulating metabolism,
hematopoiesis, inflammation, immunity and preventing
pathogen infection (9), and the host can in turn “communicate”
with the microbiota with the aid of several host molecules such as
host microRNA (miRNA), hormones, cytokines, metabolites and
metabolic signaling pathways (11). Additionally, recent insights
importantly highlighted the impact of gut microbiota on responses
across several cancer therapies (12), suggesting that regulating gut
microbiota may improve the effectiveness of many cancer
treatments, with a reduced cytotoxic activity.

This article reviews how the gut microbiota, as an adjuvant
therapy, affect the efficacy of four anti-cancer therapies including
chemotherapy, radiotherapy, immunotherapy and surgery, at the
same time reduce the adverse effects. These manipulations may
be conducive to the promotion of personalized medicine and
effective anti-cancer treatment.
THE IMPACT OF GUT MICROBIOTA
ON ONCOGENESIS AND
TUMOR PROGRESSION

There are many factors contributing to the oncogenesis of
cancer, and the study of these oncogenic pathways have clearly
given us insight into the nature of this devastating disease. In
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2000, Hanahan and Weinberg presented six hallmarks of
cancer, and updated in 2011 with two emerging hallmarks
(13). By acquiring these properties, normal cells can undergo
tumorigenic transformation and, in the end, become cancer cells.
The hallmarks are: i) self-signaling for proliferation, ii) evading
anti-growth signals, iii) invasion and metastasis, iv) immortality,
v) angiogenesis, vi) resisting apoptosis, vii) deregulating energy
metabolites, viii) evading immune system. The main mechanism
by which normal cells gaining these cancer hallmarks are
accumulated mutations in the genome, including somatic
structural variants (SVs) and copy number alterations (CNAs),
that interfere with the normal regulatory controls (14). In recent
years, increasing researches have revealed the relation between
microbiota (especially the gut microbiota) and carcinogenesis,
suggesting that the gut microbiota can be involved as an
environmental factor and contribute to genetic alterations
as well.

The indirect bacterial mechanism of oncogenesis is
represented in the process of chronic inflammations induced
by bacterial infection. In this case, the microbiota chronically
generates several inflammation mediators such as Tumor
Necrosis Factor-a (TNF- a) and Interleukin-1 (IL-1), which
further lead to the induction of transcription factor nuclear
factor-kB (NF-kB) and contribute to carcinogenesis (15). In
addition, the bacteria-induced oncogenesis could also be direct
through the effect of microbial metabolites or toxins. Previous
studies have shown that several strains of gut microbiota are
responsible for the tumorigenesis of different cancer types, such
as gastric cancer, colorectal cancer (CRC) and hepatocellular
carcinoma (15, 16). Their carcinogenic processes are all linked to
the production of microbial metabolites. the carcinogenic
process of gastric cancer, CagA proteins produced by H. pylori
are transferred into gastric epithelial cells and interact with pro-
oncogenic phosphatase SHP2 and the polarity-regulating kinase
PAR1/MARK, driving the host signaling pathways that favors
carcinogenesis (17). Bacteroides fragilis is a strong risk factor of
CRC, which could act as an opportunistic pathogen (15). In
antigen-presenting cell (APC) mutant mice model which are
predisposed to intestinal cancer formation, the enterotoxigenic
B. fragilis (ETBF), one of the two subtype of B. fragilis, can induce
colitis and inflammatory bowel disease (IBD) through the
pathway of b-catenin/Wnt/NF-kB signaling, and further lead
to the oncogenesis of CRC (15). On the other hand, B. fragilis
toxin (Bft) can up-regulate spermine oxidase (SMO) in colon
epithelial cells, causing reactive oxygen species (ROS) production
and indirect DNA damage (18, 19). Other microbial metabolites
associated with carcinogenesis include Pasteurella multocida
toxin, cytolethal distending Toxin (CDT) (15) and inositol
phosphate phosphatase D (IpgD) (16). These could all
contribute to the cell transformation, in which the normal cell
responses are altered, and further elevate the risk for
developing cancer.

Given the association between the gut microbiota and carcer
development, it should be considered that a healthy gut
microbiota profile is both sufficient and necessary for
maintaining a healthy microenvironment. Therefore, by
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targeting dysbiosis, the efficacy of some anti-cancer therapies
may be improved, with a better prognosis and reduced
side effects.
THE INTERPLAY BETWEEN GUT
MICROBIOTA AND CANCER THERAPY

Microbiota and Chemotherapy
Chemotherapy is one of the most potent approach to treat cancer
systematically at present. As the chemotherapy drugs can be
delivered through blood circulating system, it can act on
hematopoietic malignancies or tumor with metastasis (20),
targeting DNA, topoisomerase or tubulin to prevent the
growth and proliferation of cancer cells (21). However, due to
the lack of specific targets of chemotherapy drugs, there are still
unavoidable complications caused by cytotoxic effect. In further
studies, the mechanisms of chemotherapy toxicity revealed a
bidirectional interaction between gut microbiota and
cytotoxic drugs.

The Influence of Chemotherapy on the Gut
Microbiota: Composition and Translocation
The chemotherapy-induced change in microbiota composition
has been widely studied in a considerable number of pre-clinical
models, demonstrating a decreased total number and diversity.
Although different chemotherapy drugs may exert different
influences (22, 23), the overall impact was concluded as a
reduced Lactobacillus and Bifidobacterium, together with an
increased Escherichia coli (E. coli) and Staphylococcus,
consisting with the result of clinical studies (5). This disruption
in microbiota composition is associated with an activated
inflammatory pathway and an impaired barrier function,
which makes the host more vulnerable to pathogens (5, 22).

In addition to changes of microbiota composition,
chemotherapy can also induce microbiota translocations,
which is often due to the injured epithelium of the gut (24).
During this process, the gram-positive bacteria strains, such as
Lactobacillus johnsonii, Lactobacillus murinus and Enterococcus
hirae, are transferred by the circulation system to peripheral
lymphoid organs such as mesenteric lymph nodes and spleen
(25). There, the microbiota facilitates the stimulation of memory
T helper 1 (Th1) and the conversion of naïve CD4+ T cells to T
helper 17 (Th17) that secrete IL-17, together with an increased
production of other secreting molecules such as interferon
gamma (IFN-g) which further contribute to the healing of
mucosa and anticancer responses (25).

The Direct Influence of Microbiota on
Chemotherapy: Drug Pharmacokinetics
and ROS Production
As the influence between gut microbiota and chemotherapy is
bidirectional, the microbiota can in turn affect the efficacy of
chemotherapy (Figure 1). One of the mechanisms is that, orally
administrated drugs and some injected drugs depend on gut
microbiota to be converted into active form to exert the
Frontiers in Oncology | www.frontiersin.org 3
anticancer function (6, 26). For example, CPT-11 (Irinotecan)
is a prodrug administrated intravenously in CRC treatment, and
is converted into its active form SN-38 by carboxylesterase (26).
The active drug works as topoisome-1 inhibitor, which induces
single and double strand breaks of the DNA by blocking DNA
ligation, leading to tumor cell death (26). Then the drug is
detoxified by uridine diphosphate-glucuronosyl transferase
(UDP-transferase) (26). However, experiment showed that the
amount of SN-38 was elevated from 2% of administered dose to
12% in feces (27), because the intestinal microbiota-produced b-
glucuronidases are able to convert the detoxicated SN-38-
glucurone back to its active form SN-38 by deconjugation, and
the increased concentration of SN-38 in the colon could cause
diarrhea and intestinal injury (28). The result verified the role of
microbiota in drug pharmacokinetics, providing a potential
target for reducing side effects.

On the other hand, gut microbiota can facilitate the
production of drug metabolite which inhibits a critical enzyme
used for the detoxification of another drug, leading to enhanced
side effects. Many studies have focused on the toxicity of 5-
fluorouracil (5-FU) induced by microbiota, for example if
Sorivudine and 5-FU are taken together by rats, Sorivudine
would be metabolized to bromovinyluracil, and further inhibit
the enzyme dihydropyrimidine dehydrogenase responsible for
the detoxification of 5-FU (26). As 5-FU is an inhibitor of
thymidylate synthase critical in DNA replication, the increased
duration and concentration of 5-FU in the body will cause
serious systemic effects including diarrhea and even reduction
in leukocytes and platelets (29–31). Interestingly, this conversion
only happened in vivo, especially in the intestinal contents, and it
was then confirmed by experiment that gut microbiota species
was responsible for the production of bromovinyluracil (32),
indicating the key role of gut microbiota in the chemotherapy-
induced toxicity.

Moreover, in contrast to increasing chemotherapy-induced
toxicity, the gut microbiota could also facilitate the anticancer
activity of chemotherapy drugs. This is achieved through
inducing the expression of enzymes which are responsible
for ROS production. Oxaliplatin, a commonly used
chemotherapeutic agents, can generate ROS in tumor cells to
induce cell apoptosis by damaging DNA (33). According to
experiment results, the anticancer effect will be reduced in
germ free mice or if the mice are treated with antibiotic
cocktail (ABX), as the impaired microbiota function could lead
to reduced expression levels of Nox1 and Cybb genes coding for
NADPH oxidase 2 (Nox2) (34). This altered gene expression
would contribute to compromised therapeutic effect, as Nox2 can
transfer electrons to generate superoxide (O−

2 ) and further lead to
H2O2 production by an enzyme called compartment-specific
superoxide dismutase (SOD), having the ability to induce DNA
damage in tumor cells and permit cell apoptosis (33).
Furthermore, there is also a second pathway by which gut
microbiota could facilitate the myeloid cell-produced ROS
through Toll-like receptor (TLR) agonist releasing and the
downstream expression of myeloid differentiation primary
response gene 88 (MyD88) (34). This pathway further activates
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NF-kB õand MAPKs and induces the expression of several genes
coding for inflammatory cytokines, including granulocyte
colony-stimulating factor, Interleukin-1b (IL-1b), Interleukin-6
(IL-6) and TNF-a (35). This study substantiated the ROS-
generating pathway used by microbiota to modulate tumor
microenvironment and further affect the outcome of
chemotherapy, highlighting a mechanism for obtaining optimal
anticancer responses.

The Indirect Influence of Microbiota on
Chemotherapy: The Immune System
As the microbiota and chemotherapy drugs can both act on the
immune system, they could use it as a medium to interact with
each other. When the component of gut microbiota is
changed by the chemotherapy as a side effect of the treatment,
the alteration can further influence the function of innate
immune system by reducing APCs (36) and produce
Frontiers in Oncology | www.frontiersin.org 4
inflammatory cytokines (37), which lead to the progression of
Chemotherapy-induced gastrointestinal toxicity (CIGT) (5).
Furthermore, certain phyla of microbiota could play an
indispensable role in anticancer chemotherapy by regulating
the immune response. One of the chemotherapeutic agents,
Cyclophosphamide (CTX), is able to exert systemically
anticancer effect through inducing naïve CD4+ T cells to Th1
and Th17 fate (25). This process is microbiota-dependent: the
entry of symbiotic bacteria (such as Lactobacillus johnsonii and
Enterococcus hirae) into mesenteric lymph nodes promotes the
induction of Th17 and Th1 memory responses in the spleen in
the presence of bone marrow-derived dendritic cells, performing
tumor antigen cross-presentation with the help of TLR and its
adaptor MyD88 (25). It is critical for achieving successful
therapeutic outcome of CTX (25). Similarly, another
experiment demonstrates that the colonization of Barnesiella
intestinihominis in the colon is able to modulate tumor
FIGURE 1 | The direct influence of microbiota on chemotherapy: drug pharmacokinetics and ROS production. By several mechanism pathways, the gut microbiota
can directly act on the drug conversion and gene transcription, leading to an either enhanced therapeutic effect or enhanced side effect.
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microenvironment, promoting Interferon-g (IFN-g) production
and reducing Treg cells (38). In this research, the immunogenic
microbiota is referred to as “oncomicrobiotics”, cooperating
with CTX against many types of cancers by unknown
mechanisms (38).

Gut Microbiota Induces Chemoresistance
Resistance and heterogeneous responses to chemotherapeutic
drugs are a major challenge in cancer treatment (39). Currently,
researchers have identified several different intrinsic cellular
mechanisms involved in chemotherapeutic resistance, and the
microbiota-induced drug resistance has gradually received
attention in recent years.

Based upon the fact that in recurrent CRC patients the
microbiota Fusobacterium nucleatum (Fn) is especially
enriched (40), it is found that this microbiota phyla is able to
induce chemoresistance in a FadA-dependent manner: the
oncogenic and inflammatory pathway are stimulated by the
binding of FadA and E-cadherin and the downstream b-
catenin signaling, which further elevated the expression of
transcription factors and genes including oncogenes and Wnt,
resulting in increased inflammation and tumor cell growth (41).
This study pointed to the potential role of Fn in chemoresistance,
indicating that the colonization of specific phyla of microbiota
could be a general characteristic of cancer patients.

In addition to utilizing the signaling pathways of the host, the
gut microbiota could also induce chemoresistance by inactivating
the chemotherapy drug. For example, Gammaproteobacteria is a
microbiota species especially abundant in the duodenum, and
could convert the chemotherapy drug gemcitabine (a
chemotherapy drug used to treat cancers of pancreatic, lung,
breast or bladder) to its inactive metabolite by expressing a long
isoform of the enzyme cytidine deaminase (CDDL), contributing to
the drug resistance.

Altogether, these research findings underline the importance
of gut microbiota in the development of chemoresistance, which
may provide an alternative target to deal with this obstacle.

Microbiota and Immunotherapy
Immunotherapy is a promising therapeutic method for cancer
treatment, acting on cancer types which develop resistance to
conventional anti-cancer therapies (6). It targets cancer cells with
the aid of host immune system, and has already proved to be
effective in many clinical trials (42). The first attempt of cancer
immunotherapy dates back to 1890s when Coley developed the
first cancer vaccine, and the approval of the first immune
checkpoint inhibitor in 2011 represents a new era of anti-cancer
treatment (43). The recent decades witnessed a surge in exploring
various methods for anti-cancer immunotherapy. Some of the
promising immunotherapy methods include adoptive T cell
transfer (i.e., transferring cytotoxic T cells which are tumor-
specific to patients), CpG-oligodeoxynucleotide (i.e., a TLR9
agonist, containing unmethylated CG dinucleotide and has
immune stimulation similar to bacterial DNA, which triggers
the body’s defense mechanism and causes obvious and
diversified immune response through a series of signal cascade
transduction), immune checkpoint inhibitors (i.e., antibodies that
Frontiers in Oncology | www.frontiersin.org 5
target immune checkpoints to prevent tumor cells from escaping
antitumor immunity, which has proved to be effective in advanced
andmetastatic cancer) (6). The US Food and Drug Administration
has approved three immune checkpoint inhibitors: cytotoxic T
lymphocyte-associated antigen-4 monoclonal antibody (CTLA-4),
programmed cell death protein-1 (PD-1), and programmed cell
death-ligand 1 (PD-L1) (44). Though they act via different
mechanisms, the rationale is the same: to block the protective
signaling pathway of Tregs hijacked by tumor cells, and reactivate
the suppressed immune effectors. This can further restore the
immune responses against cancerous cells when T cells are
exhausted by the chronic activation of tumor antigen, achieving
a better therapeutic outcome (45). As the gut process a great
number of innate and adaptive immune cells, the interactions
between immune cells and the commensal gut microbes could
contribute to a robust immune response which protect the body
from pathogens (46).

Gut Microbiota Influences the Immune System
and Immunotherapy
In general, the impact of gut microbiota on the immune system
can be involved in all anticancer therapies. The effects can be
local, which is restricted to the gut mucosa, or can be systemic,
which is due to primed dendritic cell that travel through
circulation system (47). The local tolerance is mediated by the
induction of Tregs via several signaling pathways, including
interleukin 10 (IL-10), polysaccharide A and TLR (47). Short
chain fatty acids (SCFAs) produced by microbiota are also able to
affect local immunity via IgA, contributing to an enhanced
immunity (48). In contrast to the local effect, the distant effects
of gut microbiota on immunity requires another mechanism
named “cancer-immunity cycle” model, which depends on the
tumor antigen-activated T cells for recognizing and killing tumor
cells (49).

There are also associations between specific strains of gut
microbiota and the development of immune cells. Segmented
filamentous bacterium (SFB) can induce CD4+ T helper cell fate
as well as an increased resistance against Citrobacter rodentium
(50), and Clostridium strain contributes to the differentiation of
CD4+ T regulatory cells (51). Similarly, dendritic cells can also be
regulated by gut microbiota, through the process of cytokine
secretion, antigen presentation and T cell activation (52).

In addition to the impact on host’s original immune
responses, it is also suggested that the composition of intestinal
microbiota may influence the response of severa l
immunotherapies such as immune checkpoint inhibitors (52,
53). Previous studies have indicated that the anti-CTLA activity
is related to Bacteroides, while the effect of anti-PD-L1 is
Bifidobacterium-dependent (54). The anti-CTLA therapy could
not exert its function in germ-free mice or mice treated with
antibiotics, but this situation could be improved by orally feeding
the mice with Bacteroides thetaiotaomicron, Bacterooides fragilis
or Burkholderia cepacia to induce dendritic cell and IL-12-
dependent Th1 cell responses. One of the mechanisms that
contribute to restoration of anti-CTLA activity is that Bf could
utilize the TLR2/TLR4 signaling pathways to activate
immunoprotection. The distribution of Bf on the intestinal
April 2021 | Volume 11 | Article 644454
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mucosa is also responsible for the microbiota-dependent
immunomodulatory effects of CTLA-4 antibody (53). In 2019,
11 strains of bacteria isolated in the gut of human were shown to
possess the ability to facilitate immune checkpoint inhibitors by
inducing IFN-g+ CD8+ T cells, which strains include
Parabacteroides spp., Alistipes senegalensis, five Bacteroides
spp., Eubacterium limosum, Ruminococcaceae bacterium cv2,
Phascolarctobacterium faecium and Fusobacterium ulcerans
(55). Collectively, these research findings suggest that the
immunostimulatory function of immunotherapy is strongly
microbiota dependent.

The Immunotherapy Affects Gut Microbiota
From another point of view, the immunotherapy can in turn
alter the composition of gut microbiota. The anti-CTLA-4
treatment is able to induce decrease in Bacteroidales and
Burkholderiales and increase in Clostridiales, whereas the
amount of Bacteroides fragilis is relatively unchanged (6).
Similarly, in a study using anti-PD-1 to treat patients with
melanoma, the abundant of different strains of gut microbiota
was altered after the therapy, with an increase in Clostridiales/
Ruminococcaceae in responders and an increase in Bacteroidales
in non-responders (56). Other immunotherapy methods like
allogeneic stem cell transplant (allo-HSCT) can also alter the
abundance of Enterococcus, Streptococcus and Proteobacteria
(57). As a result, the altered composition of gut microbiota
caused by the exposure to immunotherapy can induce a
negative impact on the effectiveness of further treatment,
including colitis, thyroid dysfunction and even autoimmune
disease in which the enteric bacteria become the target of host
antibodies (53).

Microbiota and Surgery
For solid cancers, especially in the situations which the tumor is
in the early stage or with no metastasis, performing surgery to
remove the neoplasm lesion can be an effective treatment (58). In
these cases, the potential influence of intestinal microbiota on
surgical outcomes is possibly due to the direct interaction
between intestinal microbiota and the site of resection. This
association has been demonstrated mostly in CRC. Although the
therapy for CRC is usually multidisciplinary, the major surgical
treatment for non-metastatic or locally advanced rectal cancer is
total mesorectal excision (TME) (59). The research findings have
shown that after surgery, the amount of some obligate anaerobes
which are responsible for gastrointestinal homeostasis such as
Clostridium coccoides, C. leptum, B. fragilis, Bifidobacterium,
Atopobium and Prevotella are reduced, together with an
increase in pathogens including the Facultative anaerobes,
Enterobacteriaceae , Enterococcus , Staphylococcus and
Pseudomonas (60). In turn, this disturbed gut microbiota
community could affect the outcome of the therapy,
responsible for an increased recurrence rate and a decreased
disease-free survival (60).

In addition to dysbiosis, anastomotic leak (AL) is also a most
common life-threatening complication after CRC. Despite
improvements in perioperative medical care, the AL rate has
remained between 1% and 19% over the past few decades (61, 62)
Frontiers in Oncology | www.frontiersin.org 6
while little is known about the microbial characteristics and
mechanisms associated with AL. Then in 2013, Stern et al. first
demonstrated that harmful intestinal factors (such as bacteria)
may invade the intestinal tissue when the epithelial barrier is
impaired, which may delay the healing of the anastomosis and
lead to AL (63). This suggests that anastomotic healing after
colorectal surgery is greatly depend on the restoration of
epithelial barrier integrity. Recently, van Praagh et al.
employed 16S MiSeq sequencing on colorectal anastomosis
tissue samples and reported that AL development was
associated with a low microbial diversity, which was
characterized by a high abundance of the dominant
Lachnospiraceae and Bacteroidaceae families and a low
abundance of Prevotella oralis (64). Collectively, these
experimental phenomena shed light on the importance of gut
microbiota manipulation during post-operative care, suggesting
that it is the part that should not be ignored.

Microbiota and Radiotherapy
Radiotherapy is a commonly used anticancer therapy using
ionizing irritation to generate reactive chemical species such as
ROS or reactive nitrogen (RNS). It directly induces DNA
damage, including single-strand breaks and double-strand
breaks, through energy transfer (6, 65–67). Radiotherapy is
also commonly associated with immunogenic process, as it can
induce immunogenic cell death (ICD) which evokes subsequent
immune responses by antigen presenting cells and cytotoxic T
cells. The close association of radiotherapy and immunotherapy
allows radiotherapy to not only deal with local lesions, but also
have a systemic effect for treating distant malignancies via
migrating DC and cytotoxic T cells, known as abscopal effect.
Therefore, radiotherapy and immunotherapy are often
combined to achieve a better efficacy (67).

The side effects induced by total body irritation (TBI) mainly
result from the fact that radiotherapy could affect tumor cells and
surrounding normal cells alike. Inflammation is a common
consequence of radiation irritation not only due to weakened
immune system, but also caused by altered gut microbiota. The
reduced integrity of gut epithelium leads to microbiota
translocation to mesenteric lymph nodes, together with an
increased lipopolysaccharide (LPS) derived by microbiota (68).
Similarly, the radiotherapy used for treating head and neck
cancer such as nasopharyngeal carcinoma can lead to oral
mucositis, compromising the anticancer therapy (69). On the
other hand, several studies have also proved that radiation
irritation is able to induce reduction in microbiota diversity
(70–72). In a pilot study of three pediatric cancer patients with
pelvic rhabdomyosarcoma, the radiotherapy and antibiotic
treatment caused a decreased abundant of Firmicutes and
increased Proteobacteria (73).Compared to the healthy controls
and the patients who didn’t undergo microbiota change after
radiotherapy, the patients with dysbiosis are prone to develop
pathologic conditions like diarrhea (72), inflammatory bowel
disease (IBD) and type 2 diabetes (T2D) (70). Moreover, the gut
microbiota could also affect the therapeutic effects of
radiotherapy. A preclinical study revealed the presence of gut
microbiota is responsible for increased radio-sensitivity of the
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intestinal endothelium, showing that the production of
angiopoietin type 4 in germ free mice model could lead to
reduced endothelial cell apoptosis and lymphocyte infiltration
(74, 75). Further explorations are promising for discovering the
mechanisms and potential therapeutic modulation of gut
microbiota on the therapeutic effects of ionizing radiation.
MANIPULATING GUT MICROBIOTA TO
ACHIEVE BETTER THERAPEUTIC
EFFICACY

There are lines of evidence implicating that different patients
respond differently to anticancer therapy. The reasons are
concluded as different host genes, different tumor mutations,
different environmental factors, and to some extent the different
gut microbiota composition (52). Therefore, the manipulation of
gut microbiota could be an effective method to improve the
efficacy of conventional anticancer therapy.

Probiotics
According to the research findings discussed in previous
sections, those mechanism pathways could be considered in
combination therapy for cancer treatment. On the one hand,
reducing the amount of genus that could impair the efficacy of
anticancer therapy, for example providing antibiotics to target
the strains that could induce resistance, is a goal of microbiota-
targeted combination therapy. On the other hand, as dysbiosis is
one of the side effects brought by anticancer therapy, targeting
the abnormal microbiota profile by providing patients with
beneficial bacterial strains can also effectively reestablish the
microbiota community, and further restore the abilities of
microbiota involved in drug-microbiota interaction (76, 77).

Given these notions, the use of probiotics has become a
significant research field. Probiotics refer to the live bacterial
species introduced into human body, exerting their beneficial
effects by reestablishing the normal microbiota community (78).
Much attention has been paid to the effect of probiotics on tumor-
treatment-related toxicity (79) and its potential in improving the
efficiency of cancer treatment (80). According to research findings,
the preoperative administration of probiotics, prebiotics and
synbiotics (the combination of probiotics and prebiotics)
effectively attenuates the post-operational infection, with a
reduced inflammation, morbidity and hospital stay (81, 82).
This is achieved by modulating the composition of microbiota
and improve the intestinal barrier (82). Additionally, the use of
probiotic nutrition strategies has also been proved to be effective
against radiotherapy-induced side effects through enhancing
immune response, including the administration of probiotic
Bifico against chemoradiotherapy-induced oral mucositis (69)
and the use of “designer probiotics” in CRC and breast cancer
(47). Notably, there is emerging evidence suggesting that the
administration of specific bacteria strains, such as Lactobacillus
spp. and Bifidobacteriales, is associated with better anticancer
efficacy. A recent clinical trial showed that providing probiotics
containing Lactobacillus and Bifidobacteria to post-operative CRC
Frontiers in Oncology | www.frontiersin.org 7
patients for six mouths effectively reduced the expression of many
pro-inflammatory cytokines, including TNF-a, IL-6, IL-10 and IL-
12, but the level of IFN-g is relatively unchanged (83). In mice with
adverse intestinal microbiota, oral probiotics containing
Bifidobacterium could restore the anti-tumor effect of PD-L1
blockade, mainly by promoting the maturation of dendritic cells
so as to improve the activity of tumor-specific CD8+ T cells (52).
Similarly, the decreased Firmicutes/Baxteroides ratio also leads to
a decreased tumorigenic outcome (84).

Looking into the mechanisms, it is found that Bifidobacteria
could act on the host immune system through the IFN-g pathway
(52). By treating the mice with probiotic Bifidobacteria, the
number of major histocompatibility complex-II (MHC-II)
dendritic cells within the tumor were elevated due to the
secreted costimulatory molecules (85), together with the tumor
specific T cells, both in periphery and in tumor. On the other
hand, Bifidobacterium spp. can activate the transcription of up to
760 genes in tumor-infiltrating dendritic cells which are related
to antitumor responses, such as Cd70 and Icam1 gene for CD8+

T cell activation, Relb for dendritic cell maturation, and Rab27a
for antigen processing and cross presentation (52).

In addition to the direct interaction of bacteria and immune
system, the probiotics can also exert its function by secreting
several probiotic-derived molecules. The effector molecules that
have been shown to be associated with anticancer property are
competence and sporulation factor (CSF), inorganic
polyphosphates, ferrichrome, and some other peptides such as
P75 and P40 (86). These secreting molecules can act through
different mechanisms and pathways. CSF is a type of quorum-
sensing pentapeptide, and is able to induce the upregulation of
heat shock proteins (Hsps). This further activates epithelial cell
survival pathway of protein kinase B/Akt and p38 MAP kinase by
organic cation transporter 2 (OCTN2). The inorganic
polyphosphate can also induce Hsps expression and act on the
integrin b1-p38 MAPK pathway, and the peptides P75 and P40 is
associated with the activation of Akt cell survival pathway. The
molecule ferrichrome, derived from probiotic Lactobacillus casei,
can selectively act on colon cancer cells to induce the cleaving of
Caspase-3 and PARP and activate the apoptosis pathway through
DDIT3-JNK signaling-mediated ER stress response pathway, with
a therapeutic effect even better than cisplatin and 5-FU (86).

Fecal Microbiota Transplantation (FMT)
The concept of fecal microbiota transplantation (FMT) was
initially established for treating Clostridium difficile infection
(CDI). In 1958, Eiseman and colleagues first described this
therapeutic method for presumed severe CDI in a case series,
which is to transplant functional microbiota from healthy
individuals into the gastrointestinal tract of patients to rebuild
the normally functioning intestinal microbiota (87, 88). It was not
until 2012 that FMT was first linked to cancer treatment by
Neemann et al., and in this case by performing FMT, a patient
with acute lymphocytic leukemia (ALL) successfully recovered
from severe CDI induced by the immunocompromised condition
after allogeneic hematopoietic stem cell transplant (89). Later, this
therapy was put into practice in the treatment of many other
hematological malignancies, in which immunocompromised
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condition and dysbiosis often occurred as a post-transplantation
complication, leading to C. difficile overgrowth and symptoms like
diarrhea, abdominal pain and hematochezia (90, 91). Clinical trials
of the use of FMT in the treatment of cancer patients are still in
their early stages, but has proved its effect on many types of
complications during anticancer treatment, including CDI that are
resistant to traditional therapies (92), graft-versus-host disease
after allogeneic stem cell transplantation (93), inflammatory bowel
disease (94) and active ulcerative colitis (95). However, in some
cases post‐FMT complications such as bacteremia may occur (91),
and the mechanism is still unclear. Further studies are required to
identify the risk factors for FMT and improve the safety.

Dietary Factors
Short Chain Fatty Acids (SCFA)
Dietary factors have been considered to play a vital role in
human health and disease for centuries. Over the last decade,
there have been increasing interests in the research on the
interplay between diet and the gut microbiota, and it is now
widely accepted that gut microbiota can be shaped by dietary
factors, leading to enriched beneficial microbiota strains and the
production of SCFA. Generally, SCFA has an anti-inflammatory
and anti-tumorigenic effect, but there are also exceptions in
which specific SCFA could induce different outcomes. For
example, being the focus of many studies, the butyrate, one of
the SCFA, has a tumor suppressing effect (96), while acetate is a
metabolite that has shown to be potentially oncogenic.

Being one of the dietary factors, dietary fibers have shown to
effectively prevent CRC with an anti-inflammatory property due
to its effect of maintaining the amount of microbiota that produce
butyrate (47, 97). Another dietary factor is resistant starch, also a
contributing factor of decreased risk of CRC and colitis. It can be
converted to SCFA by fermentation in the large intestine, and can
lead to reduction in gene expression associated with immune
responses and inflammatory conditions including cyclooxygenase
2 (COX-2), NF-kB, IL-1b and TNF-a, having an anti-tumorigenic
effect by either activating the expression of G-protein coupled
receptor 43 (GPR43) which induces anti-inflammatory property,
or inhibiting histone deacetylase (97). In addition, it can inhibit
the cell proliferation by inhibiting the translocation of b-catenin
from the membrane into the nucleus, preventing the downstream
expression of growth factors related to cell growth (97). These
findings have strong implications in searching an alternative
approach to shape gut microbiota with dietary factors, which
can be easily controlled by patients even in everyday life.

Vitamin D
Previous studies have demonstrated that vitamin D has an
important immunomodulatory function. Several immune cells
(such as T cells, B cells, neutrophils and APCs) express vitamin D
receptor, allowing vitamin D to regulate the balance between
pro-inflammatory and anti-inflammatory state (98). It can also
mediate the antimicrobial peptide (CAMP) expression
downstream of TLR activation, leading to phagosome
formation and antimicrobial activity against pathogens (98).

In addition, vitamin D has shown to be effective against
complications caused by radiotherapy via restoring the
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population of gut microbiota and reducing the number of
opportunistic pathogens (99). In induced colitis, the vitamin D
deficient mice have the characteristics of a reduced antimicrobial
activity of angiogenin-4 protein (Ang4) (100).The relationships
among vitamin D, gut microbiota and radiation-induced
resistance were described as a “love-hate triangle”, indicating
that these three factors could interact with each other during the
process of the anticancer therapy (99). However, further studies
a r e s t i l l n e e d e d f o r t h e und e r s t a nd i n g o f t h e
molecular mechanisms.
CONCLUSIONS AND FUTURE
DIRECTIONS

As cancer is the leading cause of death worldwide, finding a cure
for this devastating disease has long been a challenge for the
research field. The current anticancer therapies mentioned above
have proved to be effective in providing curative or palliative
managements against cancer, but there are still several side
effects during this process, leading to reduced efficacy and
prognosis. Reports on the role of microbiota in cancer,
combined with preclinical and clinical research, have led to the
revelation of this topic as a potentially dominant mediator in
response to cancer treatment. With the rapid development of the
understanding of human gastrointestinal microbiota, there exists
a close symbiotic relationship between the gastrointestinal
microbiota and the host. In the context of many diseases of the
digestive system, the disturbance of the composition of the
gastrointestinal microbiota can be observed. Whether
gastrointestinal microbiota imbalance is the cause or outcome
of the disease, it may exacerbate the disease progression and
influence the associated treatment strategies. In addition, it is
demonstrated that the cancer treatment response can be
enhanced by modulating the intestinal microbiome such as
providing beneficial bacteria strains as probiotics or
preforming FMT, and future therapy could utilize these
methods to achieve a precise regulation of the microbiota
composition, such as the specific amount of a particular
microbiota genus. However, it is not clear which intestinal
microbiome composition is best suited to promote the anti-
tumor immune response, which needs to be carefully tested
through clinical trials. It is also necessary to find out other
important factors to modulate the intestinal microbiome, such as
adjustment of preparation before the use of antibiotics. Only by
fully understanding these mechanisms can we better optimize
the regulation of the intestinal microbiota, and improve the
potential for immune surveillance and cancer treatment.
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