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Despite the significant achievements in the diagnosis and treatment of metastatic

breast cancer (MBC), this condition remains substantially an incurable disease. In

recent years, several clinical studies have aimed to identify novel molecular targets,

therapeutic strategies, and predictive biomarkers to improve the outcome of women with

MBC. Overall, ∼40% of hormone receptor (HR)+/HER2− MBC cases harbor alterations

affecting the (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. This pathway

is a major target in oncogenesis, as it regulates growth, proliferation, cell survival,

and angiogenesis. Lately, the pharmacologic targeting of PIK3CA in HR+/HER2− MBC

has shown significant benefits after the occurrence of endocrine therapy resistance.

The orally available α-selective PIK3CA inhibitor, alpelisib, has been approved in this

setting. To perform an optimal patients’ selection for this drug, it is crucial to adopt a

tailored methodology. Clinically relevant PIK3CA alterations may be detected in several

biospecimens (e.g. tissue samples and liquid biopsy) using different techniques (e.g. real-

time PCR and next-generation sequencing). In this study, we provide an overview of the

role of PIK3CA in breast cancer and of the characterization of its mutational status for

appropriate clinical management.
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BACKGROUND

Clinical Scenario
Breast cancer is the most common form of tumor and is the
leading cause of cancer-related deaths in the female population
worldwide, with a continuous rise in numbers (1). Despite
advancements in the treatment of these patients, metastatic
breast cancer (MBC) substantially remains an incurable disease
(2). Difficulties related to the clinical management of these
patients include prolongation of overall survival (OS), control
of increasingly severe symptoms, and preservation of the health-
related quality of life (3, 4). The currently available therapeutic
options for MBC are chemotherapy, endocrine therapy (ET),
targeted therapies, and immunotherapy (5). Regrettably, the
median OS of MBC has steadily been ∼3 years, with a 5-year
survival rate of <26% (6).

Two-thirds of breast cancer cases express hormone receptors
(HR) and lack HER2 overexpression and/or amplification (7, 8).
For these patients, ET is the foremost medical treatment (9). The
combination of ET with cyclin-dependent kinases (CDK)4/6
inhibitors (i.e., abemaciclib, palbociclib, and ribociclib)
demonstrated significant survival benefits and is now considered
the gold standard for HR+/HER2− MBC (10, 11). A significant
percentage of patients, however, eventually develop ET resistance
due to several mechanisms, including the dysregulation of
phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of
rapamycin (mTOR) signaling (12). Approximately 40% of
HR+/HER2− MBC cases show hyperactivation of this pathway,
which has now become a therapeutic target for the treatment of
breast cancer (13).

Targeting the PI3K Pathway in HR+/HER2–

Advanced Breast Cancer
In the past decade, several translational research studies and
clinical trials aimed to define the efficacy of targeting the PI3K
pathway in breast cancer. However, the development of PI3K
inhibitors has been historically troubled by toxicity, suboptimal
activity, and the lack of reliable diagnostic strategies for an
accurate selection of candidate patients (14). In the BOLERO-2
landmark study, the combination of ET with themTOR inhibitor,
everolimus, has been evaluated in postmenopausal women with
ET-refractory HR+/HER2− MBC (15). In phase III clinical trial,
724 patients who have progressed after ET with aromatase
inhibitors (AIs) were randomized to receive either exemestane
plus everolimus or placebo plus exemestane. The study met
its primary endpoint by showing a significant progression-free
survival (PFS) benefit for the everolimus arm (HR 0.43; 95%
CI: 0.35–0.54; p < 0.001), with an assessment from a local
investigator. The blinded independent central review revealed a
median PFS of 10.6 months in the experimental arm against a
median PFS of 4.1 months in the control arm (HR 0.36; 95% CI:
0.27–0.47; p< 0.001). TheOSwas similar in both groups (median
of 31 months in the everolimus group vs. 26.6 months in the
placebo group, HR 0.89; 95% CI: 0.73–1.10; p= 0.14) (16). Given
the substantial benefits observed, everolimus is now approved
for use in HR+/HER2− MBC upon progression after AI therapy;
however, no predictive biomarkers are available to date.

Buparlisib is a pan-PI3K inhibitor that has been evaluated
in the BELLE-2 study as monotherapy or has been used in
combination with ET and/or anti-HER2 therapy or cytotoxics in
PIK3CA-mutant breast cancer cases (17). Despite the very low
activity/toxicity ratio of this combination for the integration of
buparlisib in clinical practice, the results of the BELLE-2 trial
suggested that PI3K inhibition along with ET might provide
clinically meaningful benefits to postmenopausal women with
ET-resistant, HR+/HER2− MBC harboring PIK3CA mutations
(18). Thereafter, targeting the PI3K/Akt/mTOR axis with more
specific inhibitors has become the subject of great scientific
efforts (19).

The orally available α-selective PIK3CA inhibitor, alpelisib,
was the first PI3Kα inhibitor to demonstrate improvement in PFS
in HR+/HER2− MBC cases with activating PIK3CA mutations
(20). The SOLAR-1 trial included patients who were resistant
to ET, with disease recurrence/progression on or after prior AI
therapy (21). That study had two cohorts based on the PIK3CA
mutational status. In each cohort, patients were randomized to
receive alpelisib plus fulvestrant or placebo plus fulvestrant at
the ratio of 1:1. The primary endpoint of the trial was PFS in
the PIK3CA-mutated cohort. With a median follow-up of 20
months, the median PFS for the PIK3CA-mutated cohort was
almost double with the addition of alpelisib (11.0 vs. 5.7 months,
HR 0.65; 95% CI: 0.50–0.85; p < 0.001). Significant benefits
were also demonstrated in terms of the overall response rate
(26.6% [95% CI: 20.1–34.0] vs. 12.8% [95% CI: 8.2–18.7]) and the
clinical benefit rate (61.5% [95% CI: 53.8–68.9] vs. 45.3% [95%
CI: 37.8–53.1]). The OS in the PIK3CA-mutant cohort was a key
secondary endpoint. In the final OS analysis for the PIK3CA-
mutated cohort, OS did not cross the pre-specified O’Brien-
Fleming efficacy boundary (one-sided p ≤ 0.0161), although
median OS was prolonged by a clinically relevant figure of
7.9 months for patients in the alpelisib plus fulvestrant arm;
no benefit was seen in the PIK3CA non-mutant cohort (22).
Additionally, α-selective mutant-degrading PI3K inhibitors (e.g.,
GDC-0077) are currently under investigation in breast cancer
(NCT03006172, NCT04191499).

BIOLOGY AND ACTIONABILITY OF
PIK3CA MUTATIONS

PI3K/Akt/mTOR Pathway Signaling in
Breast Cancer
Phosphatidylinositol-3 kinases are heterodimeric lipid kinases
characterized by regulatory (p85) and catalytic (p110) subunits,
with the former subunit inhibiting the latter in quiescent cells
(23). PI3Ks are involved in several cellular processes, such
as protein synthesis, cell proliferation and survival, glucose
homeostasis, and DNA repair (24, 25). The interaction of the
catalytic subunit with the phosphotyrosine residues of activated
growth factor receptors or adaptor proteins (e.g., RAS proteins)
is critical to elicit PI3K activation (26). As a consequence, the
membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2)
is converted to phosphatidylinositol-3,4,5-trisphosphate (PIP3)
(27). PIP3 directly activates Akt and other proteins harboring
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the PIP3-binding pleckstrin-homology (PH) domains (12, 28).
Upon complete activation, Akt induces multiple downstream
cytosolic and nuclear effectors. This mechanism, considered as
the “core” of cell survival and cell cycle progression, is turned
off by several phosphatases (PTEN, TSC1, TSC2, and LKB1) that
dephosphorylate mTORC1 and PIP3 (29–31) (Figure 1).

Three classes of PI3Ks enzyme isoforms can be distinguished
based on their coding genes, chemical structures, and substrate
specificity/preferences (23). Mutations involving class IA genes,
namely the PIK3CA alpha isoform which encodes p110α, are
frequently associated with cancer development, progression,
and drug resistance in many types of solid tumors, including
HR+/HER2− breast cancer (32–36). Thus, in May 2019, the
U.S. Food and Drug Administration (FDA) approved a α-
selective PIK3CA inhibitor, alpelisib (BYL719; Novartis Pharma
AG), in combination with fulvestrant for the treatment of
postmenopausal patients diagnosed with HR+/HER2− PIK3CA-
mutated, advanced breast cancer or MBC, following the
progression on or after an endocrine-based regimen (37, 38).
Several other compounds with selective activity against different
PI3K isoforms (α, β, γ, and δ) or acting as pan-PI3K inhibitors
(on all class I isoforms) have also been investigated. However,
their clinical value in terms of effectiveness and toxicity profile
remains controversial (39). Of note are the mutations in the
PI3K regulatory subunit 1 (PIK3R1), which inhibits the α subunit,
that can be observed in ∼3% of patients with breast cancer
(39, 40).

Different aberrations in the PI3K signaling pathway, such as
PI3K mutation/amplification, loss/mutation of the phosphatase
and tensin homolog, Akt overexpression/overactivation,
and modulation of tuberous sclerosis protein 1 and 2
tumor suppressors, can be often observed in HR+ breast
cancers. Different PIK3CA mutations affecting multiple
domains of the protein have been shown in Figure 2 and
Supplementary Table 1. In patients with breast cancer, the
most common alterations clustered in the helical (exon 9 p.
E545K and p.E542K) or the kinase (exon 20 p.H1047R) domains
(41). Martínez-Sáez et al. confirmed the clustering, reporting
that the most common PIK3CA alterations (69% of the total
identified) affect exon 20 (p.H1047R in 35% and p.H1047L in
4% of patients) and exon 9 (p.E545K in 17% and p.E542K in
11% of patients) (42). All these alterations respond to alpelisib
(20, 38, 39, 42). The fifth most frequently identified alteration
was in exon 4 (p.N345K). Despite its likely pathogenicity, as
reported in the COSMIC and OncoKB databases (43, 44), only
pre-clinical studies have so far demonstrated the sensitivity
of this mutation to PI3K inhibitors (45, 46). Another relevant
PIK3CA alteration is the p.E726K substitution in exon 13,
accounting for about 2.5% of mutated cases (42). Despite a low
oncogenic activity per se, this mutation is frequently associated
with other pathogenic PIK3CA sequence alterations, amplifying
PI3K activity (47). Notably, although rare (0.7% of the analyzed
samples), the PIK3CA exon 20 p.G1049R mutation is likely
pathogenic, and pre-clinical models showed that this mutation,
similar to p.E542K, leads to an increased alpelisib sensitivity
(46). Similar sensitivity results, in pre-clinical studies, have
been obtained for the exon 9 p.Q546K (0.8%) alteration (48).

Finally, among other less frequent PIK3CA mutations, exon
7 p.C420R (1.9%), exon 9 p.Q546R (1.1%), p.E545A (0.5%),
and p.E545G (0.5%) demonstrated responsiveness to alpelisib
(21). It is worth mentioning that there is recent evidence to
demonstrate that double cis-regulatory PIK3CA mutations are
related to increased activation of the PI3K signaling compared to
single mutants (47). One of the possible biological mechanisms
underpinning this hyperactivation could be due to increased
membrane binding and p85α disinhibition. Interestingly, tumors
showing multiple PIK3CA mutations are markedly sensitive to
PI3Kα inhibitors (47).

Molecular Biology Techniques to Detect
PIK3CA Mutations
Direct Sequencing
Direct or Sanger sequencing is the gold standard for the
mutational assessment of different biomarkers due to its
reliability, availability, reagent affordability, and relatively low
costs. Despite these advantages, low sensitivity remains its main
limitation (49). Arsenic and colleagues compared the results
obtained by Sanger sequencing and next-generation sequencing
(NGS) for PIK3CA hotspot mutations in exons 9 and 20 in
184 breast cancer samples, reporting a concordance rate of
98.4% (n = 52 mutated cases) (50). The three mutated tumors
identified by NGS and missed by Sanger sequencing displayed
a low (i.e., <10%) allelic frequency. In another study, Sanger
sequencing showed a lower performance rate in the detection
of PIK3CA-mutated cases compared to multiplex PCR-mass
spectroscopy (concordance rate 69%, 35/51 detected cases) and
locked nucleic acid (LNA)-PCR (concordance rate 64%, 36/55
detected cases) (51).

Real-Time PCR
Real-time PCR (RT-PCR) is widely used to identify mutations in
known genomic regions (52). Alvarez-Garcia et al. (53) proposed
a simple, fast, and inexpensive diagnostic tool to determine
the PIK3CA mutational status in patients with breast cancer
based on the standard SYBR Green RT-PCR approach. Their
findings support the use of RT-PCR to detect PIK3CA exon
20 p.H1047R and exon 9 p.E545K hotspot mutations with
sensitivities of 5 and 10%, respectively. In the study performing
46 formalin-fixed and paraffin-embedded breast carcinoma
specimens, Lambert et al. (54) compared three different RT-
PCR approaches, namely the cobas R© PIK3CA Mutation Test
(Roche Diagnostics, Meylan, France), the PCR amplification-
refractory mutation system (ARMS) Scorpion, and the High-
Resolution Melting (HRM) PCR assay. Overall, 38% (n =

17), 28% (n = 13), and 41% (n = 19) of the tested samples
showed a PIK3CA mutation with cobas R©, ARMS, and HRM
assays, respectively. The highest concordance rate was observed
between cobas R© and HRM [k = 0.95 (0.86; 1)], followed by
cobas R© and ARMS [k = 0.75 (0.55; 0.95)] and HRM and
ARMS [k = 0.72 (0.51; 0.92)] (54). In a retrospective series,
Harlè et al. (55) analyzed 102 breast cancer samples using
both HRM and ARMS-PCR for PIK3CA exon 9 and exon
20 mutations. Taken together, 27.5 and 22.5% of PIK3CA
substitutions were reported with PCR-HRM and PCR-ARMS,
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FIGURE 1 | Schematic representation of the PI3K/Akt/mTOR signaling and its main components. The PI3K pathway regulates diverse cellular processes, including

protein synthesis, cell survival, proliferation, glucose metabolism, apoptosis, DNA repair, and genome stability. Akt-mediated phosphorylation inhibits the activity of the

TSC1–TSC2 complex, also known as hamartin-tuberin. This is a critical step for the negative regulation of mTORC1, whose activity controls anabolic processes.

Another important downregulation of Akt phosphorylation is toward BAD, while MDM2 activity is enhanced, promoting the degradation of the tumor-suppressor p53,

which also plays a part in the P300-mediated cell apoptosis. Cell cycle regulation occurs through the stimulation of cyclins A and D and the inhibition of GSK3. The

latter event is also responsible for increased glucose metabolism. PTEN is intimately involved in the regulation of these mechanisms through its substrate PIP3.

Notably, the activity of PTEN in the cell nucleus that leads to cell survival control is related to the upregulation of key mediators, such as RAD51, CDNPC, and P300.

RTK, receptor tyrosine kinase; CKR, chemokine receptor; GPCR, G protein-coupled receptor; IRS-1, insulin receptor substrate 1; PI3K, phosphatidylinositol-3 kinase;

JAK1, Janus kinase 1; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1; TSC, tuberous sclerosis complex;

mTORC1, mammalian target of rapamycin complex 1; MDM2, mouse double minute 2 homolog; BAD, BCL2 associated agonist of cell death; GSK3, glycogen

synthase kinase-3; CDK2, cyclin-dependent kinase 2; CDNPC, centromere protein C.

respectively. Based on these results, we proposed a combined
approach with PCR-HRM and PCR-ARMS to better cope with
the cost of routine PIK3CA mutation identification for invasive
breast cancer. In line with these findings, a PIK3CA mutation
rate of 33.4% has been reported by Cizkova et al. (56) using
RT-PCR for exons 9 and 20. In a large, unselected cohort of
1,281 female patients with HR+ MBC, Chan et al. (57) adopted
the FDA-cleared RT-PCR test (therascreen R© PIK3CA RGQ PCR
Kit [QIAGEN GmbH, Hilden, Germany]) that covers eleven
mutations (exon 7 p.C420R; exon 9 p.E542K, p.E545A, p.E545D,
p.E545G, p.E545K, p.Q546E, p.Q546R; and exon 20 p.H1047L,
p.H1047R, p.H1047Y) in the PIK3CA gene, reporting a 37.5%
mutation rate. The same technical approach was also employed
in a large analysis by Martínez-Sáez et al. (42) that correctly

detected the majority (72%) of the PIK3CA mutations of the
analyzed samples.

Next-Generation Sequencing
The massively parallel sequencing technology, also referred to
as NGS, has revolutionized the clinical management of patients
with cancer (58). Despite different platforms being commercially
available, the NGS workflow follows the same four sequential
phases (i.e., library generation, clonal amplification, massively
parallel sequencing, and data analysis) (59). Hempel et al. (13)
adopted a broad NGS panel to analyze 41 MBC samples and
detected PIK3CAmutations in 34% (n= 14) of them. In another
study including patients with ET-resistant (n = 15) and ET-
sensitive (n = 9) breast cancer cases, the same authors were able
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FIGURE 2 | Type of mutations, frequency, and affected PIK3CA domains across breast cancers from The Cancer Genome Atlas (TCGA) Network and selected solid

tumors from the Catalog Of Somatic Mutations In Cancer (COSMIC) datasets, including the mutations and exons covered by the FDA-approved the RT-PCR test. The

tumor types included in this analysis are non-small cell lung cancer (i.e., squamous cell and adenocarcinoma), esophageal cancer, stomach cancer, colorectal cancer,

cholangiocarcinoma, pancreatic cancer, liver cancer, bladder cancer, prostate adenocarcinoma, uterine cancer (i.e., endometrioid, serous, and carcinosarcoma),

ovarian cancer, and invasive breast cancer. The types of mutations and their likely pathogenicity are color-coded based on the legend at the bottom.

to identify PIK3CA alterations in 55% (n = 8) and 33% (n = 3)
of the cases, respectively (60). Specifically, ET-resistant tumors
displayed three pathogenic variants in the kinase domain, three
pathogenic variants in the helical domain, and two variants of
unknown significance, whereas ET-sensitive tumors presented
two pathogenic variants in the kinase domain and one pathogenic
variant in the helical domain. In a recent SAFIR02 study, 22%
of the total population and 28% of patients with HR+ breast
cancer featured a PIK3CA mutation (61). Using a broad NGS
panel targeting 1,021 genes on 193 MBC samples, Tang et al.
(62) detected 36 (18.7%) mutations in the kinase domain and
26 (13.5%) substitutions in the helical domain with 10 (5.2%)
additional alterations distributed in the remaining PIK3CA
sequence. One of the main advantages of NGS is that it allows for
the identification of multiple mutations simultaneously, avoiding
the need to perform sequential individual tests.

Analysis of Liquid Biopsy Samples
Liquid biopsy using blood components to assess PIK3CA
mutations in circulating tumor DNA (ctDNA) of patients with
breast cancer has been reported by different studies (39). Multiple
technologies have been employed to assess breast cancer ctDNA
with high sensitivity and specificity, leading to assays that have
been useful in clinical trials and are entering clinical practice
(63). Using an ARMS allele-specific PCR and Scorpion probes,
Board et al. (64) were able to detect PIK3CA mutations in the
vast majority (80%) of ctDNA samples from PIK3CA-mutated
MBC but not in early breast cancer. Digital droplet PCR has been
proposed as a more sensitive approach in the non-metastatic
setting (65). The secondary endpoint in the SOLAR-1 study
was to assess PFS according to the level of ctDNA (21). This
trial confirmed that treatment with alpelisib and fulvestrant
provided an extension of PFS for patients with PIK3CA-mutated

disease based on ctDNA analysis. In particular, there was a
45% reduction of risk in PFS for patients with ctDNA PIK3CA
mutations (HR 0.55; 95% CI: 0.39–0.79; n = 186) and a 20%
reduction of risk in PFS for those without the mutations (HR
0.80; 95% CI: 0.60–1.06; n = 363). The increased magnitude of
the PFS benefit for the alpelisib plus fulvestrant arm compared
to the placebo plus fulvestrant arm was maintained at subgroup
analyses, further highlighting the clinical value of liquid biopsy
(66). Comparative analysis of PIK3CA mutations from tissue
and plasma obtained from three phase III clinical trials, each
utilizing different testing methods, showed concordance rates of
70–83%, while in the BOLERO2 study, a higher concordance
was observed for metastatic lesions (82%). PIK3CA mutations
were more frequently detected in tissue samples than in liquid
biopsies in both studies. Circulating tumor cells (CTC) have
been also investigated as a possible source of biologic materials
for the detection of PIK3CA mutations. An ultra-sensitive
(0.05%) combination of allele-specific, asymmetric rapid PCR
andmelting analysis to detect hotspot mutations (exons 9 and 20)
has been applied on the CTC of patients with breast cancer (67).
In the present study, we were able to detect PIK3CA mutations
in 35.1% (20/57) and 19.5% (23/118) of MBC and early breast
cancers, respectively. Notably, no false-positive results were
reported in healthy donors. Unsurprisingly, CTCs were isolated
with a higher frequency in the metastatic setting, where the
presence of PIK3CA mutations correlated with a worse outcome
(67). A more recent study showed a comparison between
ctDNA and CTC analysis for PIK3CA molecular assessment
(68). By using the same ultra-sensitive approach, they observed
a superior concordance rate among the two methodologies
in MBC.

Taken together, these data show that the technology of
liquid biopsy for ctDNA analysis has been successfully used
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FIGURE 3 | Hierarchy diagram portraying the annotation and clinical actionability of PIK3CA mutations in ER+/HER2− metastatic breast cancer. The connecting lines

indicate the relationship between them.

FIGURE 4 | Strengths and limitations of the different methods to characterize PIK3CA mutational status in breast cancer, according to the sample type. The level of

caution for each method is reported on the right, where the green light represents to proceed, the amber light represents warning on possible fails or false-negative

results, and the red light represents discouraging the use of the technology in that setting. NGS, next-generation sequencing.

in patients with breast cancer to identify PIK3CA alterations
without additional invasive testing. The main advantages of this
procedure compared to conventional tissue biopsy are the non-
invasive nature and repeatability. These allow for a timely follow-
up, potentially overcoming spatial and temporal heterogeneity
of tumor (63). On the other hand, a major limitation of this
approach is the lower concentration of tumor-derived DNA
compared to traditional tissue specimens. For this reason, careful
attention should be paid to the technology chosen for liquid
biopsy molecular analyses (69).

CONCLUSION

PIK3CAmutations are highly represented in ER+/HER2− breast
cancer and are of clinical interest due to the availability
of targeted therapy with alpelisib in the metastatic setting
(Figure 3). From the diagnostic perspective, it is crucial to adopt
a tailored methodology to cover all of the clinically relevant
gene alterations in the different clinical settings (Figure 4). The
versatility and efficiency of RT-PCR, coupled with its cost-
effectiveness, sensitivity, and specificity, facilitate the adoption of
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this technology in virtually all molecular pathology laboratory
settings. Furthermore, this approach provides results in ultra-
fast time, as the average duration of the reaction is between
30min and 2 h. Although RT-PCR has several advantages over
direct sequencing, the technology has also intrinsic limitations,
including its limited multiplexing capability. Another important
limitation of RT-PCR is the lack of kits and standardized
protocols to detect all possible PIK3CA alterations (Figure 2).
Furthermore, the vast majority of commercially available
kits, including the FDA-approved RT-PCR test for PIK3CA
mutational analysis, do not provide quantitative information
about mutant allele frequency. On the other hand, NGS panels
allow covering several different alterations simultaneously, even
starting from low input of DNA, and provide information
on the fraction of alleles carrying the mutation. Although the
approximate costs of this technology, which requires specialized
centers with highly trained personnel, are relatively high, the
optimization of the laboratory workflow and volumes allows for a
favorable cost-benefit ratio. Although tissue samples remain the
most suitable material to be tested, other sources of DNA (i.e.,
liquid biopsies) may be used to analyze clinically relevant gene
alterations. The latter may be particularly valuable whenever the
tissue material is not available or is inaccessible. On the other
hand, clinicians should be fully aware of the indications and
limitations of this type of analysis in breast cancer. It is important
to remark that in case of a negative result in the ctDNA analysis,
a second liquid biopsy or, if feasible, a tissue biopsy should be
analyzed to avoid false-negative results. Finally, though tissue
samples from initial diagnosis are a reliable source for PIK3CA

testing, it is generally preferable (if clinically feasible) to run the

test on a biopsy of the metastatic site, as this may best reflect the
actual genomic profile of the disease.
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