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Bladder cancer is one of the leading causes of cancer deaths worldwide. Early detection
of lymph node metastasis of bladder cancer is essential to improve patients’ prognosis
and overall survival. Current diagnostic methods are limited, so there is an urgent need for
new specific biomarkers. Non-coding RNA and m6A have recently been reported to be
abnormally expressed in bladder cancer related to lymph node metastasis. In this review,
we tried to summarize the latest knowledge about biomarkers, which predict lymph node
metastasis in bladder cancer and their mechanisms. In particular, we paid attention to the
impact of non-coding RNA on lymphatic metastasis of bladder cancer and its specific
molecular mechanisms, as well as some prediction models based on imaging, pathology,
and biomolecules, in an effort to find more accurate diagnostic methods for future
clinical application.
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INTRODUCTION

Bladder cancer (BCa) is the 10th most common cancer form, causing an estimated 549,000 new
cases and 200,000 deaths in 2018. The incidence of BCa in men is four times that of women, and
smoking is the most important risk factor for BCa in the population (1). More than 90% of bladder
cancers are urothelial carcinoma, and the rest are squamous cell carcinoma and adenocarcinoma.

The most common metastatic manner of BCa is lymph node metastasis (LNM), which is more
common in pelvic lymph nodes. LNM has a great influence on the prognosis and survival rate of
BCa patients. For BCa patients with positive LNM, the 5-year CSS rate was 27.7%, which is
significantly lower than that of patients without lymph node metastasis (2). CT or MRI is commonly
used in clinical practice to diagnose pelvic LNM, but it is often difficult to accurately detect
metastatic lymph nodes less than 6.8 mm in diameter (3). Many studies have recently reported the
correlation between molecular markers and BCa metastasis, indicating a direct link between LNM
and abnormal expression of specific biomarkers. Therefore, high-risk LNM patients can be
diagnosed by detecting specific biomarkers to achieve early detection and early treatment,
thereby achieving timely treatment and improving the survival rate.

Moreover, some predictive models, including imaging, pathology, and molecular markers, have
been gradually developed and verified. In this review, we summarized the markers for LNM in BCa
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from different aspects, including genes, non-coding RNA, and
some predictive models (Figure 1). The downstream genes of
non-coding RNA are specifically listed here (Table 1). Generally,
mechanisms for LNM in cancers mainly include cell
proliferation, cell invasion and migration, inhibition of cell
apoptosis, and chemosensitivity. Based on this, we also
elaborated on the regulation mechanism of these biomarkers.
THE MOLECULAR FUNCTION OF GENES
IN BCA WITH LNM

There have been many studies on genes as markers for lymph
node metastasis in bladder cancer. These genes act as oncogenes
or tumor suppressor genes to influence the progression of cancer
(Figure 2).

Genes as Oncogenes
VEGF-C (vascular endothelial growth factor C) is the first
discovered lymphangiogenesis factor. It contains the mature
form of the VEGF homology region. Our team’s studies found
that the expression of VEGF-C in BCa patients with LNM was
significantly higher than that in BCa patients without LNM (57).
Simultaneously, we also found that VEGF-C can promote
proliferation, invasion, metastasis, and mitomycin C resistance
of BCa cells. The mechanisms for that are thought to be related to
the increased ratio of Bcl-2/Bax, inactivation of Caspase-3, and
Frontiers in Oncology | www.frontiersin.org 2
increased expression of MMP-9. Also, phosphorylated p38
MAPK and Akt, Keratin 8, Serpin B5, and Annexin A8 may be
involved (58, 59). VEGF-C can promote the formation of tumor
lymphatic vessels and the metastasis of tumor cells to regional
lymph nodes. The combination of the activated VEGF-C and
VEGFR-3 can induce phosphorylation of tyrosine kinase,
causing the proliferation of lymphatic endothelial cells, thereby
promoting the proliferation or expansion of lymphatic vessels
(60). VEGF-C also positively affected primary tumor cells’
invasiveness since it changed the adhesion of tumor cells to
the extracellular matrix, thereby providing the necessary
environmental conditions for tumor cells to more easily
transfer to the surrounding extracellular matrix. VEGF-C can
stimulate lymphatic endothelial cells to release proteolytic
enzymes, such as uPA, which facilitate the invasion and
infiltration of cancer cells into the matrix, making cancer cells
more easily detached from the original tissue (61). The up-
regulation of VEGF-C may be the reason for BCa cells’ resistance
to cisplatin, and the inhibition of VEGF-C reverses the resistance
by increasing the expression level of maspin (62). Therefore, we
suggest that VEGF-C and VEGFR-3 expression may serve as new
indicators for early detection and diagnosis of BCa lymphatic
metastasis in the future. Additionally, COX-2 may stimulate
VEGF-C secretion to promote the formation of lymphatic vessels
(63). COX-2, a subtype enzyme in the COX family, is an
inducible enzyme. COX (Cyclooxygenase) is a rate-limiting
enzyme in prostaglandin synthesis, which can catalyze
arachidonic acid metabolites to prostaglandins. Previous
FIGURE 1 | Potential biomarkers for predicting lymph node metastasis of bladder cancer. Biomarkers for predicting lymphatic metastasis of bladder cancer can be
divided into different categories, such asgenes, non-coding RNA, prediction models.
March 2021 | Volume 11 | Article 648968
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studies have shown that COX-2 expression was significantly
increased in BCa tissues and was associated with LNM (64).

Another well-known gene that functions as an oncogene in
BCa is PCMT1. PCMTl gene is located at 6p22.3-6q24, about
60kb in length, and contains eight exons and seven introns.
Studies have shown that the expression of PCMT1 in BCa tissue
was higher than that in normal urothelial tissue, and its
expression was significantly associated with LNM. PCMT1
regulated the migration and invasion of BCa cells by regulating
the expression of epithelial-mesenchymal transition (EMT)
related genes, such as E-cadherin, vimentin, Snail, and Slug
(65). Sonic Hedgehog (Shh) also activated EMT to promote
tumorigenicity and stemness in BCa (66). Shh is a member of the
Hedgehog (HH) family. The study found that the expression of
Shh protein was significantly correlated with LNM (67). Shh can
promote the migration and invasion of BCa cells. The Shh
pathway’s activation through the binding of the Shh ligand to
the transmembrane protein Patched1 eliminates the inhibitory
effect on smoothened (SMO). The activation of SMO produced a
downstream signaling cascade that led to the nuclear
translocation of the transcription factor Gli1, which further
induce the transcription of target genes (68).

The overexpression of CXCL5 can promote the progression of
BCa. CXCL5, known as epithelial-derived neutrophil-activating
peptide 78 (ENA78), is a small (8-14 kDa) protein belonging to
the CXC-type chemokine family. CXCL5 (chemokine C-X-C
motif ligand 5) was expressed higher in BCa tissues than normal
tissues, which was associated with LNM (69). It is also related to
promoting mitomycin resistance by activating EMT and NF-kB
pathway (70). Moreover, CXCL5 increased BCa cells
proliferation, migration, and decreased cell apoptosis through
Snail, PI3K-AKT, and ERK1/2 signaling pathways. In addition,
CXCL5 combined with CXCR2 induces the expression of MMP-
2 and MMP-9 and activates the PI3K/AKT signaling pathway
(71, 72). Matrix metalloproteinases (MMPs) are a family of
structurally related zinc-dependent endopeptidases that can
substantially degrade all components of the extracellular
matrix (ECM). MMP2, MMP7, and MMP9 are important
members of the matrix metalloproteinase family. MMP-2 can
physiologically degrade type IV collagen. Mohammad et al. (73)
found that the higher the MMP-2 activity level in BCa, the higher
the positive rate of LNM. MMP-7, also known as matrilysin, is
the smallest MMP. It is produced by the tumor cells themselves,
unlike other MMPs which are solely produced by stromal cells.
Studies have shown that high expression of MMP-7 was
significantly associated with LNM of BCa (74). Studies have
shown that MMP-9 genes and proteins’ expression levels in urine
and blood of patients with BCa were significantly increased (75).
These genes can also decompose the extracellular matrix, make
cancer cells easily pass through the extracellular matrix, and
promote tumor metastasis.

In addition, Zhao et al. (76) identified a new oncogene
candidate, IPO11, in BCa, which is located on chromosome
5q12. Importin-11, a 116 kD protein, is encoded by IPO11.
It is a karyopherin family member, which mediates the
nucleocytoplasmic transport of proteins and nucleic acids
March 2021 | Volume 11 | Article 648968
TABLE 1 | Downstream genes of non-coding RNA in bladder cancer.

Marker Relationship with
downstream genes

Downstream
genes

Reference

miR-101 Negative FZD4 (4)
c-FOS (5)
c-Met (6)
VEGF-C (7)
COX-2 (8)

miR-143 Negative COX-2 (9)
MSI2 (10)

miR-133b Positive
Negative

DUSP1 (11)
Bcl-wˎAkt1 (12)
Epidermal
growth factor
receptor

(13)

TAGLN2 (14)
miR-539 Negative IGF-1RˎAKTˎ

ERK
(15)

miR-497 Positive E-cadherin (16)
Negative Vimentin

BIRC5ˎWNT7A (17)
E2F3 (18)

miR-154 Negative RSF1ˎRUNX2 (19)
ATG7 (20)

miR-223 Positive Caspase-3/7 (21)
Negative WDR62

ANLN (22)
Nuclear receptor
co-activator 1

(23)

miR-148a Negative DNMT1 (24)
miR-3658 Positive LASS2 (25)
LncRNA MALAT1 Negative E-cadherin (26)

Positive ZEB1, ZEB2
VEGF-C (27)
Bcl-2ˎMMP-13 (28)
Foxq1 (29)
Cyclin D1 (30)

LncRNA PVT1 Positive VEGF-C (31)
CDK1 (32)

LncRNA OXCT1-AS1 Positive JAK1 (33)
LncRNA BLACAT2 Positive VEGF-C (34)
LncRNA LNMAT1 Positive CCL-2ˎVEGF-C (35)
LncRNA SNHG16 Positive ZEB1ˎ ZEB2 (36)

TIMP3 (37)
STAT3 (38)

LncRNA ZFAS1 Positive ZEB1ˎZEB2 (39)
Negative KLF2ˎNKD2

LncRNA DLX6-AS1 Positive HSP90B1 (40)
Wnt/b-catenin (41)

LINC01296 Positive EMT (42)
LncRNA DANCR Positive CCND1ˎPLAU (43)

MSI2 (44)
LncRNA SPRY4-IT1 Positive EZH2 (45)
LncRNA NNT-AS1 Positive HMGB1 (46)

PODXL (47)
LncRNA LNMAT2 Positive PROX1 (48)
LncRNA HOXA-AS2 Positive Smad2 (49)
LncRNA HNF1A-AS1 Positive Bcl-2 (50)
CircHIPK3 Negative HPSEˎMMP-

9ˎVEGF
(51)

CircFNDC3B Negative G3BP2/SRC/
FAK

(52)

CircFUT8 Positive KLF10 (53)
CircACVR2A Positive EYA4 (54)
CircPICALM Positive STEAP4ˎEMT (55)
cTFRC Positive TFRC (56)
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through the nuclear pore complexes. Studies have shown that
IPO11 mRNA was highly expressed in invasive BCa cell lines.
The overexpression of importin-11 was positively correlated with
LNM. Importin-11 can promote BCa cells’ invasiveness, which
may be related to the abnormal expression of CDKN1A and
THBS1 (77). Presler et al. (78) found that SCD1 was
overexpressed in BCa, which was related to LNM. SCD-1
(Stearoyl-CoA desaturase-1) can convert SFA (saturated fatty
acids) to MUFA (monounsaturated fatty acids). It is located on
chromosome 10q24.31. SCD inhibitors and SCD gene
interference reduced the proliferation and invasion of BCa cells
(79). FGFR3 (fibroblast growth factor receptor 3) stimulated
SCD1 activity to promote tumor growth in BCa cells (80).

The studies of our team also found some new oncogenes.
ISYNA1 (Inositol-3-phosphate synthase 1) was positively
associated with tumor T stage and LNM of BCa patients. It is
an important regulatory factor in promoting proliferation and
inhibiting apoptosis in BCa cells (81). The high expression of
mAR-SLC39A9 was directly associated with BCa pathological
Frontiers in Oncology | www.frontiersin.org 4
stage, pathological grade, and lymph node metastasis presence. It
also increased BCa metastasis through Gai/MAPK/MMP9
signaling (82).

Genes as Tumor Suppressors
Maspin (mammary sefine protease inhibitor) is an important
member of the serin protease inhibitor (serpin) superfamily. It is
located at 18q21.3-q23. Our team’s previous studies found that
Maspin expression in BCa tissue was significantly down-
regulated in comparison with normal tissues adjacent to the
cancer and was related also to LNM. The negative correlation
between the protein expression level and VEGF-C is statistically
significant (83, 84). Maspin can inhibit the invasion of BCa cells,
and its growth-inhibiting properties were related to its
localization in cells. The surface-bound Maspin directly
controlled the adhesion of BCa cells to the blood vessel wall
(85). The combination of nuclear-localized maspin and
chromatin can effectively prevent cell migration. Mapsin
mainly promoted the development of BCa through DNA
FIGURE 2 | The molecular function of genes in bladder cancer with lymph node metastasis. Genes can predict lymph node metastasis in bladder cancer. Some of
them can promote the progression of cancer, and some can inhibit it.
March 2021 | Volume 11 | Article 648968
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methylation and histone deacetylation to cause low expression of
genes (86). Maspin modulated HDAC1 target genes, including
cyclin D1, p21, MMP9, and vimentin (87). In our previous study,
maspin could enhance Cisplatin chemosensitivity through the
PI3K/AKT/mTOR signaling pathway in MIBC T24 and 5637 cell
lines (88).

Another gene that functions as a tumor suppressor in BCa is
GATA6. GATA6 (GATA-binding factor 6), a zinc-finger
transcription factor, is located at 18q11.2. It regulates
transcription cofactors and RNA polymerase II to the proximal
promoter to regulate target genes’ transcription. Wang et al. (89)
found that GATA6 decreased in BCa, and further decreased in
patients with positive LNM. GATA6 was significantly down-
regulated in BCa through frequent promoter methylation.
GATA6 mainly inhibited LNM of BCa by regulating VEGF-C.
Down-regulation of GATA6 promoted VEGF-C transcription,
which promoted lymphangiogenesis, resulting in an increased
lymphatic spread of BCa. This increased spread shows that it is of
great significance to check the methylation status of the GATA6
promoter in the urine of BCa patients. The low expression of
FOXOs was also associated with LNM in BCa (90). FOXO
(Forkhead box class O) is the subgroup O of forkhead box
(FOX) transcription factors, which has four members, FOXO1,
FOXO3, FOXO4 and FOXO6. FOXOs have a highly conserved
forkhead DNA binding domain. FOXOs can inhibit the invasion
of BCa cells by down-regulating Twist2 and YB-1 and up-
regulating E-cadherin (91).
REGULATION OF MICRORNAS FOR BCA
PATIENTS WITH LYMPH NODE METASTASIS

MiRNA is a type of 21-23nt small RNA, which can complement
mRNA and either silence it or degrade it. Most miRNAs are
down-regulated in bladder cancer. Moreover, they inhibit the
lymph node metastasis of bladder cancer (Figure 3).

MiR-101 can suppress the progression of BCa. Studies have
shown that the expression of miR-101 in BCa patients was down-
regulated and significantly associated with LNM (92). Moreover,
it can inhibit the proliferation, migration, and invasion of BCa
cells by directly targeting FZD4 (frizzled class receptor 4), c-FOS,
and c-Met (4–6). MiR-101 increased Cisplatin sensitivity by
inhibiting the expression of VEGF-C and COX-2 in BCa cells
(7, 8). MiR-143 also inhibited the growth and migration of BCa
cells by targeting COX-2 (9). MiR-143 was reported to suppress
the progression of BCa as well and it is located on chromosome
5q32. Liu et al. (93) found that miR-143 was down-expressed in
the serum of BCa patients with LNM. It also directly affected the
expression of MSI2 through its RNAi effect, which also effectively
inhibited the KRAS network, thereby regulating BCa cells (10).

Another gene, miR-133b, is located on chromosome 6p12.2.
Studies have shown that the expression level of miR-133b in BCa
tissues is significantly reduced, which was significantly correlated
with LNM (94). MiR-133b may inhibit the proliferation of BCa
by up-regulating dual-specificity protein phosphatase 1 (DUSP1)
(11). It inhibited angiogenesis and enhanced BCa cells’
Frontiers in Oncology | www.frontiersin.org 5
chemosensitivity to Gemcitabine by targeting transgelin 2
(TAGLN2) (14). MiR-133b can regulate the proliferation,
migration, and invasion of BCa cells by down-regulating Bcl-w,
Akt1, and epidermal growth factor receptor along with its
downstream effector protein (12, 13). Liao et al. (15) found
that miR-539 was down-regulated in BCa, and was related to
LNM. MiR-539 is located on chromosome 14q32.31, and it can
inhibit the proliferation and invasion of BCa cells by directly
targeting IGF-1R and inactivating the AKT and ERK
signaling pathways.

MiR-497 is also known as a tumor suppressor in BCa, and it is
located on chromosome 17p13.1. Studies have revealed that the
expression of miR-497 in BCa tissue was lower than that of
adjacent non-cancer tissues, and it was correlated with LNM
(16). MiR-497 can inhibit the proliferation, migration, and
invasion of BCa by up-regulating E-cadherin and down-
regulating vimentin, a-smooth muscle actin, BIRC5, WNT7A,
and E2F3 (16–18). Previous studies have found that miR-154 was
significantly down-regulated in BCa tissues and was associated
with LNM. MiR-154 is located in the human imprinted 14q32
domain. MiR-154 inhibited the proliferation, migration, and
invasion of BCa cells by regulating the expression of RSF1,
RUNX2, and ATG7 (19, 20). MiR-223 is located on
chromosome Xq12. Sugita et al. (21) found that the expression
level of miR-223 was significantly reduced in BCa tissues, which
was related to LNM. MiR-223 inhibited cell invasion and
promoted cell apoptosis in BCa via caspase-3/7 activation and
negatively regulating WDR62 (WD repeat domain 62), ANLN,
and nuclear receptor coactivator 1 (21–23). MiR-148a, with 68
nucleotide sequences, locates to 7p15.2, and is confirmed by Ma
et al. (95) that its expression level in BCa tissue is lower than that
of adjacent normal tissues, and that its low expression level is
associated with advanced tumor progression and LNM. Also,
Lombard et al. (24) found that miR-148a increased the apoptosis
of BCa cel l s by reducing the express ion of DNA
methyltransferase 1 (DNMT1).

MiR-3658 is known as an oncogene in BCa. The expression of
miR-3658 in BCa tissue was up-regulated, and its expression was
significantly related to the lymph node infiltration, distant
metastasis, and TNM stage (96). It can also promote cell
proliferation, migration, and invasion by targeting LASS2 (25).
LNCRNAS REGULATE LYMPH NODE
METASTASIS IN BCA

LncRNA is a non-coding RNA with a length of more than 200
nucleotides and is closely related to cancer occurrence and
development. It can directly bind to proteins to block its
functions or change its cellular location, regulate mRNA
translation and act as a miRNA sponge. Most lncRNAs act as
oncogenes to promote lymphatic metastasis of bladder cancer
(Figure 4).

Our team’s studies found several lncRNAs as oncogenes, such
as MALAT1, PVT1, and OXCT1-AS1. The expression of
MALAT1 was positively associated with LNM in BCa. It
March 2021 | Volume 11 | Article 648968
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enhanced the Cisplatin resistance of the BCa cells by regulating
the miR-101-3p/VEGF-C pathway (27, 97). MALAT1 promoted
proliferation and invasion by miR-125b-Bcl-2/MMP-13, miR-
124/foxq1 and microRNA-34a/cyclin D1 in BCa cells (28–30). It
also up-regulated EMT-associated ZEB1, ZEB2, and Slug and
downregulated E-cadherin levels (26). LncRNA PVT1 is located
at 8q24, downstream of MYC. High PVT1 expression is
associated with higher tumor stage and positive lymph node
metastasis (98). PVT1 directly interacted with miR-128, reducing
the binding of miR-128 to VEGF-C, thereby inhibiting the
degradation of VEGFC mRNA by miR-128 (31). Moreover,
PVT1 down-regulated miR-31 to enhance CDK1 expression
Frontiers in Oncology | www.frontiersin.org 6
and promote the proliferation, migration, and invasion of BCa
cells (32). LncRNA OXCT1-AS1 (OXCT1 antisense RNA 1) is
located on chromosome 5p13.1 and was also significantly up-
regulated in BCa cell lines with LNM and was found to be
inhibiting miR-455-5p in order to up-regulate the expression of
JAK1, thus promoting the invasion of BCa (33).

Some lncRNAs regulate VEGF-C to promote the progression
of BCa. BLACAT2 (bladder cancer-associated transcript 2) was
significantly overexpressed in BCa patients with LNM. It
combines with the VEGF-C promoter by forming triplexes to
up-regulate VEGF-C expression, thereby promoting
lymphangiogenesis and lymphatic metastasis. BLACAT2
FIGURE 3 | Regulation of microRNAs in bladder cancer patients with lymph node metastasis. MiRNAs play a vital role in the lymph node metastasis of bladder
cancer. They can promote or inhibit the metastasis of bladder cancer by regulating downstream genes or proteins.
March 2021 | Volume 11 | Article 648968
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directly interacted with WDR5 (the core component of the
histone H3K4 methyltransferase complex) to epigenetically
induce lymphangiogenesis and invasion (34). LNMAT1 (lymph
node metastasis-associated Transcript 1) was significantly up-
regulated in BCa with LNM. LNMAT1 recruited hnRNPL to the
CCL2 promoter to activate CCL2 expression, resulting in
increased H3K4 trimethylation, thereby ensuring hnRNPL
binding and enhancing transcription. In addition, LNMAT1-
induced CCL2 regulated the tumor microenvironment in BCa
tissues through tumor-associated macrophages (TAMs)
infiltration and VEGF-C upregulation, which ultimately led to
lymphangiogenesis and lymphatic metastasis (35).

Several lncRNAs promote the progression of BCa by
regulating ZEB1 and ZEB2. LncRNA SNHG16 (small nucleolar
RNA host gene 16) is encoded by a 7571‐bp region at
chromosome 17q25.1. Previous studies have found that
SNHG16 was highly expressed in BCa tissues and was
positively correlated with LNM (37). SNHG16 can regulate the
Frontiers in Oncology | www.frontiersin.org 7
proliferation, apoptosis, EMT, invasion, and migration of BCa by
directly acting on the miR-17-5p/metalloproteinase 3 (TIMP3)
axis, miR-200a-3p/ZEB1/ZEB2 axis, and miR-98/STAT3/Wnt/
b-catenin pathway axis (36–38). LncRNA ZFAS1 (zinc finger
antisense 1), located on the antisense strand of the ZNFX1
promoter region, is transcript antisense to the 5′- end of the
gene zinc finger NFX1-type containing 1 (ZNFX1). Yang et al.
(39) found that the expression level of ZFAS1 in BCa was
increased and positively correlated with LNM. ZFAS1 can
promote the proliferation, migration and invasion of BCa by
down-regulating the expression of KLF2 and NKD2, and at the
same time, up-regulating the expression of ZEB1 and ZEB2. It
also promotes tumorigenesis of BCa through sponging miR-
329 (99).

Also, some lncRNAs regulate EMT to promote BCa
progression. LncRNA DLX6-AS1 (distal-less homeobox 6
antisense 1) is regulatory of members in the DLX gene family,
which is localized on chromosome 7q21.3. DLX6-AS1 was
FIGURE 4 | LncRNAs regulate lymph node metastasis in bladder cancer. In bladder cancer, the expression level of some lncRNAs is related to lymph node
metastasis and regulates lymph node metastasis by regulating cancer cell proliferation, metastasis, invasion, and chemosensitivity.
March 2021 | Volume 11 | Article 648968
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up-regulated in BCa, which was related to LNM. Overexpression
of DLX6-AS1 promoted the proliferation, invasion, and
migration of BCa cells by regulating EMT and Wnt/b-catenin
signaling pathway activity (41). DLX6-AS1-mediated miR-223
silencing can promote the growth and invasion of BCa through
the up-regulation of HSP90B1 (40). LINC01296 is a novel
intergenic lncRNA located at 14q11.2. The expression of
LINC01296 was positively correlated with lymph node-positive
BCa, and its up-regulated expression can promote BCa cells
metastasis by activating the EMT pathway (42).

Another lncRNA, DANCR (differentiation antagonizing non-
protein coding RNA), is located on chromosome 4q12.5, which is
mainly distributed in the cytoplasm. Chen et al. (43) found that
DANCR was significantly up-regulated in BCa tissues and
positively correlated with LNM. DANCR promoted the LNM
and BCa cells’ proliferation via DANCR guided LRPPRC
(leucine-rich pentatricopeptide repeat containing) to stabilize its
mRNA, then to activate IL-11-STAT3 signaling and increase
CCND1 and PLAU expression. Zhan et al. (44) found that
DANCR positively regulated the expression of MSI2 (musashi
RNA binding protein 2) through sponging miR-149 to promote
the malignant phenotype of BCa cells. Zhao et al. (100) found that
the expression level of SPRY4-IT1 in BCa tissue was also higher
than that of adjacent non-tumor tissues and was associated with
LNM. SPRY4-IT1 is derived from the intron region of the SPRY4
gene and may contain several long hairpin secondary structures,
which are located in 5q31.3. SPRY4-IT1 can promote
proliferation and metastasis of BCa cells by sponging miR-101-
3p to actively regulate the expression of EZH2 (45). Wu et al. (46)
found that lncRNA NNT-AS1 was up-regulated in BCa, which
was significantly associated with LNM. NNT-AS1 (nicotinamide
nucleotide transhydrogenase antisense RNA 1) is located on
chromosome 5p12 with 3 exons. NNT-AS1 promoted the
proliferation, migration, and invasion of BCa cells by acting as
a competing endogenous RNA for miR-496 to enhance the
expression level of HMGB1. NNT-AS1 also targeted the miR-
1301-3p/PODXL axis and activated the Wnt pathway, thereby
enhancing BCa cells’ growth (47). LncRNA LNMAT2 (lymph
node metastasis-associated transcript 2) was overexpressed in
urinary-EXO and serum-EXO of patients with BCa, which was
related to LNM. LNMAT2 was found to bind to the prospero
homeobox 1 (PROX1) promoter by inducing H3K4
trimethylation, which enhanced PROX1 transcription, thus
promoting lymphangiogenesis and lymph node metastasis in
bladder cancer (48).

Additionally, several lncRNAs positively correlated with
LNM, including: (1) HOXA-AS2, which inhibited the
expression of miR-125b to promote the expression of Smad2,
thus promoting the migration and invasion of BCa cells (49); (2)
HNF1A-AS1, which positively regulated the expression of Bcl-2
by sponging miR-30b-5 to promote the proliferation of bladder
cancer and inhibited its apoptosis (50, 101); (3) ROR1-AS1,
which promoted the growth and migration of bladder cancer by
regulating miR-504 (102); (4) RMRP, which promoted the
proliferation, migration, and invasion of bladder cancer cells
by regulating miR-206 as a sponge (103).
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THE ROLE OF CIRCRNAS FOR BCA
LYMPH NODE METASTASIS

CircRNA is a type of non-coding RNA that forms a circular
structure by covalent bonds but does not have a 5’-end cap and a
3’-end poly(A) tail. It is closely related to the occurrence and
development of cancer. It can act as an mRNA ‘sponge’, regulate
transcription and splicing, and interact with RNA-binding
proteins (104). Most circRNA negatively regulates lymph node
metastasis of bladder cancer, and some molecules positively
regulate this process (Figure 5).

CircHIPK3 (circRNA ID: hsa_circ_0000284), also known as
bladder cancer-related circular RNA-2 (BCRC-2), was
significantly down-regulated in BCa and was negatively
correlated with LNM. It originates from the second exon of the
Homeodomain-interacting protein kinase 3 (HIPK3) gene.
CircHIPK3 sponged miR-558 and prevented miR-558 from
being transported into the nucleus to bind the promoter of
heparanase (HPSE) gene in BCa cells, thereby down-regulating
the expression of HPSE and its downstream targets such as
MMP-9, and VEGF, thus weakening the migration, invasion and
angiogenesis of BCa cells (51). Additionally, Liu et al. (52)
confirmed that circFNDC3B was significantly down-regulated
in BCa tissue, and its low expression was significantly correlated
with LNM. It is originated from exons 5 and 6 of the FNDC3B
gene. CircFNDC3B acted as a sponge of miR-1178-3p to inhibit
G3BP2 and further inhibit the downstream SRC/FAK signaling
pathway, thereby inhibiting the proliferation, migration, and
invasion of BCa cells.

By screening RNA sequencing data generated from human
BCa tissues and matched adjacent normal bladder tissues, two
novel tumor suppressors were separately identified, which are
c i r cFUT8 and c i rcACVR2A. Ci rcFUT8 (c i r cBase :
hsa_circ_0003028) was originated from exon 3 of the FUT8
gene. CircACVR2A was derived from exons 3, 4, and 5 of the
ACVR2A gene. These two tumor suppressors were down-
regulated in BCa tissues and were related to LNM (53, 54).
CircFUT8 regulated the expression of Slug by sponging miR-
570-3p to promote the expression of Krüpple-like-factor 10
(KLF10), thus inhibiting the metastasis and invasion of BCa
cells (54). CircACVR2A can inhibit the proliferation, migration,
and invasion of BCa cells by directly interacting with miR-626
and acting as a miRNA sponge to regulate EYA4 expression (53).
In addition, circPICALM was found to suppress cancer
progression. It is generated from exons 9-12 of PICALM. It
was down-regulated in BCa tissues and associated with LNM.
CircPICALM acted as a miR-1265 sponge to regulate STEAP4
and further affect FAK phosphorylation and EMT, thereby
inhibiting the metastasis of BCa (55).

Serval other circRNAs were found to be possibly promoting
cancer progression by inducing the malignant proliferation or
migration and invasion of cancer cells. Su et al. identified a novel
circular RNA called cTFRC. His study has shown that cTFRC
was up-regulated in BCa tissues and was associated with LNM.
The study also revealed that cTFRC might act as a sponge for
miR-107 to up-regulate the expression of TFRC (transferrin
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receptor), further promoting the transitional phenotype of BCa
cells from epithelial to mesenchymal, thereby promoting the
progress of BCa. (56) Another circRNA, circPTK2, was
significantly increased in BCa, and its expression level is
closely related to LNM. CircPTK2 can promote the
proliferation and migration of BCa cells, but its specific
mechanisms are still unclear (105).
OTHER MOLECULES AS PREDICTIVE
BIOMARKERS

In addition to the molecules described above, studies on the
tumor microenvironment and genetic modification can also help
predict the lymphatic metastasis of bladder cancer.

Tumors often form a microenvironment that allows
inflammatory cells to proliferate and produce large amounts of
mediators. D’Andrea et al. (106) found that LMR (lymphocyte-
to-monocyte ratio) and NLR (neutrophil-to-lymphocyte ratio)
can be used as independent factors to predict the preoperative
LNM and postoperative recurrence rate of BCa patients. Zhou
et al. (107) found that lymphatic vessel density (LVD) within and
around the tumor increases, and lymph node metastasis of
bladder cancer also increase significantly. LVD is also related
to the patient’s prognosis.

m6A (N6-methyladenosine) refers to methylation of the N6
position of adenosine bases. m6A RNA modification is a
reversible posttranscriptional modification process maintained
Frontiers in Oncology | www.frontiersin.org 9
by a multicomponent methyltransferase ‘writer’ complex
(KIAA1429, METTL3, METTL14, RBM15, WTAP, and
ZC3H13) and removed by demethylases ‘erasers’ (FTO and
ALKBH5). The function of m6A in mRNA metabolism
primarily depends on reader proteins, which include
HNRNPC, YTHDC1, YTHDC2, YTHDF1, and YTHDF2.
These regulators were differentially associated with different
clinicopathological variables of BCa patients. The expression of
WTAP was significantly correlated with LNM (108). Han et al.
(109) found that METTL3 was significantly increased in bladder
cancer and correlated with high histological grade and poor
prognosis. METTL3 interacted with the microprocessor protein
DGCR8 and positively modulated the pri-miR221/222 processes,
resulting in the reduction of PTEN, which ultimately leads to the
progression of bladder cancer.
PREDICTIVE MODELS AS BIOMARKERS
FOR BCA LNM

The prediction model includes many aspects, such as molecules,
imaging, and pathology. With the advent of models, the
predictive results of bladder cancer lymphatic metastasis have
become more and more reliable.

Gene Expression Model
Smith et al. (110) developed a 20-GEM (gene expression model)
for predicting pathological node status, which is evaluable on
FIGURE 5 | The role of circRNAs in bladder cancer lymph node metastasis. CircRNAs can play a role in bladder cancer as oncogenes and tumor suppressor
genes. They can also predict lymph node metastasis.
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primary tumor tissue from clinically node-negative (cN0)
patients. The predictive efficacy of the model is modest. Seiler
et al. (111) invented a KNN51 (K-nearest neighbor classifier 51)
to predict pathological lymph node metastases, but the lack of
external validation limited its application. Lu et al. (112)
presented a preoperative nomogram incorporating the LNM
signature and a genomic mutation of MLL2. The LNM
signature consists of 48 selected features. The model
demonstrated good discrimination and good calibration.
KNN51 included 24 non-coding features from the 51 gene
signature, but the LN20 signature was based only on coding
genes. Clinical factors were not incorporated into the predictive
models for evaluation.

Radiomics Nomogram
Wu et al. (113, 114) developed and validated two types of
radiomics nomograms incorporating the radiomics signature
and CT/MRI-reported LN status for the preoperative
prediction of LNM in patients with BCa, which was a non-
invasive preoperative prediction tool. It shows favorable
predictive accuracy, especially for cN0 patients. Multicenter
validation should be performed to acquire high-level evidence
for its clinical application.

Genomic-Clinicopathologic Nomogram
Wu et al. (115) constructed an inclusive nomogram that
incorporated the five-mRNA-based classifier, image-based LN
status, transurethral resection (TUR) T stage, and TUR
lymphovascular invasion (LVI) to predict LNM in BCa
patients. Five LN-status-related mRNAs include ADRA1D,
COL10A1, DKK2, HIST2H3D, and MMP11. It shows
favorable discriminatory ability and may aid in clinical
decision-making, especially for cN-patients. However, it
requires multicenter prospective clinical trials to provide high-
level evidence for clinical application.

Genomic-Radiomics Nomogram
Chen et al. (116) validated a genomic-radiomics nomogram
incorporating CCR7 and CT to predict LNM in patients with
BCa. The combined evaluation of CCR7 and CT appeared to be a
more reliable marker for lymph node metastasis in BCa than the
diagnosis by CT or CCR7 alone. However, these results require
further confirmation by large sample and multi-center
prospective studies.
OTHER FACTORS AFFECTING THE
PROGNOSIS OF BCA

Systemic Diseases
In recent years, studies have found that some systemic diseases
were closely related to tumor occurrence and development.
Metabolic syndrome (MetS) was defined as the presence of
three of the following: hypertension, hyperlipidemia, diabetes,
or body mass index >30. Previous studies have proved that MetS
cannot predict higher pathological stages and the risks of LVI
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and LNM, but a single component of metabolic syndrome was
related to them. Body mass index, waist circumference, and
hypertension were positively correlated with the risk of higher
pathological stages. And higher BMI value was related to
lymphatic invasion and lymph node metastasis (117, 118).
Obesity was significantly related to recurrence-free survival,
cancer-specific survival, and overall mortality. Adipose tissue
can produce a variety of inflammatory factors, including leptin,
adiponectin, and cytokines. Leptin played an anti-tumor effect by
promoting the proliferation and activation of natural killer cells
(119, 120). Nonalcoholic fatty liver was positively correlated with
March 2021 | Volume 11 | Article 648968
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TABLE 2 | The relationship between biomarkers and prognosis in bladder cancer.

Reference Marker Relationship with
LNM

Prognosis

57 VEGF-C Positive DFS
64 COX-2 Positive OS
65 PCMT1 Positive OS
67 Sonic Hedgehog Positive No
69 CXCL5 Positive OSˎPFSˎRFS
75 MMPs Positive OSˎRFS
76 IPO11 Positive OS
79 SCD1 Positive OS
– ISYNA1 Positive –

82 mAR-SLC39A9 Positive OSˎDFS
88 Maspin Negative OSˎPFS
89 GATA6 Negative OS
90 FOXO Negative OS
Chen et al. (4) miR-101 Negative OS
93 miR-143 Negative OS
94 miR-133b Negative OSˎPFS
– miR-539 Negative –

18 miR-497 Negative OS
19 miR-154 Negative OS
21 miR-223 Negative No
95 miR-148a Negative OS
– miR-3658 Positive –

97 LncRNA MALAT1 Positive OS
98 LncRNA PVT1 Positive OS
– LncRNA OXCT1-AS1 Positive –

34 LncRNA BLACAT2 Positive OS
35 LncRNA LNMAT1 Positive OSˎDFS
Peng et al. (37) LncRNA SNHG16 Positive OS
99 LncRNA ZFAS1 Positive OSˎPFS
– LncRNA DLX6-AS1 Positive –

42 LINC01296 Positive OS
43 LncRNA DANCR Positive OSˎDFS
100 LncRNA SPRY4-IT1 Positive OS
46 LncRNA NNT-AS1 Positive OS

LncRNA LNMAT2 Positive
– LncRNA HOXA-AS2 Positive –

Wang et al. (101) LncRNA HNF1A-AS1 Positive OS
Cheng et al. (102) LncRNA ROR1-AS1 Positive OS
103 LncRNA RMRP Positive OS
– CircHIPK3 Negative –

52 CircFNDC3B Negative OS
He et al. (53) CircFUT8 Negative OS
Dong et al. (54) CircACVR2A Negative OS
55 CircPICALM Negative OS
56 cTFRC Positive OS
– CircPTK2 Positive –
OS, overall survival; DFS, disease free survival; PFS, progression-free survival; RFS
relapse free survival.
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BCa, and it was a poor prognostic factor for BCa. Patients with
nonalcoholic fatty liver disease had elevated vascular endothelial
growth factor, interleukin 6, TNF-a, and IGF-1. These factors
may increase the risk of BCa recurrence and lead to a poor
prognosis (121). Studies have shown that patients with BCa had
higher insulin resistance than those without cancer but with
bladder disease (122). DM was associated with elevated BCa or
cancer mortality risk, especially in men (123). Metformin is the
most commonly used drug for patients with t2DM. Our team’s
study found that the intake of metformin was positively
associated with RFS, which improved PFS and cancer-specific
survival (124). Metformin targeted a YAP1-TEAD4 complex via
AMPKa to regulate CCNE1/2 in BCa cells (125). It can suppress
cyclin D1, cyclin-dependent kinase 4 (CDK4), E2F1, and
mammalian target of rapamycin (mTOR) (126). The use of
insulin can increase the risk of BCa progression (127). High-
dose human insulin and insulin glargine similarly promoted T24
BCa cell proliferation via PI3K-independent activation of
Akt (128).

Environmental Toxins
Environmental toxins are closely related to cancer occurrence and
development, and arsenic is the most reported in BCa.
Dimethylarsinic acid (DMAV) is a methylated metabolite of
arsenicals found in most mammals, and long-term exposure to
DMAV can lead to BCa. Previous studies have found that
recurrent BCa with high arsenic levels in tissues was more
aggressive and had a higher stage and grade, and recured earlier
than people with low levels of arsenic (129). Zhou et al. found that
chronic arsenic exposure can upregulate HER2 in human and rat
bladder epithelial cells and promote the proliferation, migration,
epithelial-mesenchymal transition, and angiogenesis of cancer
cells by activating the MAPK, PI3K/AKT, and STAT3 pathways
(130). Moreover, sodium arsenite can reduce the human urothelial
WIF1 gene expression, increase its DNA methylation level, and
promote cancer cells’migration. TheWIF1 gene expression and its
DNA methylation can be considered as potential biomarkers for
the diagnosis of human BCa (131).
CONCLUSIONS

For the LNM in BCa, three mechanisms are mainly involved:
tumor cell proliferation, tumor cell migration and invasion, and
chemosensitivity. Most biomarkers are related to the
proliferation, migration, and invasion of BCa cells. Several
biomarkers are involved in chemosensitivity. MiR-143, miR-
101, miR-133b, MALAT1, CXCL5, and VEGF-C are related to
all three of the above mechanisms. These biomarkers are more
likely to be prognostic factors for BCa with LNM, but a large
Frontiers in Oncology | www.frontiersin.org 11
number of retrospective studies are still needed for further
verification. Previous studies have shown that most biomarkers
have a clear relationship with the prognosis of BCa patients
(Table 2). However, the relationship between these eight
biomarkers: ISYNA1, miR-539, miR-3658, OXCT1-AS1,
DLX6-AS1, HOXA-AS2, circHIPK3, and circPTK2 and
prognosis is still unclear; therefore, further research is needed
to tap into their potential for the prognosis of BCa patients.
Many biological assessment methods are economical and
accurate. For example, peripheral blood can detect MMP,
LMR, and NLR. Urine can detect the methylation status of
GATA6 promoter, CXCL5, and MMP. Genetic testing for
LNM is more sensitive and specific than traditional
pathological examinations and is particularly suitable for
micrometastasis diagnosis. Those test samples are easy to
obtain before surgery, with strong reproducibility and high
clinical feasibility. Recently, the research on SNP and
m6A is also a hot spot. The relationship between them and
bladder cancer with lymph node metastasis is not yet clear,
and further investigation is needed, but it provides new
directions for our future research. As for imaging, pathology,
and molecular composition models, they are more accurate
in terms of predicting lymphatic metastasis for bladder
cancer, which should be studied in-depth and applied to
clinical practice.
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