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Objective: To explore a CT-based radiomics model for preoperative prediction of

event-free survival (EFS) in patients with hepatoblastoma and to compare its performance

with that of a clinicopathologic model.

Patients and Methods: Eighty-eight patients with histologically confirmed

hepatoblastoma (mean age: 2.28 ± 2.72 years) were recruited from two institutions

between 2002 and 2019 for this retrospective study. They were divided into a training

cohort (65 patients from institution A) and a validation cohort (23 patients from institution

B). Radiomics features were extracted manually from pretreatment CT images in

the portal venous (PV) phase. The least absolute shrinkage and selection operator

(LASSO) Cox regression model was applied to construct a “radiomics signature” and

radiomics score (Rad-score) for EFS prediction. Then, a nomogram incorporating the

Rad-score, updated staging system, and significant variables of clinicopathologic risk

(age, alpha-fetoprotein (AFP) level, histology subtype, tumor diameter) as the radiomic

model, clinicopathologic model, and combined clinicopathologic-radiomic model were

built for EFS estimation in the training cohort, the performance of which was assessed

in an external-validation cohort with respect to clinical usefulness, discrimination, and

calibration.

Results: Nine survival-relevant features were selected for a radiomics signature and

Rad-score building. Multivariable analysis revealed that histology subtype (P = 0.01), PV

(P = 0.001) invasion, and metastasis (P = 0.047) were independent risk factors of EFS.

Patients were divided into low- and high-risk groups based on the Rad-score with a cutoff

of 0.08 according to survival outcome. The radiomics signature-incorporated nomogram

showed good performance (P < 0.001) for EFS estimation (C-Index: 0.810; 95% CI:

0.738–0.882), which was comparable with that of the clinicopathological model for EFS

estimation (C-Index: 0.81 vs. 0.85). The radiomics-based nomogram failed to show

incremental prognostic value compared with that using the clinicopathologic model.

The combined model (radiomics signature plus clinicopathologic parameters) showed

significant improvement in the discriminatory accuracy, along with good calibration and
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greater net clinical benefit, of EFS (C-Index: 0.88; 95% CI: 0.829–0.933).

Conclusion: The radiomics signature can be used as a prognostic indicator for

EFS in patients with hepatoblastoma. A combination of the radiomics signature and

clinicopathologic risk factors showed better performance in terms of EFS prediction in

patients with hepatoblastoma, which enabled precise clinical decision-making.

Keywords: pediatric, hepatoblastoma, computer tomography imaging, prognosis, radiomics, nomogram

INTRODUCTION

Hepatoblastoma (HB) is the primary hepatic malignancy that
occurs in childhood worldwide. With the prevalence of HB
being on the rise, an annual incidence of 1.5 cases/million
people has been documented (1, 2). Complete resection of the
liver is the first-line treatment for early-stage HB with localized
lesions (3–5). However, a considerable proportion of patients
with unresectable advanced-stage HB requires preoperative
chemotherapy (3). The survival outcomes of pediatric patients
with HB have improved substantially over recent decades,
primarily due to developments in surgical methods and therapy
intensification (3, 6). Nevertheless, the optimal combination
strategy of chemotherapy and surgery and the increased risk
of toxicities from cumulative chemotherapy have not been
addressed (7, 8). Thus, therapy should be based on the
identification of patients at high risk of a poor outcome in HB.

In recent decades, several prognostic and risk factors of HB
have been reported (9–13). Several prospective studies have
been conducted by four major research teams: the Children’s
Oncology Group (COG); the International Childhood Liver
Tumors Strategy Group (SIOPEL); the Japanese Study Group
for Pediatric Liver Tumors (JPLT); and the German Society
for Pediatric Oncology and Hematology (GPOH). These
teams have developed risk-stratified stratagems to improve

survival outcomes (14). One remarkable achievement was
the Pretreatment Extension of Disease (PRETEXT) system

introduced by SIOPEL, which is used widely for the preoperative

diagnosis of HB based on imaging assessment (15). However,
each study has used different risk-stratification strategies, which

yielded dissimilar outcome predictions. In 2018, a final, uniform,
global hepatoblastoma stratification (HS) system was established
by the Children’s Hepatic tumors International Collaboration
(CHIC) based on pooled trial data from cooperative groups
(1,605 patients from JPLT, GPOH, COG, and SIOPEL). The
system refined the individual prognostic variables with age
and the PRETEXT stage, together with annotation factors,
alpha-fetoprotein (AFP) concentration, metastases, and tumor
resectability (4). Gradually, patients with HB benefitted from
better stratification to select the most appropriate therapeutic
option. Notwithstanding this accomplishment, this risk-
stratification model was neither finalized with regard to the
histology type nor adapted to the treatment response, as it
was somewhat complex in terms of clinical utility in smaller
patient cohorts (4, 10, 11, 16). Meanwhile, preoperative
PRETEXT has moderate accuracy with a tendency of over-
staging, and its diagnostic accuracy is dependent upon imaging

technology/equipment to some extent (4, 17). The creation of a
feasible, simple, and practical prognostic stratification model to
identify risks in patients with HB remains a major challenge.

Medical imaging is vital in clinical management to aid
in decision-making and guide “individualized” treatment (18).
Over recent years, rapid advances in “big data” and artificial
intelligence have led to breakthroughs in “data mining” during
analyses of medical images. These advances have created the
field of “radiomics,” which has allowed the prediction of clinical
endpoints in various types of cancer (19–23). A nomogram
model incorporating radiomics features and clinicopathologic
factors seems to improve the prognostic accuracy (24, 25).
Taking into consideration the heterogeneity of HB is crucial for
risk stratification and the prognosis (16). Also, the limitation
of histology samples means that the full information about
a histological type within a tumor is lacking, which can
compromise management (26). Also, patients with an identical
PRETEXT stage can show variations in recurrence and survival
outcomes (27). These observations demonstrate that the current
staging system for HB does not provide adequate prognostic
information about the biological heterogeneity of HB. In
this regard, radiomics (i.e., characterizing tumor phenotypes
by extracting information about the biological processes of
tumors from medical images) could facilitate the prediction of
tumor progression.

We have no evidence of obtaining a “radiomics signature” to
predict the survival outcome of HB. We developed a predictive
model comprising radiomics based on CT-derived images and
clinical features to forecast event-free survival (EFS) in patients
with HB and to assess its additional value to the staging system.

MATERIALS AND METHODS

Ethical Approval of the Study Protocol
The protocol for this retrospective multicenter study was
approved by the Ethics Committee of the West China Second
University Hospital within Sichuan University (Sichuan, China).
The requirement for written informed consent was waived.

Inclusion Criteria
The criteria for study inclusion were as follows: (i) age<18 years;
(ii) histopathologic diagnosis of HB; (iii) preoperative CT of the
abdomen and imaging of sufficient quality for analyses; and (iv)
complete medical records with data on the surgical procedure
and follow-up.
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Patients
The database of our institution was used to collect medical
records from January 2009 to August 2019. The internal training
cohort comprised 65 patients with HB confirmed by histology
who underwent hepatectomy or needle biopsy at the West China
Second University Hospital. The data for the external validation
cohort were from 23 consecutive patients from the West China
Second University Hospital of Sichuan University between
January 2012 and December 2019 with identical enrolment
criteria. In total, 88 patients were enrolled (57 males and 31
females; mean age, 2.28 ± 2.72 years; age range, 0.1–12.9 years)
in the present study. Clinicopathologic data were recorded for
each patient. Surgical excisions or tumor-biopsy samples were
reviewed by a very experienced pathologist to assess the histology
subtype of the tumor. Histopathology confirmation was done
with a surgical specimen in 68 patients and with core-needle
biopsy in 20 patients.

Clinical information (sex, age, tumor diameter, AFP
concentration, clinical stage, surgical notes, treatment regimen,
chemotherapy, survival at the time of final follow-up, CT-
reported imaging features) at baseline was documented.
Tumor stage and preoperative risk assessment were reclassified
according to the CHIC- Hepatoblastoma Stratification (HS) and
the 2017 PRETEXT systems (4, 13).

Follow-Up
Event-free survival was the primary endpoint in this study (28).
EFS is defined as the period from the date of CT examination
to the date of the first relapse, of development of a second
malignancy, of disease progression, of death, or of final follow-
up, as appropriate (4). The minimum duration of follow-up for
EFS was 10 months. The maximum duration of follow-up was
143 (median, 27) months. CT scan of the chest and abdomen
was done every 2 months in the first year, every 3 months in the
second year, and every 6 months in the third year after surgery,
and was also done annually; this strategy was in line with the
follow-up procedure of West China Second University Hospital.

CT Image Acquisition and Feature Analysis
Contrast-enhanced CT of the abdomen was conducted <7
days before surgery. The data of CT images were obtained
using two multidetector-row CT systems (NeuViz 128, Neusoft,
Beijing, China; Discovery CT750HD,GEHealthcare, Piscataway,
NJ, USA) at two institutions. The detailed imaging protocol
is described in Supplementary Material I. The morphologic
characteristics of HB lesions on CT images were documented
as CT-reported features for the possible prognostic factors of
EFS. These factors were the diameter, location, morphology
(round/lobulated vs. irregular), margin (well-circumscribed
vs. ill-defined), and density modification (homogeneous vs.
heterogeneous) of the tumor, as well as the presence of
hemorrhage, cystic/necrotic components and calcifications,
capsular retraction, tumor vessels, perihepatic effusion, collateral
veins, and vascular invasion. Distant metastasis in remote organs
was also recorded. In addition, an imaging-based 2017 PRETEXT
staging system and related annotation factors were applied for
the grouping of tumor extent and analyses of image features (4).

The factors were vascular involvement (V, hepatic vein/inferior
vena cava; P, portal vein), multifocality (F), tumor rupture (R),
extrahepatic tumor extension (E), the involvement of the caudate
lobe (C), lymph-nodemetastases (N), and distantmetastases (M).
CT scans of the chest and MRI of the brain were done in all
patients to investigate distant metastases before treatment.

Collection of Clinicopathologic Risk
Factors
We collected the clinicopathologic characteristics recognized as
being significant risk factors according to the risk stratification
for HB set by CHIC-HS (15). That is, the risk stratification
of patients was classified into three groups (very low risk/low
risk; intermediate risk; high risk), and the age was divided into
three groups (≤2, 3–7, and ≥8 years). Groups for the serum
AFP concentration (≤100, 101–1,000, and >1,000 ng/ml) were
not included in the analyses because the AFP concentration
was much more than 100 ng/ml for most patients and only
three patients had an AFP concentration in the range of 101–
1,000 ng/ml. We combined the very-low-risk group and the
low-risk group into one group because of the identical EFS in
these two groups. In addition, a combined factor of VPEFR was
identified as positive (VPEFR+) if one of the V, P, E, F, or R
factors, as described by CHIC-HS, were present (4). The 2014
International Consensus Histology Classification for HB (29) was
used for the reallocation of histology subtypes for patients in
our study.

Analyses of Radiomics Features Based on
CT
Tumor segmentation and extraction of radiomics features were
carried out on the Radcloud platform 3.1.0 (http://radcloud.
cn/; Huiying Medical Technology, Beijing, China). CT scans
were done at different centers. Hence, the corresponding
image preprocessing along with filtering of image data for
normalization of CT images was undertaken to obtain more
robust radiomics features (Supplementary Material II). To
segment the volume of interest (VoI) of tumors for further
analyses, two radiologists (JY and CY, with 8 and 12 years
of experience in the interpretation of abdominal CT images
in children, respectively) delineated the region of interest
(RoI) manually (30) along the contour of the lesion in
layers on the portal venous (PV)-phase image in a blinded
manner. All depicted RoIs were delineated strictly using
identical criteria and validated visually by the same expert
(JY). The “pyradiomics” package within Python 3.8.1 (https://
pyradiomics.readthedocs.io/) was employed to extract 1,409
quantitative imaging features from images of the PV-phase
on CT. The detailed information of radiomics features are
depicted in Supplementary Material III. All radiomics features
were complied with definitions as delineated by the Imaging
Biomarker Standardization Initiative (30).
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FIGURE 1 | Radiomics framework of predicting the EFS of patients with hepatoblastoma.

Feature Selection and Building of a
Prediction Model
The least absolute shrinkage and selection operator (LASSO)
Cox regression model was adopted to reduce the redundancy
of high-dimensional features and to select the most useful
prognostic features correlated to EFS. Then, the radiomics score
(“Rad-score”) based on a selected radiomics signature was built
using a Cox regression model for predicting the risk of disease
progression in the training cohort. In addition to the radiomics
model, independent prognostic factors were selected gradually
by univariate and multivariate Cox regression analyses carried
out in the training cohort to form a clinicopathologic model and
an incorporated clinicopathologic-Rad-score (CR)model for EFS
prediction. Then, a nomogram was created for the visualization
of EFS prediction.

Survival Analysis Based on the Radiomics
Signature
The difference in EFS between the Rad-score and
clinicopathological risk-factor groups was analyzed using
the Kaplan–Meier survival curves and the log-rank test in the
training cohort. Then, the result was applied to the validation
cohort. Meanwhile, the radiomics signature was used to divide
patients of the training cohort into low- and high-risk groups
based on the optimal Rad-score cutoff point (which was
identified in log-rank statistics), and verification was done in the
validation cohort.

Evaluation of the Model Using a Radiomics
Signature
The prediction performance of our model was evaluated
according to discrimination, calibration, and clinical usefulness.
The discrimination performance was quantified using Harrell’s
Concordance Index (C-Index). A C-Index of ∼0.7 indicates
a good predictive value. Calibration was explored based on
consistency between estimated 3-year survival and actual 3-year

survival in the corresponding calibration curves in the training
and validation cohorts. Analyses of decision curves denoted
clinical usefulness based on the net benefit of the model across
different threshold probabilities. The study workflow, comprising
of image collection, lesion segmentation, extraction of radiomics
features, feature selection, construction of models in the training
cohort, and evaluation of the performance of prediction models
in the test cohort, is elaborated in Figure 1.

Statistical Analysis
Normalization of features, selection of features, and
model construction were undertaken using Python 3.8.1
(www.python.org/). The “scikit-learn” (https://scikit-learn.
org/), “pyradiomics” (https://pyradiomics.readthedocs.io/), and
“matplotlib” (https://matplotlib.org/) packages were applied.
Other statistical analyses were accomplished with SPSS 26.0
(IBM, Armonk, NY, USA) and R 4.0.3 (www.R-project.org/).
P < 0.05 was considered significant. EFS was analyzed by
the Kaplan–Meier method. The log-rank test was employed
to compare the outcome between patients with different risk
factors. Characteristics at baseline in the training and validation
cohorts were assessed by an independent-sample t-test, the two-
tailed χ

2-test, or the Fisher’s exact test as appropriate. Univariate
and multivariate Cox regression analyses were undertaken to
screen for the significant predictors of EFS. Factors with p <

0.10 in the univariable analysis were provided as input to the
multivariable analysis. The variable risk was denoted as a hazard
ratio (HR) with a corresponding 95% confidence interval (CI).

RESULTS

Patient Characteristics at Baseline
The characteristics of the patients at baseline in the training and
validation cohorts are detailed in Table 1. Of the 88 patients
included in this study at final follow-up, the mean duration of
follow-up was 42.43 months and the median duration of EFS
was 19 months. The shortest duration of EFS was 1 month. The
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TABLE 1 | Baseline patient and tumor characteristics according to the radiomics score in the training and validation cohorts.

Characteristic Category Training Validation P-value

Number of patients 65 23

Age at initial diagnosis (years) Mean age (y) 2.99 ± 2.44 3.09 ± 3.32 0.407

≤2 53 (81.5%) 13 (56.5%)

3–7 8 (12.3%) 8 (34.7%)

≥8 4 (6.1%) 2 (8.6%)

Sex 0.648

Male 43 (14%) 14 (60.8%)

Female 22 (33.8%) 9 (39.1%)

Serum AFP concentration, ng/mL 0.395

≤100 0 0

101–1,000 2 (3%) 1 (4.3%)

>1,000 63 (96.9%) 22 (95.6%)

Histological subtype 0.903

Fetal 23 (35.3%) 7 (30.4%)

Embryonal 2 (3%) 1 (4.3%)

Epithelial mixed 16 (24.6%) 5 (21.7%)

Mixed epithelial/mesenchymal 24 (36.9%) 10 (43.4%)

PRETEXT group 0.196

I 9 (13.8%) 7 (30.4%)

II 31 (47.6%) 9 (39.1%)

III 14 (21.5%) 4 (17.3%)

IV 11 (16.9%) 3 (13.0%)

Annotation factors

V (HV or IVC involvement) Yes 12 (18.4%) 1 (4.3%) 0.101

P (PV involvement) Yes 17 (26.1%) 2 (8.6%) 0.08

E (extrahepatic tumor extension) Yes 2 (3%) 2 (8.6%)

F (multifocality) Yes 17 (26.1%) 4 (17.3%) 0.397

R (tumor rupture) Yes 3 (4.6%) 2 (8.6%) 0.468

C (caudate involvement) Yes 9 (13.8%) 2 (8.6%) 0.073

N (lymph node metastasis) Yes 6 (9.2%) 1 (4.3%) 0.457

M (distant metastasis) Yes 10 (15.3%) 4 (17.3%) 0.662

One or more of V, P, E, F, R Yes 26 (40%) 6 (26%) 0.233

CHIC-HS risk stratification 0.615

Very low/low 35 (53.8) 15 (65.2%)

Intermediate 13 (20%) 3 (13.0%)

High 17 (26.1%) 5 (21.7%)

Number of deaths 17 (26.1%) 5 (21.7%) 0.674

Follow-up time (month) Median 30 27 0.391

Maximum 143 97

EFS Median (month) 19 20 0.569

Event 27 (41.5%) 7 (30%) 0.347

No event 38 (58.4%) 16 (69.5%)

Preoperative chemotherapy 13 (20%) 5 (21.7%)

Surgical resection 46 (70%) 15 (65.2%)

Orthotopic liver transplantation 1 0

Resection of pulmonary metastases 1 0

AFP, alpha-fetoprotein; PRETEXT, 2017 PRE-Treatment EXTent of tumor; HV, hepatic vein; IVC, inferior vena cava; PV, portal vein; CHIC-HS, Children’s Hepatic tumors International

Collaboration-Hepatoblastoma Stratification; EFS, event-free survival.
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TABLE 2 | Univariate and multivariate analysis of event-free survival for patients in training cohort.

Variables Univariate Multivariate

HR (95% CI) P HR (95% CI) P

CHIC-HS risk stratification 0.005 2.07 (0.759–5.640) 0.026

Very low/low 1.000 (Reference) 0.004 NA

Intermediate 1.856 (0.543–6.341) 0.023 NA

High 5.437 (1.870–12.551) 0.011 NA

PRETEST group 1.007 (1.335–4.841) 0.003 2.542 (1.335–4.841) 0.004

Histological subtype <0.001 0.010

Fetal 1.000 (Reference) 1.000 (Reference)

Embryonal 2.124 (0.027–0.576) 0.008 1.364 (1.075–1.731)

Epithelial mixed 2.234 (0.046–0.698) 0.002 2.459 (0.370–16.344)

Mixed epithelial/mesenchymal 4.492 (0.151–1.603) 0.019 3.354 (1.524–27.434)

M (distant metastasis) 5.387 (2.131–13.620) <0.01 0.150 (0.023–0.977) 0.047

F (multifocality) 4.527 (1.828–11.209) 0.001 NA

P (PV involvement) 5.404 (2.167–13.474) 0.002 7.43 (2.134–25.911) 0.001

R (tumor rupture) 4.681 (1.071–10.465) 0.009 NA

VPERF+ 4.559 (1.726–12.040) 0.002 0.09 (0.010–0.967)

Tumor vessel 2.503 (1.012–6.190) 0.040 NA

Effusion 2.776 (1.112–6.927) 0.029 NA

Radiomics signature 3.009 (1.963–4.613) 0.006 5.138 (1.268–16.495) 0.024

HR, hazard ratio; CI, confidence interval; CHIC-HS, Children’s Hepatic tumors International Collaboration-Hepatoblastoma systems; PV, portal vein; CHIC-HS, Children’s Hepatic tumors

International Collaboration-Hepatoblastoma Stratification; EFS, event-free survival.

percentage of EFS at 5 years was 73.8% in the training cohort and
78.3% in the validation cohort. Thirty-four events were observed
for the EFS calculation: 29 patients had disease progression,
17 patients relapsed, and 16 died after surgery. Most patients
(85/88) had a serum AFP of >1,000 ng/ml. Only three patients
had a serum AFP level between 100 and 1,000 ng/ml. Of these
88 patients, 14 (16.6%) were diagnosed with distant metastasis
upon their first evaluation. Lung metastases were documented
in 13 patients, and one patient had mandibular-bone metastases.
The histology subtype was available for all patients. There was
no significant difference between the two cohorts with respect to
clinicopathologic characteristics or survival (P = 0.073–0.903).

The inter- and intra-observer reproducibility of extraction of
radiomic features were high. Therefore, all outcomes were based
on the measurements taken by the first radiologist (JY).

CT Features
The mean value for the maximum dimension of the tumor was
10.7 cm (range: 4.2–19). The tumors had delineated boundaries
(41/88, 46.6%), capsules (79/88, 89.8%), collateral circulation
(17/88, 19.3%), bleeding (17/88, 19.3%), and vessels (35/88,
39.8%), and some tumors were heterogeneous (79/88, 89.8%)
at presentation. Also, 21/88 (23.9%) tumors were multifocal,
whereas 21/88 (23.9%) had perihepatic effusion. Cystic/necrotic
components were present in 83/88 (94.362%) tumors, and
calcifications were present in 39/88 (44.3%) lesions. The
calcifications were punctate, coarse, or speckled. The capsular
retraction was noted in 67/88 (76.1%) of tumors.

Collection of Clinicopathologic Prognostic
Factors
The identified significant association factors for EFS were
determined by univariable and multivariable logistic regression
analysis. We found that CHIC-HS risk stratification; PRETEXT
grade; histology subtype; the PRETEXT annotation factors, M
and P; and VPERF+ were independent of clinical prognostic risk
factors (Table 2). Multivariable Cox proportional hazard analysis
showed that the PRETEXT annotation factor P was the strongest
predictor (HR, 7.43; 95% CI: 2.134–25.911; P = 0.001). The
histology subtype showed a similar significance in predicting EFS
(HR, 1.364; 95% CI: 1.075–1.731; P = 0.010) whereas distant
metastasis showed borderline significance for EFS prediction
(HR, 0.150; 95% CI: 0.023–0.977; P = 0.047).

Construction of a Rad-Score Based on a
Radiomics Signature
Nine potential survival-related radiomics features from 92
significant features (p < 0.05) were documented. The nine
features, namely, “TotalEnergy,” “LowGrayLevelZoneEmpha
sis,” “GrayLevelNonUniformity,” “LowGrayLevelZoneEmph
asis,” “SmallAreaLowGrayLevelEmphasis,” “LowGrayLevelZon
eEmphasis,” “ZoneEntropy,” “SizeZoneNonUniformityNormal
ized,” and “RunLengthNonUniformity,” were identified in the
training cohort for the construction of a radiomics model and the
calculation of Rad-score by the LASSO Cox regression analysis
(Supplementary Table 1). The HR for the Rad-score was 3.009
(95% CI: 1.963–4.613) in the training cohort. According to
the distribution of the Rad-score, we classified patients further
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FIGURE 2 | Kaplan-Meier survival analysis of event-free survival of patients with HB. Graphs show results of Kaplan-Meier survival analyses according to the

radiomics score cutoff value (A) for patients in the training data set (B) and those in the validation data set (C). A significant association of the radiomics score with the

EFS was shown in the training data set, which was then confirmed in the validation data set.

into low-risk (Rad-score <0.08) and high-risk (Rad-score
>0.08) groups using an optimal cutoff of 0.08 (Figure 2A).
Survival analyses revealed a significant difference between
these two risk-stratification groups (P < 0.001) in the training
and validation cohorts (Figures 2B,C). Furthermore, survival
analyses applied in all clinicopathologic subgroups (CHIC-HS,
histology subtype, M, P, F, VPERF) demonstrated that these
risk factors were significant for disease procession (p < 0.01)
(Supplementary Figure 1).

Performance of the Radiomics Nomogram
Compared With the Clinical–Pathological
Nomogram in Predicting EFS
Based on the multivariate Cox regression analysis, three
nomograms that incorporated the Rad-score and independent
clinicopathologic factors and CR were generated (Figure 3).
The radiomics nomogram exhibited good discrimination
performance (C-Index: 0.810; 95% CI: 0.738–0.882) in the
validation cohort, which was comparable with clinicopathologic
factors (C-Index: 0.855; 95% CI: 0.790–0.920) without
improvement in performance in EFS estimation. The combined
model with Rad-score and clinicopathological factors achieved
a significant incremental value (C-Index: 0.881; 95% CI: 0.829–
0.933) for the accuracy of prognosis relative to the radiomics
signature alone and the clinicopathologic factors alone. The
estimates of the C-Index, of concordance probability, and of the
Akaike information criterion (AIC) for the different prediction
models are listed in Table 3. Moreover, the calibration curve
indicated a satisfactory agreement between the outcome of
survival prediction and actual survival at 3-year follow-up in

the internal-validation cohort and external-validation cohort
(Figure 4).

Analyses of decision curves showed that the combined model
integrating the Rad-score and the clinicopathologic nomogram
obtained higher clinical utility relative to that obtained using the
radiomics signature alone or the clinicopathologic factors alone
(Figure 5).

DISCUSSION

Patients with advanced HB carry a substantial risk of local relapse
and distant metastasis even after resection. Indeed, only about
one-thirds of patients with HB have a resectable tumor at initial
presentation (2). Whether an optimal treatment regimen with
adjuvant chemotherapy and surgery provides survival benefit
is controversial and is largely dependent on the assessment of
prognostic risk.

We developed a quantitative radiomics approach with CT
for accurate pretreatment risk stratification in HB to assist in
decision-making for clinical treatment. A LASSO Cox-based
radiomics signature was demonstrated to be an independent
risk factor for EFS in patients with HB. A radiomics model
with specific radiomics features using pretreatment of CT-
enhanced images showed similar performance to that of a
postoperative clinicopathologic model for predicting EFS of
HB. The combination of a nomogram with the Rad-score
and clinicopathologic factors achieved better performance than
that using the radiomics nomogram and the clinicopathologic
nomogram for individualized EFS estimation. The result
supports another possibility of preoperative evaluation before
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FIGURE 3 | A prediction performance analysis with combined clinicopathologic-Rad-score of patients with HB. Significant codes: ***0; **0.001; *0.01; .0.05; ’ ’0.1; 1.

TABLE 3 | Models performance.

Model C-index (95% CI) Se (C-index) P-value AIC

Rad-score (1) 0.810 (0.738∼0.882) 0.037 0.256 (1,2) 162.650

Clinicopathological (2) 0.855 (0.790∼0.920) 0.033 0.211 (2,3) 154.446

Clinicopathological+Rad-score (3) 0.881 (0.829∼0.933) 0.026 0.006 (1,3) 149.025

surgical pathology when Evans’ surgical staging is used based
on exploratory surgery for patients with HB (9). In addition,
the patients were categorized into low- and high-risk groups
by using the multiple feature-based Rad-score with significant
differences in EFS, which would be an important supplement to
the present PRETEXT and CHIC-HS systems for the evaluation
of clinical risk factors. We investigated, for the first time, the use
of radiomics features using quantitative CT images to predict
disease progression in pediatric patients with HB.

In recent years, much attention has been paid to developing
high-throughput screening to extract many quantitative features
in medical imaging to assist the clinical diagnosis. Also, the
radiomics signature has been shown to be validated robustly,
be cost-effective, and be powerfully predictive of survival from
solid tumors in several studies (18–22, 24, 25, 31–34). The
selected radiomics signature provides a non-invasive, simple,
and reproducible method for acquiring phenotypic information,
which is not available using conventional imaging and which
can be employed to predict survival outcomes. Reviews by

scholars have suggested that intratumoral heterogeneity could
be demonstrated by radiomics, which would imply a worse
prognosis with relapse and metastasis (35, 36). A quantitative
radiomics analysis by Aerts and colleagues revealed the radiomics
signature and the interpretation of intratumor heterogeneity
associated with the underlying gene expression (37). In the
present study, the features of conventional CT images were
extracted, and the analysis of dimensionality reduction was
carried out by a LASSO regression algorithm to select the
features that could best reflect the different components in HB.
The LASSO approach was able to acquire all features with
non-zero coefficients, which enhanced the interpretation and
prediction accuracy of the model. The subset of the selected
optimal features contained several first-order statistics features
(which reflect the internal voxel intensity of lesions) and texture
features (which reflect the gray-distribution characteristics in
dimensional space and suggest the heterogeneity composition
or distribution of lesions in the dimensional space). However,
interpretation of the complex associations between radiomics
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FIGURE 4 | Calibration curves for each model in the internal validation (A) and external validation (B) set.

FIGURE 5 | Decision curve analysis for each model between the observed 1-, 3-, and 5-year outcomes.

features and biological processes in a tumor remains a challenge
(38). Besides, considering the complex intervention, multiple
interacting components, in the biological processes and the
nature of malignancy, it is hard to correlate a single radiomics-
based factor with a pathophysiological change in an intuitive
manner. Hence, the multiple features based on the radiomics
signature show significantly greater estimation outcome than that
of any selected feature alone. In the present study, nine features
of a radiomics signature in 88 patients achieved a favorable
performance for the assessment of survival fromHB. In addition,
the multiple-component radiomics signature from the training
cohort was externally validated in the test cohort using different
device brands and at different institutions, thereby illustrating the
repeatability and stability of this model.

In recent decades, an increasing number of studies focusing
on the association between several risk factors and HB survival
have been published (9–12). Although prognostic factors and

outcomes were stated, the studies failed to provide a new
prognostic model (2). The CHIC group developed unified risk
stratification for patients with HB. Several factors, namely AFP,
PRETEXT group, and PRETEXT annotation factors, were shown
to affect patient survival (4). However, the present CHIC-HS
system may be awkward to use in clinical practice because there
are many variables in its complex stratification system. Also, the
reasons for some factors eliciting a worse outcome (e.g., older
age) are not entirely clear. In addition, the prognostic importance
of pathological subtypes has not been included in study groups.
Some histology types have been associated with the prognosis in
clinical trials (9, 39). Hence, comparisons between any outcome
and prognostic factors between groups are challenging and
unreliable (13). In accordance with the CHIC-HS, we defined
identical risk factors in the present study as well as histology
types. Although histology subtypes were incomplete (small-
cell undifferentiated and macrotrabecular types were absent),
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the results are consistent with data from studies that reported
a better prognosis with a pure fetal well-differentiated type
and a worse prognosis with a non-pure fetal type (40). We
also investigated the performance of morphologic characteristics
using conventional imaging as a preoperative prognostic factor
for potential association with outcome of HB, as described in
an earlier study (17, 41). However, none of the morphologic
features on imaging were included in the regression models in
the present study; their prognostic value and the association with
EFS should be validated in additional studies. We incorporated
CHIC-HS-related risk factors and morphologic features into a
clinicopathologic model. We found that all variables remained
as predictors to identify an increased risk, except the PRETEXT
annotation factor E; these observations are in accordance with
the results of previous studies (4, 13). The multivariate Cox
regression analysis indicated that the PRETEXT annotation
factor, P, was the strongest negative independent prognostic
factor and that factor M showed borderline significance in our
cohort; these data are consistent with results from other similar
studies (27).

Nomograms have been developed for some cancers and
are accepted as reliable tools for the prediction of risk
for individuals (42, 43). Based on the abovementioned
risk factors, we incorporated the radiomics signature and
clinicopathologic characteristics to develop and validate a
radiomics–clinicopathologic nomogram to improve the accuracy
of prognosis prediction for patients with HB. Overall, the results
from the combined nomogram displayed more robust power for
predicting EFS in HB than that of the radiomics model alone
or the clinicopathologic model alone, with a higher C-index,
better calibration, and improvement in the net reclassification.
Furthermore, the decision curve analysis indicated the benefit of
using combined model beyond the clinical staging system across
the appropriate range of reasonable threshold probabilities.
This result suggested that the radiomics signature reinforced
the prognostic ability of the staging system, thereby adding
prognostic value to clinicopathologic risk factors. The concept
of this combination model has been described previously
(34, 44). However, the combination model mentioned earlier was
employed to facilitate personalized treatment for patients with
HB and provide pediatricians with a powerful tool for making
clinical decisions. The radiomics nomogram (which contained
the Rad-score) yielded a C-Index of 0.810 (95% CI: 0.738–0.882)
for EFS prediction in the validation cohort, and this C-Index was
similar to that of the clinicopathologic model. This observation
suggested that the Rad-score might contain clinical information
due to the extraction of high-dimensional features that can
capture prognostic information. Thus, the Rad-score could
be used as a surrogate biomarker to improve the prognostic
ability before treatment. In addition, the Rad-score could be
used to stratify patients into low- and high-risk groups. Patients
with higher Rad-scores had worse EFS, which suggested that
low-risk patients would receive radical hysterectomy. For the
high-risk group, intensive treatment could elicit greater survival
benefits. Thus, the Rad-score may be an efficient tool to enable
personalized treatment before surgery.

The present study had five main limitations. First, the sample
size was small (particularly the external-validation cohort).
Second, the study was retrospective. Third, missing information
and a small number of clinicopathologic factors [e.g., age
group (>8 years) or histology subtypes] may have led to a
performance bias. Fourth, the underlying connection between
the radiomics signature and biological information was not
investigated. Finally, delineation of RoIs was processed using a
manual method. The exploitation of auto-segmentation could be
an efficient and accuratemethod for lesion identification in future
radiomics research.

In conclusion, a radiomics signature can be used as a
biomarker for risk stratification in patients with HB. A
nomogram integrating the radiomics signature, the staging
system, and other clinicopathologic risk factors for EFS
estimation may be a valuable tool for guiding individual
pretreatment for patients with HB.
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