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The combination of immune therapy with radiation offers an exciting and promising
treatment modality in cancer therapy. It has been hypothesized that radiation induces
damage signals within the tumor, making it more detectable for the immune system. In
combination with inhibiting immune checkpoints an effective anti-tumor immune response
may be established. This inversion from tumor immune evasion raises numerous
questions to be solved to support an effective clinical implementation: These include
the optimum immune drug and radiation dose time courses, the amount of damage and
associated doses required to stimulate an immune response, and the impact of
lymphocyte status and dynamics. Biophysical modeling can offer unique insights,
providing quantitative information addressing these factors and highlighting
mechanisms of action. In this work we review the existing modeling approaches of
combined ‘radioimmune’ response, as well as associated fields of study. We propose
modeling attempts that appear relevant for an effective and predictive model. We
emphasize the importance of the time course of drug and dose delivery in view to
the time course of the triggered biological processes. Special attention is also paid to
the dose distribution to circulating blood lymphocytes and the effect this has on
immune competence.
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INTRODUCTION

Supporting immune therapy with radiotherapy is a promising approach in particular to tackle non
immunogenic tumors, where formation of distant metastases is one of the main reason for failure of
curative therapy (1–3). An important variant of immune therapy focuses on immune checkpoint
inhibitors, through appropriate antibodies, to reverse immune evasion within tumors. Radiation can
enhance this process if delivered in combination. We shall term such combination therapy
“radioimmunotherapy” (RIT) throughout this review article. The underlying paradigm is that the
radiation induced damage gives rise to the expression of immune stimulating damage markers such
as calreticulin, HMGB1 or ATP, or causes a release of interferon by pathways such as cGAS/STING
(4). These processes allow tumor cells to be recognized by their specific antigens and leads to
attraction of antigen presenting cells that initiate the activation of effector cells that can eventually
inactivate the tumor. The particular role of radiation is therefore thought to restore the visibility of
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the tumor to the immune system, while the immune therapy
antibodies efficiently attack the (now visible) tumor, as well as
metastases throughout the body. Indeed, an abscopal effect, i.e.
the shrinking or definite cure of metastatic lesions has been
observed in situations where immune therapy or radiation
therapy alone is likely to fail (5, 6).

The interplay of radiation with the immune system is
remarkably versatile and has been readily acknowledged as one
of the key aspects of radiation therapy (7): In RIT, radiation
offers a systemic therapeutic potential, while classical
radiotherapy acts targeted and restricted to the tumor region
only. The interaction of radiation induced damage with the
immune system is even visible when radiation alone is given:
On the one hand, even when given alone radiation at high doses
can act immunostimulating by supporting the activation of
antigen presenting cells (8) and by increasing T-cell infiltration
and the expression of MHC class 1 exploited for antigen
presentation (9). However, at the same time the radiation
action can suppress the immune system, e.g. by irradiation of
draining lymph nodes, inhibiting effector cell activation (10–12).
This eventually results in lymphopenia, which is known as a
common side effect of radiation therapy (13–17) and associated
with a worse prognosis. Likewise, radiation may cause
upregulation of immune checkpoints, paving the way for a
durable escape of the tumor from immune surveillance (18).
Hence, from a mechanistic point of view, it is not clear under
which circumstances radiation can really be supportive for
immune therapy, and quantification of processes and effects
are needed to approach this challenge.

Currently, RIT is used in several hundred clinical studies, and
more than 50 of those are already in phase 3 (9). The
investigations mostly focus on melanoma, non small cell lung
cancer, head and neck squamous cell carcinoma and breast
cancer. There are a number of FDA approved drugs that focus
on inhibiting the immune checkpoints relevant for the
lymphocyte activation (CTLA-4) and lymphocyte effects to the
tumor (PD-1 or PD-L1). Current clinical strategy is to convert
non-immunogenic ‘cold’ tumors into immunogenic, ‘hot’ ones,
which allow the infiltration and action of immune effector cells,
mostly CD8+ T-lymphocytes. Also here, the question for the
optimal therapeutic setting arises, and a quantification of the
optimum doses and schedules as well as of success rates are
urgently needed.

This challenge is approached by radiobiological modeling,
and the aim of the present work is to briefly review modeling
approaches associated with aspects of RIT as well as to show
potential future developments of this field of research. We
thereby also update recent review articles (19, 20) that are
partially concerned with the state of the art in modeling RIT
as well.
MODEL APPROACHES

In the context of RIT some modeling approaches have been
developed that either aim at simulating the outcome of such
therapy, or to model specific underlying processes that impose a
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rationale for RIT. In particular, five major model approaches
describe RIT using checkpoint blockers. Other models focus on
the immunomodulatory effect of either radiation or checkpoint
blockers alone, without considering their combination. A further
class of model simulates in detail pathway related aspects on the
way to establish the radioimmune response.

Models for Radioimmunotherapy
At present (February 2021) to the knowledge of the authors there
are only five consistent model approaches that attempt to
simulate the full course of RIT published in peer reviewed
journals. Typically, the models consist of a number of coupled
differential or difference equations, each of which describes the
dynamics of a key quantity such as the amount of lymphocytes or
tumor cells. They differ in mathematical structure, level of detail,
type of checkpoint blocker(s), and type of dose and
concentration response function. Table 1 gives an overview of
the present models.

To describe the effects of RIT, Serre et al published the first
encompassing model framework (21). In this pioneering work
the authors modeled the immune system by the amount of
effector cells, whose amount is determined by the expression
level of tumor antigens. While radiation causes the expression of
such antigens, aPD-1 is giving clearance for the effector cells to
shrink the tumor mass. The authors attributed the role of
aCTLA4 to the long term immune response, i.e. the memory
effect, while neglecting its role in fostering effector cell activation
even at early times after irradiation. Serre et al. formulated their
model as a set of coupled time dependent difference equations.
The dose of checkpoint blockers results in quite specifically
chosen nonlinear relationships into tumor cell removal, while
radiation is assumed to lead to tumor cell inactivation according
to the well accepted linear quadratic formalism. The synergism
between radiation and checkpoint blockers establishes via the
radiation stimulated antigen expression that promotes the
immune response, if checkpoints are blocked. Serre et al.
solved their set of equations numerically and could describe
nicely tumor growth curves of a preclinical experiment. In a later
publication (26) they added more dynamical information by
allowing time for the antigen release and immune response to
establish. As those time scales may interfere with radiation
TABLE 1 | Models for RIT and general properties.

Publication Blocked checkpoint(s) Number of interacting
quantities

Serre (21) PD-1, CTLA-4 3
Chakwizira (22) IDO (in context of

glioblastoma therapy)
3

Poleszczuk (23) Not specified, but applied
to CTLA-4

4

Kosinsky (24) PD-1 5
Byun (25) PD-1, PD-L1 4
March 2021 | Vo
The models address different checkpoint blockers, as given in the second column. They
establish the interactions of tumor cells, immune cells, and eventually signals such as
antigens via coupled dynamic equations, and the third column indicates the number of
these quantities and equations. As PD-1 and PD-L1 form an axis, models applicable to
PD-1 blocking are applicable to PD-L1 blocking as well.
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fractionation schemes they introduced the concept of
immunologically effective dose (IED), which is the counterpart
of the biologically effective dose (BED). BED and IED are the
total radiation doses that would be delivered in infinitely many
fractions to result in the same targeted and abscopal effect,
respectively, as for a regimen with a given fractionation scheme.

Chakwizira et al. (22) simplified Serre’s original model to
explain the immune response of radiation in combination with a
checkpoint blocker targeting IDO, which is used in the context of
treating glioblastoma. They only considered the short time
immune response and replaced the complicated response after
PD-1 checkpoint blocking in Serre’s model by a simplified dose
response to IDO blockers. They succeeded to reproduce with
their model experimentally determined survival times of rats
with glioblastoma for different radiation doses alone or in
combination with immune therapy. Using the model
prospectively they predicted that hypofractionation without
unusual long gaps (> 1d) maximizes the synergy between
radiation and immune therapy.

Poleszczuk et al. (23) developed a model approach including
simple, linear interaction terms reflecting immune cells affecting
the tumor. They also include a continuously time delayed
removal of tumor cells that are committed to death, and
distinguish between immunogenic or radiation induced death.
To simulate abscopal effects, they rely on their prior work for
effector cell motion, explaining variations in transport to distant
metastatic sites. Accelerated primary tumor growth appears in
favor of abscopal effects due to detraction of immune cells.
Interestingly, in that framework they predict a worse prognosis
for treating a primary tumor in case an abscopal tumor is
present, as the latter one would attract effector cells as well and
thus stands in competition with the primary one.

In the model presented by Kosinsky et al. (24) a logistic tumor
growth is modified by radiation essentially following the LQ
formalism and by the presence of T cells. Here, the latter is
amplified, triggered by cell death via an enhancement of the
immune activation rate that depends on the PD-1 checkpoint
blocker. While being similar to Serre’s model, this approach is
more versatile as both undifferentiated and differentiated T cell
compartments in the tumor microenvironment are simulated,
and there is an explicit dynamic formulation for the removal of
dying cells. However, this is established at the expense of
numerous parameters, which makes the model harder to
validate. Nevertheless, the authors managed to mostly reproduce
experimental findings in giving aPD-1 concomitantly or
subsequently to radiation therapy.

The model of Byun et al. (25) provides an explicit simulation
of both the PD-1 and the PD-L1 concentration, which mainly
determine the interaction between tumor cells and T cells. They
assume a decaying action strength of both radiation and
administered drugs, and consider the binding kinetics of
immune checkpoints, modified by checkpoint blocking
antibodies. Their model is benchmarked at hand of one rich
data set. The model properties are also investigated by a
sensitivity analysis and by systematically inspecting model
predictions depending on input parameters.
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Models for the Immune Response After
Either Irradiation or Checkpoint Blocking
Alone
In the literature also a number of models can be found that
consider the immunomodulatory action of radiation or of
checkpoint blockers alone, without considering their combined
action. Such a rather isolated consideration may be useful to
inspect the individual agent based effects before considering their
combination, which is expected to be more complicated due to
additional synergistic mechanisms. A selection of models is
compiled in Table 2 and summarized below.

Alfonso et al. (27) suggested a model for the immune
modulatory effect of fractionated radiation. It starts off from a
quite detailed model of tumor growth dynamics, accounting for
hypoxic avascular and potentially necrotic regions inside the
tumor. The level of available effector cells in the tumor
microenvironment is promoted by radiation, which is modeled
via a reaction kinetics approach. The degree of effector cell
infiltration is modeled empirically as well, and they account for
a delayed shrinking of the tumor mass after irradiation. Their
model suggests that the level of functional vascularization is an
important determinant for therapy design rather than tumor
size alone.

The work of Valentinuzzi (28) implemented Gompertzian
tumor growth model and explicitly simulated modes of
inhibition of the PD-1 – PD-L1 axis. They furthermore
distinguish between unaffected tumor cells and tumor cells that
are continuously being removed after immune cell attack.

Lai and Frieman (29) modeled the interaction of a tumor,
several types of immune cells, DAMP release and PD-1
checkpoint blockers on a quite detailed level, including active
transport and/or diffusion of these quantities. They also modeled
vaccinations with drugs promoting tumor infiltration of T cells,
and their model supports the belief that infiltration is a necessary
precondition for successful immunotherapy.

Milberg et al . (30) used a physiological ly based
pharmacokinetic model for deriving the impact of checkpoint
inhibition. They follow a quantitative systems pharmacology
approach, describing the dynamics of many involved
factors explicitly.

In the model of Radunskaya et al. (31) the authors
investigated the immune cell dynamics within the spleen, the
blood and the tumor. Modeling interaction between those
TABLE 2 | Selected models for immune response after radiation or immune
therapy with checkpoint blockers alone.

Publication Considered agent

Alfonso (27) radiation
Valentinuzzi (28) aPD-1, aPD-L1
Lai and Frieman (29) aPD-1
Milberg (30) aPD-1 and a-CTLA-4
Radunskaya (31) aPD-L1
Nikolopoulu (32) aPD-1
Butner (33) Any checkpoint blocker
Wilkie (34) Unspecified
March 2021 | Volu
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compartments, their model allows to calculate the impact
on tumor growth, and blocking of PD-L1 modifies
these interactions.

The work of Nikolopoulo et al. (32) considers in particular
the dynamics of PD-1. They present a stability analysis
of the underlying equations in the case of no therapy, where
they find an equilibrium between T cells and cancer cells.
Including checkpoint blocking antibodies they present also a
sensitivity analysis.

Butner et al. (33) presented a model approach that intends to
describe the clinical outcome of immune therapy. Remarkably,
they applied their model to clinical data and demonstrated its
capability for discriminating between therapy responders and
non-responders based on early assessments of tumor growth.
The model uses methods of statistical physics, where the
transport of drugs and cytokines are described by diffusion.
They finally derive an approximate, but fairly simple formula,
which is used for further evaluations.

Wilkie et al. (34) instead employed a logistic tumor growth
model, which is modified by a predation mechanism reflecting
immune cells, that themselves are promoted by the presence of
tumor cells. They used their model to explain the phenomenon
of transient tumor dormancy. Although the authors did not
employ a specific mechanism for checkpoint blocking, the
interaction function has been set up quite generally and can be
easily gauged to contain such immune suppressing factors.

Models at the Level of Underlying
Pathways
Modeling of immune responses at the pathway scale becomes
rather difficult due to the complexity of the underlying protein
networks, which are usually not completely known.
Understanding at the pathway scale is, however, desirable for a
number of reasons, for instance to identify mechanistic steps that
can be targeted through intervention. Although the mechanisms
are often understood qualitatively, the quantitative data required
for model construction tends to be missing, mostly due to a lack
of experimental accessibility. However, some models at this scale
do exist, despite lack of data and resultant uncertainties, albeit
primarily focused on modeling the immune response alone,
discarding interactions with radiation.

Gregg et al. introduced a systems biology approach model of
DNA sensing and interferon production (35), later expanding
the model to describe the cGAS-STING pathway (36). The model
describes the dynamics of the pathway through a series of
“states”, with ordinary differential equations determining
transitions between states and enzyme reactions described
through Michaelis Menten kinetics. In total the model uses 13
states giving rise to 34 model parameters; 13 describing cGAS, 11
describing JAK/STAT, and 10 describing degradation rate
parameters (e.g. DNA degradation by TREX1). The model
parameters are fit to experimental data where possible and
unknown parameters are optimized (25 unknown in total, with
all cGAS related parameters assumed to be unknown). The
model calculates molecule concentrations within the cytosol as
a function of time; including cGAS, STING, DNA, IFNb, and
Frontiers in Oncology | www.frontiersin.org 4
TREX1. The authors are able to reproduce findings such as drug
inhibition of cGAS described through mass action kinetics. The
detailed modeling approach allows for investigation of more
potent drugs through the variation of association constant. The
authors also performed a sensitivity analysis of their model and
showed that IFNb activity is highly robust to perturbations in
TREX1 feedback, making the model less dependent on the
particular choice of the corresponding input parameters. In the
same way, the insensitivity of IFNb production on TREX1
activity also provides a testable hypothesis. Whilst the model
presented by Gregg et al. (36) was not specifically designed for
the combined radiation action it is not difficult to foresee
modifications that would accommodate this; for example,
modifying the initial amount of cytosolic DNA as a function of
radiation quality and dose.

The extent, and success, of an anti-tumor immune response is
dependent on immune cell activation and signaling. To that end
a number of mathematical models have been designed to probe
these mechanisms. For example, Mesecke et al. (37) developed a
mathematical model of natural killer (NK) cell activating/
inhibitory signal receptors at the molecular level. The model is
designed with “optional” modules to investigate mechanisms,
giving rise to 72 individual models of NK activation and
inhibition. Similarly, a number of mechanistic models have
been developed to describe T-cell activation (38, 39).

Immune response modeling spans many scales, from the
molecular level up to the patient level (40). Palsson et al. (41)
developed a framework to integrate published subset models into
a single multiscale model through parameterization, known as
the Fully-integrated Immune Response Model (FIRM). In FIRM
connectivity matrices are built between subset models to describe
the global network structure. The model specifies antigen
exposure over time and calculates antibody levels and cell
concentrations. Although initially designed to simulate the
immune response to tuberculosis infection FIRM is also
capable of simulating the cellular response to tumor challenge.

Beyond these models, a number of tools are available to
simplify and increase the accessibility of immune process
modeling. Such tools as BioNetGen (42), Cell studio
(43), NetLogo (44), and Simmune (45) may be helpful in
simulating various aspects in a pathway oriented modeling of
radioimmune response.
STATE OF THE ART IN MODELING
RADIOIMMUNOTHERAPY

To summarize, there are numerous model approaches that cover
aspects of RIT. These approaches can be distinguished, as used to
structure the present review, by their level of applicability: Some
models focus on specific pathways or on the general interaction
between a tumor and the immune system, other approaches
model the immunologic response to checkpoint blockers or
radiation alone, and a few models even attempt to model RIT.
On all these levels, models are found with different levels
of detail.
March 2021 | Volume 11 | Article 647272
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As RIT approaches a standard treatment for some cancer
types, such modeling is needed to interpret clinical outcome in a
quantitative way. However, there are various gaps in our
knowledge on biologic aspects of the immune response, and
therefore these models accumulate open parameters.
Furthermore, due to a lack of clinical experience a validation
and benchmarking can only occur with preclinical experiments,
where usually growth dynamics of implanted synthetic tumors
has been investigated.

Comparing the five models for RIT summarized in Table 1,
one finds a number of similarities. All models describe the
dynamics of cancer cells, immune cells and eventually of
signals leading to recruiting activated T cells (DAMPs,
antigens, IFN release, e.g.) via rate equations, i.e. coupled
differential or difference equations. They all include that dying
cancer cells finally provoke lymphocyte presence, which is why
radiation can trigger this process. Checkpoint blocking is
included in all models as a key to admit lymphocyte action. It
is worth to note that the complicated network of a variety of
different immune cell types and multiple underlying processes
like different modes of immune mediated cell inactivation is not
reflected by any model. Models are rather kept simplified,
working with effective quantities e.g. by ignoring different types
of lymphocytes. For instance, most models do not distinguish
between helper and cytotoxic T cells, because finally the amount
of effector cells of whatever type are of interest, while other cell
types may support their presence as mediators and are simulated
implicitly, i.e. without explicitly appearing in equations. This
level of abstraction is for a good reason: A corresponding model
Frontiers in Oncology | www.frontiersin.org 5
to such detail would require a plethora of model parameters,
thereby ruling out robust predictions.

The underlying paradigm including aCTLA-4 and aPD-1 as
checkpoint blockers are visualized in Figure 1 in a modeler’s
perspective, identifying three key quantities and three agents.
The sequence of processes reflects the immunity cycle as
suggested by Chen and Mellmann (46), where here radiation is
the primary cause of cell death of tumor cells, which at the same
time triggers a systemic antitumor response. With some
modifications, a similar circle of dependencies could be
established for the IDO checkpoint instead of the PD-1 and
CTLA-4 checkpoints. Notably, there are many more molecules
involved in the immune checkpoints than the ones the
checkpoints are named after, and the expression of these
molecules is a dynamic process that may be modified also by
other agents than radiation, e.g. heat (47). Again, models tend
here to simplify the situation and model effectively the onset of
immune activation triggered by radiation induced cell death.

As a further similarity, all models follow the general idea of
simulating the dynamics of T cells at the tumor site(s), eventually
capable to predate tumor cells. This is performed by first defining
initial conditions and then following tumor growth and its
possible turnover into shrinkage by the synergism of radiation
exposure and immunotherapy, as indicated in Figure 2.

The models, however, differ in many aspects as well: They use
various tumor growth models without considering radiation or
immune effects, which might be reasoned partially in the
experimental data used for benchmarking. They differ further
in the particular choice of interaction terms between immune
FIGURE 1 | General paradigm underlying RIT using immune checkpoint blockers from a modeler’s perspective: The abundance of tumor cells, lymphocyte
attracting signals and activated lymphocytes are three quantities that depend on each other, but are also impacted by external agents such as radiation and immune
checkpoint blockers. The synergy of coupling radiation and immune therapy emerges, as radiation amplifies signals that are exploited for tumor cell recognition,
which in combination with aCTLA-4 lead to an effective lymphocyte activation, resulting in a tumor cell predation driven by cytotoxic lymphocytes.
March 2021 | Volume 11 | Article 647272
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effector cells and tumor cells. They also vary in the selection of
subclasses of tumor cells (hypoxic, inactivated but not yet
removed…) and immune cells (CD4+, CD8+, dendritic
cells, …) employed. Needless to say, as they are complex models
they differ in the number of open parameters (i.e. degrees of
freedom of the model), the knowledge about experimentally
inspired fixed model parameters, and the associated numerical
values. Model limitations are directly connected to the
particular choice of modeled cell types, interaction processes
and functional dependences and need to be investigated for
each model separately.

As the models are established from authors with somewhat
different background and perspective, they all use a different
terminology and a different notation, making comparisons in
view of their complexity quite tedious. Finally, they are validated
against experimental data to different levels, while a
comprehensive validation across multiple data sets has not
been demonstrated so far at all. Nevertheless, all models
managed to recover the experimentally observed amplification
of immune response by radiation and allow investigation of
impacting factors such as dosage, fractionation scheme and the
drug administration schedule.
FUTURE PERSPECTIVES

Rather than only considering fully integrated models for
predicting the outcome of RIT, the approaches at a lower level
of applicability may be important to test and maybe reject
underlying assumptions in comparison with experimental data.
We would like to stress that also model approaches that attempt
to model general functionality of the immune system or the
interaction of a growing tumor with the immune system
provoked many model based investigations (48–53), that may
help to optimize model strategies.
Frontiers in Oncology | www.frontiersin.org 6
Several differences between the models have been pointed out
above. Although these may seem technical and a matter of
proper implementation at the first glance, they may have a
strong impact on the simulation outcome. These include the
choice of the tumor growth model as well as the functional
relationship expressed by the interaction terms. Here various
assumptions need to be tested against available data, e.g., there is
no unique answer on how many activated cytotoxic T-cells are
needed to effectively remove a single tumor cell, and how tumor
cells can be accessed by T cells due to space limitations.

Besides overcoming such open questions in current models,
the following key questions appear to be most promising to be
addressed by the following future model approaches, which shall
be briefly discussed below:

• What does the therapy response to radiation and checkpoint
blockers look like, and how can underlying response times be
used to optimize scheduling?

• How do primary tumor and abscopal sites differ in availability
and accessibility of T cells?

• What is the role of radiation induced lymphocyte inactivation
in cases where the radiation field covers a large portion of
vascularized tissue or lymph nodes?

• What is the potential role of high LET radiation in regard of
the previous aspects?

Response times: A very important aspect that is rarely
discussed is the time delay between involved biological steps.
For instance, cells killed by radiation are not killed immediately.
Rather cell death is a process, and therefore also DAMP signals
will be elicited with some delay after irradiation. Likewise, the
removal of cells will take place later, and T cell activation and
recruitment also takes time. In some approaches tumor cells that
are inactivated will be removed according to an ordinary decay
differential equation, leading to an exponential removal.
However, it would be much more plausible to introduce
FIGURE 2 | Logic underlying the simulation of combined radiation and immunotherapy effects: In a first step, initial conditions are defined which characterize tumor
growth and the immune system’s capability (e.g., represented by the number of lymphocytes effectively taking part in tumor cell eradication) without therapy. In a
second step the targeted radiation effects as well as checkpoint blocking is simulated, leading to a synergistic immune response. Finally, this results in an
enhancement of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) of the irradiated and—if applicable—of an abscopal site. The T cells may
eradicate tumor cells, which eventually leads to tumor control. If the therapy design is successful, typically within the therapy block or shortly after the tumor growth
will turn into shrinkage as indicated by the color scale in the time arrow (green, no tumor; red, large tumor mass).
March 2021 | Volume 11 | Article 647272
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peaked distribution functions with a support on a finite time
interval (i.e. with a maximum value) for such delay times.

Availability and accessibility of T cells: Concerning the
attempt to model the immune response in an abscopal tumor
that is not irradiated at all, the crucial question is, what amount
of radiation amplified T cells will migrate to this tumor site. It is
unclear to what extent other draining lymph nodes except the
one corresponding to the irradiation site contribute to the pool of
activated lymphocytes. While models at the moment can only
use assumptions, future dedicated experimental studies could
provide more insight. Such studies might help to decide whether
activated T cells in the microenvironment of the primary tumor,
the abscopal tumor and in the blood need to be modeled
separately, eventually including spatial aspects, or can be
simply related, thereby reducing the number of degrees
of freedom.

Lymphocyte inactivation: Another aspect not sufficiently
included in models so far is suppression of the lymphocyte
status by radiation. While models account for such suppression
eventually in the tumor region, the lymphocyte pool can be
largely inactivated, or, if lymph nodes are in the radiation field,
the number of naïve T cells can be reduced so that a
replenishment is strongly inhibited. This idea demonstrates
that radiation has both an immune stimulating and
immunosuppressive effect, and modeling could help to
determine optimum doses, investigating the impact of dose
rate and treatment modality etc. Indeed it is evident that
patients with lymphopenia have a worse therapy prognosis
(12–17). Experimental studies indicate that (i) lymph node
irradiation is a crucial factor that should be avoided, if possible
(10, 11), and that lymphocytes in general are quite radiosensitive
and hence the blood pool is vulnerable by radiation (54–60).
There are only few studies on the dose response of radiation
induced lymphopenia (61–63), considering the dose distribution
within the blood pool. Again, general models of lymphocyte
dynamics (64) may contribute to further model developments.

High LET radiation: The role of proton and carbon ion
therapy in the context of RIT is at the moment rather
unexplored but appears to be quite promising (65, 66): With
protons and carbon ions a very conformal irradiation of the
target is achieved. In particular, for carbon ions, additional
biological advantages result in an enhanced effect in the target
region and allow for hypofractionated regimens (67, 68). In the
context of RIT this promises at least a twofold advantage: First,
sparing normal tissue allows for a tremendous reduction of
effective field sizes and allows for less reduction of the
lymphocyte pool. With an appropriate field design, lymph
nodes could even be spared as well (66). If however lymph
nodes are affected by metastases, they may be specifically treated
by elective node irradiation using small treatment fields,
although the benefit of such treatment remains debated in
conventional therapy (69–71). With sufficiently conformal
fields, surrounding organs at risk, but also circulatory
lymphocytes and unaffected nodes can be spared. The precise
conformal irradiation can be realized using ion beams (72, 73).
Second, with carbon ions large doses as frequently applied in RIT
can be generically realized with comparably tolerable side effects
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to the normal tissue. This is ultimately reasoned in the high LET
effects to cells and tissues, i.e. providing a large relative biological
effectiveness and overcoming the resistance of cells in S/G2
phases or of hypoxic cells in the target region. One may
conjecture that the damage complexity inflicted by high LET
radiation gives rise to a third advantage: Overcoming the
radioresistance of hypoxic cells and in general locally clustered
DNA damage could lead to a larger level of immune stimulation.
One may suspect about a more efficient activation of the cGAS/
STING pathway or an enhanced release of DAMPs (74, 75).
Considering the temporal pattern of the immune response, the
time scales between irradiation and radiation effects are expected
to be modified after high LET radiation, accounting for the more
severe inflicted damage (76, 77). A faster manifestation of cell
inactivation as compared to low-LET radiation suggests a more
rapid immune activation and T cell recruitment, while at the
same time providing a stronger delay in tumor growth. On the
other hand, the immunosuppressive effects of radiation as PD-L1
upregulation may be modified and eventually amplified by the
enormous energy concentration within high LET ion tracks. Also
at the moment it is not clear whether or not high LET radiation
will enhance the infiltration capability of T cells in the tumor
microenvironment, or whether the latter will be modified in
other aspects. First experimental results (78–80) do not show a
clear picture yet, while the tissue sparing effect of particle
irradiation indeed seems to be beneficial regarding lymphocyte
deprivation (81). Thus the multiple perspectives and open
questions associated with the use of high LET RIT warrant
further preclinical experiments, which are able to answer the
speculative and encouraging expectations presented above.

From the considerations regarding high LET radiation one
might also expect that hypofractionated irradiation of small
fields would be most suitable for RIT. For SBRT regimens, e.g.
enough cells would be inactivated in the target area to set on the
immune stimulating effect, while in the small entrance channels
only a smaller fraction of lymphocytes in the blood stream would
be affected (82). Indeed, early clinical experience using SBRT in
combination with checkpoint blockers indicates therapeutic
benefits (83).

The four radiobiological questions that have been identified
and discussed above can be addressed both experimentally and
theoretically. For theoretic model formulation it is an important
aspect that the considered experimental data are comprehensive,
i.e. self-consistent data sets where multiple observables (e.g.
CD 8+ cell count, DAMP release and tumor masses) are
simultaneously analyzed for various (many) treatment
conditions. Such data sets are most profitable, as they can be
directly used for comprehensive model gauging. This approach is
complementary to applying models to multiple, independent
data sets which is a rather convenient strategy for model testing,
thereby supporting or falsifying the underlying mechanistic
assumptions. More comprehensive data sets will therefore
potentially allow to better assess distinct model approaches.
For simplistic models the task is then to choose the most
important key quantities that determine tumor mass dynamics,
and for very detailed models following an ab-initio approach
implementing OMICS data in immune response models (84)
March 2021 | Volume 11 | Article 647272

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Friedrich et al. Radioimmunotherapy Modeling
may help to keep model uncertainties comparably low despite a
high number of degrees of freedom.

Generally, to support the models’ validity and to test their
assumptions a broader benchmarking against experimental data is
desirable. A fruitful strategy would be to apply one model with
fixed model constants (except those characterizing a particular
experiments) to multiple independent data sets. At the moment
there exist quite a number of thoroughly analyzed experimental
data sets (mainly tumor growth dynamics) of primary and
abscopal tumors with various doses and fractionation schemes
etc., e.g. (4, 10, 85–89). In that line, theoretic models may come up
with specific predictions, to interpolate between the results, and
identify interesting treatment scenarios to be investigated.
Experiments will be able to answer these questions, thereby
making our current understanding of the combined action of
radiation and immunotherapy more precise. We would like to
stress here, that there is still a lack of apparently basic experiments
such as investigating interferon release in dependence of radiation
quality and dose. Such systematic quantification experiments,
although not directly related to current ‘hot topics’, would be
very valuable to establish a consistent mechanistic understanding
of interactions between radiation and the immune system. Also,
experiments are not available where both radiation dose and
checkpoint blocker drug concentration are varied systematically.
Such experiments would be very valuable to quantify the expected
synergism of radiation and checkpoint blocking. Generally, a
dialogue of modelers, immunologists and oncologists will be
needed to decide about the necessities and options to go for,
aiming for a quantification of radio immune response.

Concerning the use in the clinics, the pivotal role of RIT
modeling is to indicate factors to account for in treatment
planning. This includes, for instance, the need to consider the
entire vascular system and the blood pool as an organ at risk for
lymphopenia (90). Degrees of freedom that need to be optimized
are the radiation dose, the fractionation schedule, radiation type,
geometry of the irradiation field(s), irradiation angles, antibody
type, drug concentration and drug delivery schedule. This also
includes exhibiting the role of emerging radiation therapy
modalities such as FLASH or spatial fractionation, which may
also spare the blood pool efficiently, but for which the interaction
with the immune system is unclear at the moment (91).
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Within therapy, the adaptive change or adjustment of initial
treatment strategies may be aided or reasoned by model
approaches. The advantage of mathematical models as
compared to general perceptions is that they are quantitative
in nature. At this moment models are quite successful in
describing preclinical experiments. In near future, an emerging
task will be to develop corresponding model description tailored
to clinical situations. For integrated modeling in clinical practice,
eventually involved in treatment planning, the step from
preclinical experiments towards application in therapy of
patients has to be thoroughly validated. In this regard,
experience of RIT in patients will be of particular importance,
and existing models may be supportive in finding interpretations
that help to improve schedules and dosage, and in the same way
eventually experience gradual validation.

Thus, benchmark data for such models will be generated
within ongoing clinical studies, and hopefully models will
acquire predictive power that finally can be used in decision
making and treatment planning.
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