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Hereditary Breast and Ovarian Cancer (HBOC) syndrome is a condition in which the risk of
breast and ovarian cancer is higher than in the general population. The prevalent
pathogenesis is attributable to inactivating variants of the BRCA1-2 highly penetrant
genes, however, other cancer susceptibility genes may also be involved. By Exome
Sequencing (ES) we analyzed a series of 200 individuals selected for genetic testing in
BRCA1-2 genes according to the updated National Comprehensive Cancer Network
(NCCN) guidelines. Analysis by MLPA was performed to detect large BRCA1-2 deletions/
duplications. Focusing on BRCA1-2 genes, data analysis identified 11 cases with
pathogenic variants (4 in BRCA1 and 7 in BRCA1-2) and 12 with uncertain variants
(7 in BRCA1 and 5 in BRCA2). Only one case was found with a large BRCA1 deletion.
Whole exome analysis allowed to characterize pathogenic variants in 21 additional genes:
10 genes more traditionally associated to breast and ovarian cancer (ATM, BRIP1, CDH1,
PALB2, PTEN, RAD51C, and TP53) (5% diagnostic yield) and 11 in candidate cancer
susceptibility genes (DPYD, ERBB3, ERCC2, MUTYH, NQO2, NTHL1, PARK2, RAD54L,
and RNASEL). In conclusion, this study allowed a personalized risk assessment and
clinical surveillance in an increased number of HBOC families and to broaden the
spectrum of causative variants also to candidate “non-canonical” genes.
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INTRODUCTION

Breast cancer (BC) represents a priority public health problem
being the most common cancer in women (1, 2). Families with
a history of multiple BC or ovarian cancer (OC) approximately
account for 15% of all patients with BC (3). Hereditary breast
and ovarian cancer (HBOC) is an adult-onset condition
associated with a high risk of breast and ovarian cancer and
an increased risk of other cancers such as prostate cancer,
pancreatic cancer, and melanoma (4, 5). Since 1994, when
BRCA1 (MIM#113705) and BRCA2 (MIM#600185) were
identified, pathogenic variants (PVs) in these two genes have
been known to be the most important cause of HBOC (6–8). In
the majority of cases, the BRCA1 or BRCA2 PVs are inherited
from one of the parents accompanied by a cancer susceptibility
transmitted as an autosomal dominant trait. On average, the
risk of cancer differs between the two genes, as for BRCA1 the
assessed average risk of breast and ovarian cancers ranges from
57 to 65% and from 20 to 50%, respectively, and for BRCA2
the risk ranges from 35 to 57% and from 5 to 23%, respectively
(9, 10).

The identification of PVs in BRCA1 or BRCA2 genes has
important clinical implications, as, when detected, represents
important information to guide patients therapeutic and
preventive choices. Interventions, such as risk-reducing
bilateral mastectomy and salpingo-oophorectomy or annual
breast magnetic resonance imaging (MRI) screening are
available to subjects who carry BRCA1 or BRCA2 PVs to
enable tumor early detection and active risk reduction (11,
12). The presence of BRCA1-2 PVs can also impact cancer
treatment decisions, principally with regard to the employment
of platinum agents or poly(ADP-ribose) polymerase (PARP)
inhibitors (13).

It is now estimated that more than one-half of individuals
who meet the National Comprehensive Cancer Network
(NCCN) testing criteria for HBOC carry PVs in genes other
than BRCA1 or BRCA2. Most of these genes encode proteins
sharing the same homologous recombination DNA repair
function with BRCA1-2 ATM, BRIP1, CHEK2, NBN, PALB2,
RAD50, RAD51C, and RAD51D (14–22). In addition, PVs in
genes involved in the overlapping Fanconi anemia (FA) pathway
and in the mismatch repair (MMR) pathway have been also
found in BC and OC patients (23). Finally, several other genes
beyond BRCA1-2, often with a not yet fully cleared clinical
significance, have been found to be mutated and involved in
HBOC cases by exome sequencing (ES) studies over the last
years (24, 25).

The objective of the current study was to analyze by
ES a series of 200 individuals who meet the National
Comprehensive Cancer Network (NCCN) testing criteria for
HBOC. This study allowed to go further beyond BRCA1-2 genes
and identify in additional 21 patients with PVs in canonical
(ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and TP53)
and candidate non-canonical (DPYD , ERBB3, ERCC2,
MUTYH, NQO2, NTHL1, PARK2, RAD54L, and RNASEL)
HBOC genes.
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MATERIALS AND METHODS

Selection of Patients and DNA
Samples’ Preparation
Two hundred patients were selected at the Medical Genetics Unit
(A.O.U.S, Siena, Italy) between 2019 and 2020 for Exome
Sequencing (ES) according to the updated National
Comprehensive Cancer Network (NCCN) guidelines (26). The
criteria used to access the test are: breast cancer diagnosed <45
years, breast and ovarian cancer, triple negative breast cancer
diagnosed <60 years, male breast cancer diagnosed at any age,
bilateral breast cancer with the first diagnosed <50 years,
epithelial ovarian cancer diagnosed at any age, exocrine
pancreatic cancer diagnosed at any age, and personal history of
breast cancer and one close blood relative with breast cancer <50
or ovarian cancer or pancreatic cancer.

Genetic counseling was carried out to evaluate each patient’s
personal and familial cancer history considering not only breast
and ovarian cancers but also other types of cancer. All patients
gave their written informed consent to the study that was carried
out according to the Helsinki declaration.

Genomic DNA was extracted from EDTA peripheral blood
samples using MagCore HF16 (Diatech Lab Line, Jesi, Ancona,
Italy) according to the manufacturer’s instructions. DNA
quantity was estimated using the Qubit 3.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA).

Exome Sequencing
Sample preparation was performed following the Nextera Flex
for Enrichment manufacturer protocol. The workflow uses a
bead-based transposome complex to tagment genomic DNA,
which is a process that fragments DNA and then tags the DNA
with adapter sequences in one step. After saturation with input
DNA, the bead-based transposome complex fragments a set
number of DNA molecules. This fragmentation provides
flexibility to use a wide DNA input range to generate
normalized libraries of consistent tight fragment size
distribution. Following tagmentation, a limited-cycle PCR adds
adapter sequences to the ends of a DNA fragment. A subsequent
target enrichment workflow is then applied. Following pooling,
the double stranded DNA libraries are denatured and
biotinylated TruSight One Expanded Oligonucleotide probes are
hybridized to the denatured library fragments. After
hybridization, Streptavidin Magnetic Beads (SMB) then
capture the targeted library fragments within the regions of
interest. The captured and indexed libraries are eluted from
beads and further amplified before sequencing. The exome
sequencing analysis was performed on the Illumina
NovaSeq6000 System (Illumina San Diego, CA, USA) according
to the NovaSeq6000 System Guide. Reads were mapped against
the hg19 reference genome by using the Burrow-Wheeler aligner
BWA (27). Variant calling was obtained using an in-house
pipeline which takes advantage of the GATK Best Practices
workflow (28).

ES data were filtered using eVai (enGenome) software.
Variants’ prioritization was obtained by using increasingly
May 2021 | Volume 11 | Article 649435
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enlarged filters: i) genes (BRCA1 and BRCA2); ii) phenotype
(using HPO terms: Breast and ovarian neoplasms);
iii) phenotype (using HPO terms: Neoplasms). In order to
find PVs we focused our attention on rare variants (minor
allele frequency, MAF <0,01). Frameshift, stopgain, and
splice site variants were prioritized as pathogenic. Missense
variants were predicted to be damaging by CADD-
phred prediction tools (score ≥25) and splice site variants by
MaxEntScan tool.

The following public databases were used for the
interpretation of the variants: ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar/), LOVD (https://databases.lovd.nl/shared/
genes), the Human Genome Mutation Database (HGMD,
http://www.hgmd.cf.ac.uk/ac/index.php), and BRCA Exchange
database (https://brcaexchange.org/).

Sanger Sequencing
Selected variants (VUS and PVs) were confirmed by Sanger
sequencing. DNAs were sequenced using the PE Big Dye
Terminator Cycle Sequencing Kit on an ABI Prism 3130
analyzer (Applied Biosystems). The data were analyzed using
the Sequencher version 4.9 software.

MLPA
SALSA MLPA (Multiplex Ligation-dependent Probe
Amplification) probe mixes P002-D1 and P090-C1 were
used for large deletions/duplications analysis in BRCA1-2,
according to the manufacturer’s instructions (MRC-Holland,
Amsterdam, Netherlands). MLPA amplicons were run on
ABI 3130 Genetic Analyzer (Applied Biosystems, Foster City,
USA) while the collected data were analyzed using Coffalyser.net
Software (MRC-Holland). Peak heights were normalized
and deletions/duplications were defined as recommended by
the manufacturer.

RNA Analysis
Total RNA was isolated from PAXgene blood RNA tubes
(PreAnalytiX®, Qiagen, Hilden, Germany) (http://www.qiagen.
com), with PAXgene Blood RNA Kit (IVD) (PreAnalytiX®),
following the manufacturer’s instructions. RNA quality was
evaluated by NanoDrop 2000 Spectrophotometer (Thermo
Scientific). For each sample, 1 µg of RNA was reverse-
transcribed into cDNA using a dedicated Qiagen kit
(QuantiTect®Reverse Transcription Kit, Qiagen) according to
the manufacturer’s instructions. Amplification was conducted
on a Thermal Cycler 2720 (Applied Biosystems) using primers:
exons 3-4 Fw (5’-TCACTGGTACTCTTTCTAATCC-3’), exon 7
Rv (3’-TTCAGGAGCAAAGCTGATCTG-5’). Altered transcript
pattern was confirmed by comparison with the transcript
patterns observed in healthy control. Normal and aberrant
bands were excised from the agarose gel, purified using the
MinElute Gel Extraction Kit (Qiagen). DNAs were sequenced by
Sanger sequencing using the PE Big Dye Terminator Cycle
Sequencing Kit on an ABI Prism 3130 analyser (Applied
Biosystems). The data were analyzed using the Sequencher
version 4.9 software.
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RESULTS

In the present study, 200 index patients were selected for
analysis of BRCA1-2 genes according to the updated National
Comprehensive Cancer Network (NCCN) guidelines. Exome
sequencing (ES) followed by a virtual panel focusing on BRCA1
and BRCA2 genes were firstly performed. We obtained a mean
coverage depth of 120× for targeted sequenced regions (range,
50–180×). This analysis was flanked by MLPA for the
identification of large BRCA1-2 deletions/duplications.
Pathogenic variants (PVs) were filtered according to
frequency, mutation category, literature, and mutation
database data (BRCA exchange, ClinVar database). After
BRCA1-2 analysis, PVs in other cancer susceptibility genes
were searched and classified according to whether they were
traditionally associated (canonical HBOC genes) or not
(candidate non-canonical HBOC genes) to breast and
ovarian cancer.

Clinical Features of Cancer Patients
The study cohort included a total 200 index subjects (185 females
and 15 males; age 34–95 years) with a clinical suspicion of HBOC
on the basis of individual and/or family history. The average age
of first cancer diagnosis was 55 years (range: 27–87 years) while
the average age of second malignancy diagnosis was 61 years
(range: 28–94 years). At first diagnosis 150 index patients had
breast cancer (BC), 13 ovarian cancer (OC), 4 prostate cancer
(PrC), 17 pancreatic cancer (PC), 2 melanoma (M), 8 other types
of cancer, and 6 family history of cancer. Considering BC
patients, 122 were monolateral and 23 bilateral cases and 5
unknown. Among bilateral BC, 13 patients had metachronous
BC and 10 synchronous BC. The range between the first and the
second diagnosis was 1–27 years (Table 1). Relating to BC
histology, 22 had ductal carcinoma in situ, 78 had invasive
ductal carcinoma, 3 had lobular carcinoma in situ, 20 invasive
lobular carcinoma, and 27 other types of cancer. As regards the
second tumor, 3 had ductal carcinoma in situ, 13 had invasive
TABLE 1 | Clinical characteristics of HBOC patients.

HBOC PATIENTS N°

SEX
Female 185
Male 15
AGE AT COUNSELING Median (range)

34–95
AGE AT DIAGNOSIS (years) Median (range)
Primary tumor 27–87
Secondary tumor 28–94
FIRST DIAGNOSIS N°
Breast Cancer 150
Ovarian Cancer 13
Prostate Cancer 4
Pancreatic Cancer 17
Melanoma 2
Others 8
Family history 6
TIME BETWEEN 1st and 2nd tumors (years) 1–27
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ductal carcinoma, 3 invasive lobular carcinoma, and 24 other
types of cancer. BC therapy was mastectomy in 40 cases, breast
conserving therapy in 78 cases, and unknown in 36 cases
(Table 2).

BRCA1-2 Variants and Large
Deletions/Duplications
BRCA1/2-targeted analysis revealed 11 pathogenic variants (4 in
BRCA1 and 7 in BRCA2) and 12 Variants of Uncertain
significance (VUS) (7 in BRCA1 and 5 in BRCA2) (Table S1)
(Table S2). PVs were two nonsense substitutions, seven
frameshift deletions, one splicing, and one missense change
(Table S1). Among PVs, nine were already reported in literature
or in the BRCA Exchange database (29–35). Seven out of 11
(63%) variants were located in exon 11. One variant (c.4485-
1G>T) was intronic and predicted to impact the splicing of
mRNA (MaxEntScan). VUS were mostly missense substitutions
located in exon 11 (8/12; 66%) (Table S2). Seven VUS were
already reported in ClinVar database and five were new
(Table S2). MLPA analysis for BRCA1-2 of the same samples
revealed only one rearrangement (1/200; 0,5%): a deletion on
exon 20 of the BRCA1 gene (rsa 17q21(exon 20)x1) (Figure S1).
Clinical features of patients with BRCA1-2 aberrations are
reported in Figure S2.

Pathogenic Variants in Canonical HBOC
Genes
Beyond BRCA1-2 genes, ES data analysis revealed 10
pathogenic variants in 7 HBOC-related genes (canonical
genes): ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and
TP53. Among these variants, six were nonsense, three
were missense, and one splicing variant. Eight variants were
already reported in literature or in ClinVar database (Table 3)
(36–43).
Frontiers in Oncology | www.frontiersin.org
TABLE 2 | Clinical characteristics of Breast Cancer (BC) patients.

BC PATIENTS N

TUMOR DESCRIPTION
Monolateral 122
Bilateral metachronous 13
Bilateral synchronous 10
Unknown 5
HISTOLOGY 1st breast cancer
Ductal in situ 22
Ductal invasive 78
Lobular in situ 3
Lobular invasive 20
OTHER TYPE OF CANCER 27
HISTOLOGY 2nd breast cancer
Ductal in situ 3
Ductal invasive 13
Lobular in situ 0
Lobular invasive 3
OTHER TYPE OF CANCER 24
TYPE OF SURGERY
Mastectomy 40
Conserving therapy 78
Unknown 36
4
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With regard to the clinical phenotype, the index patient
(III-1) with the PV in the ATM gene (c.1102C>T; p.(Gln368*))
was diagnosed with bilateral BC at 60 years (Figure 1A).
Histological analysis indicated multifocal infiltrating ductal
Frontiers in Oncology | www.frontiersin.org 5
carcinoma. As concerns the familial affected individuals, two
maternal uncles (II-2 and II-3) resulted to be affected with
lung cancer diagnosed at 70 years and 50 years, respectively, a
paternal aunt with leukemia (II-7) and a paternal uncle (II-8)
A
B

D

E F

G

I

H

J

C

FIGURE 1 | (A–J) Pedigrees of patients carrying pathogenic variants in canonical genes. The gene and their variants are reported below the symbol of each
proband. The arrows indicate the proband from each family. The black symbols indicate “HBOC-spectrum phenotypes” while striped symbols indicate “other
neoplasms.” AC, abdominal cancer; BC, breast cancer; CC, colorectal cancer; GC, gastric cancer; GIC, gastrointestinal cancer; KC, kidney cancer; L, leukemia;
LC, lung cancer; LvC, liver cancer; M, melanoma; OC, ovarian cancer; PC, pancreatic cancer; PrC, prostate cancer, S, sarcoma; SCC, spinal cord cancer;
TC, tongue cancer; TyC, Thyroid cancer; UC, uterine cancer; X, not defined.
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with colorectal cancer (Figure 1A). Individual (I-1) had BC
at 80 years and the two grandfathers (I-2 and I-4) died of
gastric cancer (Figure 1A). The patient (II-1) with the
BRIP1 PV (c.2392C>T; p.(Arg798*)) developed colorectal
adenocarcinoma at 61 years and ovarian serous carcinoma at
64 years. The mother (I-2) developed gastric cancer at 65 years
and her brother (I-1) died of gastric cancer at 65 years. The father
(I-3) was diagnosed with lung cancer at 64 years and, among
paternal relatives, there are two cases with BC at 46 years (III-1)
and at 44 years (II-5), a case with lung cancer (II-4) and another
case with gastric cancer at 72 years (I-7) (Figure 1B). The patient
with the (c.781G>T; p.(Glu261*)) variant in CDH1 had bilateral
lobular BC at 34 years (Figure 1C). The patient (II-5) with
PALB2 PV (c.2257C>T; p.(Arg753*)) was affected by prostate
cancer at 71 years and by gastric cancer at 72 years. He had one
sister (II-4) and one brother (II-3) with lung cancer (both at 70
years), another brother (II-2) with pancreatic cancer (70 years), a
nephew (III-1) with liver cancer, and another nephew (III-3)
with spinal cord cancer. The father (I-2) died of gastric cancer at
30 years (Figure 1D). The case (III-1) with the (c.2336C>G;
p.(Ser7798*)) PV in PALB2 was diagnosed with unilateral
infiltrating ductal BC at the age of 41 years (Figure 1E). The
father had gastric cancer (II-2), the mother developed BC at
40 years (II-4), and the maternal grandfather prostate cancer at
80 years (I-4) (Figure 1E). Concerning PVs in PTEN, the patient
(II-1) harboring the (c.277C>T; p.(His93Tyr)) substitution was
diagnosed with ductal invasive BC at 40 years. At 45 years she
had uterine adenocarcinoma (Figure 1F). The case (II-1) with
the (c.334C>G; p.(Leu112Val)) variant had a personal history of
ductal bilateral BC (53 years) (Figure 1G). At the age of 55 years,
the patient underwent left partial glossectomy for microinvasive
carcinoma of the left lingual edge (Figure 1G). The patient (II-1)
with the (c.577C>T; p. (Arg193*)) nonsense variant in RAD51C
had BC at 55 years (Figure 1H). Two paternal cousins were
affected by BC at the age of 45 (II-3) and 35 (II-5) years,
respectively (Figure 1H). The two patients (II-1) with TP53
PVs (c.560-1G>A and c.841G>A; p.(Asp281Asn)) were both
diagnosed with ovarian serous carcinoma, one at 79 years
(Figure 1I) and the other at 84 years (Figure 1J). The patient
with the c.560-1G>A splicing change has two sisters with a
diagnosis of BC (at 62, II-3 and at 70 years, II-4) and a sister
(II-6) with gastric cancer (69 years) (Figure 1I). The mother
(I-2) also had gastric cancer at 63 years and the nephew (III-3)
melanoma at 56 years (Figure 1I). As concerns the second
patient (c.841G>A; p.(Asp281Asn)), no familiarity for cancer
was reported (Figure 1J).
Pathogenic Variants in Non-Canonical
HBOC Genes
Twelve patients had PVs in genes not traditionally associated
with HBOC: DPYP, ERBB3, ERCC2, MUTYH, NQO2, NTHL1,
PARK2, RAD54L, and RNASEL. Four variants were nonsense,
four missense, three splicing, and one frameshift deletion.
Nine variants were previously classified as pathogenic or likely
pathogenic on the basis of literature and database data (Table 4)
(44–49).
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Comparison of variant frequencies with an internal biobank
of 1,022 control samples (age ranging between 34 and 95 years)
without any history of tumor and analyzed by ES revealed that
variants have frequencies <1% (Table S4).
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As concerns phenotype, we found the c.1905+1G>A splice site
variant in the DPYP gene in a patient (II-1) diagnosed with
unilateral BC at 45 years (Figure 2A). Among paternal relatives,
an uncle (I-4) died of gastric cancer at 60 years (Figure 2A).
A B

D

E
F

G

I

H

J

K L

C

FIGURE 2 | (A–L) Pedigrees of patients carrying pathogenic variants in non-canonical genes. The gene and their variants are reported below the symbol of each
proband. The arrows indicate the proband from each family. The black symbols indicate “HBOC-spectrum phenotypes” while striped symbols indicate “other
neoplasms.” Abbreviations as in Figure 1.
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The ERBB3 variant (c.277G>T; p.(Glu93*)) was identified in a
patient (III-2) with monolateral infiltrating ductal BC diagnosed
at 47 years (Figure 2B). As concerns paternal relatives, there was
an uncle (II-2) dead at 72 years of prostate cancer, one cousin of
the father (II-5) dead at 50 years of BC, and a grandmother (I-1)
with heteroplasia of the uterus (Figure 2B). As regards maternal
relatives, there was familiarity for tumors in grandmother
siblings (I-6, I-7, I-9) and in cousins of the mother (II-10 and
II-11) (Figure 2B). The (c.2164C>T; p.(Arg722Trp)) variant in
the ERCC2 gene was found in a patient (III-1) with monolateral
infiltrating ductal carcinoma diagnosed at 84 years. The father
(II-1) died at 70 years of pancreatic cancer and the paternal
grandmother (I-1) died at 60 years of BC (Figure 2C). Among
the four patients with MUTYH PVs, the (c.421del;
p.(Gln141Argfs*5)) variant was found in a male patient (II-2)
who had monolateral ductal infiltrating BC diagnosed at 87 years
(Figure 2D). His brother (II-1) had bilateral BC at 71 years and
his father (I-1) had colorectal cancer at 55 years (Figure 2D). The
patient (II-1) with the (c.536A>G; p.(Tyr179Cys)) variant in
MUTYH had angioma of the upper gingival arch at 36 years
and monolateral infiltrating BC at 52 years (Figure 2E).
Familiarity for gastrointestinal tract neoplasms in the paternal
branch (I-2 and I-3) was present. As regards the one with the
(c.733C>T; p.(Arg245Cys)) variant had monolateral ductal in situ
BC diagnosed at 53 years (Figure 2F). She had a mother (I-7) who
died of bilateral BC at the age of 77 years and a strong family
history of cancer including gastric (I-1) prostate (I-2), uterus
neoplasia (I-4), lung cancer (I-5), and pancreatic cancer (I-9)
(Figure 2F). The case (II-1) with the MUTYH c.933+3A>C
variant had monolateral ductal in situ BC at 55 years and two
previous melanomas, one in the calf at 41 years and one in the
back at 52 years. The father (I-6) and two uncles (I-4 and I-7)
were diagnosed with lung cancer (Figure 2G). The patient (II-1)
with the variant c.418-2A>G in the NQO2 gene had monolateral
ductal infiltrating BC at 66 years (Figure 2H). In the family, the
father (I-4) had colorectal neoplasm, the mother (I-5) thyroid
cancer, one maternal aunt (I-6) and her daughter (II-2) BC, and
one cousin (II-3) kidney cancer (Figure 2H). We assessed the
pathogenicity of this unclassified variant in NQO2 gene by
patient’s mRNA analysis. The analysis showed that this variant
abolishes canonical acceptor splice site and results in the
formation of two aberrant transcripts: the first skipping of exon
6 p.(Val140_Ala173del)) and the second skipping of exons 5 and
6 p(Phe102_Ala173del)) (data not shown). The (c.268C>T;
p.(Gln90*)) stop-gain variant in the NTHL1 gene was identified
in a woman (IV-3) with ovarian cancer (62 years) (Figure 2I). In
the family, three affected relatives with BC at 44 (III-1), 65 (III-2),
and 56 (IV-1) years are present (Figure 2I). The father (III-5)
died of lung cancer at 63 years (Figure 2I). The patient (II-3) with
the PARK2 variant (c.125G>C; p.(Arg42Pro)) was diagnosed with
monolateral lobular infiltrating BC at 75 years (Figure 2J).
Previously she was affected by sarcoma of the left leg (61 years)
(Figure 2J). In the family, she has a nephew (III-1) who died of
BC (46 years) and a maternal cousin (II-1) who died of BC at 50
years (Figure 2J). The case (III-1) with the (c.1093C>T;
p.(Arg365*)) variant in RAD54L had a diagnosis of BC at 55
Frontiers in Oncology | www.frontiersin.org 8
years (Figure 2K). The mother (II-1) had uterus carcinoma at 84
years, a paternal aunt (II-5) and the grandmother (I-1) had
juvenile BC (Figure 2K). Finally, the case (II-1) mutated in the
RNASEL gene (c.793G>T; p.(Glu265*)) was diagnosed with
prostate cancer at 53 years and with pancreatic cancer at 64
years (Figure 2L). His father (I-2) died of prostate cancer at 62
years (Figure 2L).

Uncertain Variants in Cancer Genes
Beyond BRCA1-2
In the analysis of ES data, 74 variants were classified as
VUS (class 3) on the basis of the IARC recommendations
(Table S3). Most VUS were located in ATM and PALB2
genes (Table S3). Fourteen patients carried more than
one VUS on different genes. As regards to mutation types,
most were missense variants and the remaining were
duplications or deletions. Combined Annotation Dependent
Depletion (CADD) was considered to predict the effect of
the missense variants.
DISCUSSION

Multigene panel genetic tests are increasingly employed for the
screening of patients presenting HBOC (14–22). However,
multigene panel allows a limited gene analysis while Exome
Sequencing (ES) allows the simultaneous assessment of virtually
an unlimited number of genes. Previous studies on ES employed
for the analysis of HBOC patients demonstrated that it is a
powerful tool for the identification of PVs in known HBOC-
related genes (canonical) and for the discovery of novel disease
factors (non-canonical) (24, 25). However, ES analysis has the
limit of not identifying Copy Number Variants (CNVs) and PVs
in intronic regulatory elements. Here, we analyzed by ES a cohort
of 200 patients with a diagnosis of HBOC according to the
updated NCCN guidelines (26). ES data analysis allowed us to
identify 11 cases with pathogenic variants (4 in BRCA1 and 7 in
BRCA2) (5,5%) and 12 with uncertain variants (7 in BRCA1 and 5
in BRCA2). Only one case was found with a large BRCA1 deletion.
The relatively low diagnostic yield in BRCA1-2 genes is probably
due to the enlarged updated diagnostic NCCN guidelines. ES
analysis allowed to identify PVs in additional 21 individuals:
10 with PVs in genes already associated to breast and ovarian
cancer (ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and
TP53) and 11 in other candidate cancer susceptibility genes
(DYPD, ERBB3, ERCC2, MUTYH, NTHL1, NQO2, PARK2,
RAD54L, and RNASEL).

Regarding canonical HBOC genes, the genes more frequently
mutated were PTEN (2/200; 1%), TP53 (2/200; 1%), and PALB2
(2/200; 1%). It is well known that BC can be included within
several other described cancer syndromes, including Li-
Fraumeni syndrome and Cowden syndrome. Thus, it is
established that women who carry PVs in TP53 and PTEN
have an increased risk of BC (50, 51). In accordance, the two
patients with PVs in PTEN were diagnosed with BC. The two
patients mutated in TP53 were both diagnosed with ovarian
May 2021 | Volume 11 | Article 649435

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Doddato et al. Genes Beyond BRCA1-2 in HBOC Patients
serous carcinoma. Loss-of-function mutations in the PALB2
gene confer a predisposition to BC with a prevalence of
approximately 1% (52). We found two cases with PALB2 PVs,
one with unilateral infiltrating ductal BC and a clear maternal
cancer familiarity and one with prostate cancer, a personal
history of gastric cancer, and familiarity for other neoplasms.
The moderate-penetrance gene ATM, is mutated in 1–2% of BC,
while in our study it has been found mutated only once (1/200)
in a patient with multifocal infiltrating ductal carcinoma (53). As
concerns BRIP1, Cantor et al. firstly reported the gene mutated in
early-onset BC patients and subsequently this association was
reinforced by Seal and colleagues who reported truncating
mutations in BRIP1 as low-penetrance BC susceptibility alleles
(54, 55). Our study reported a nonsense BRIP1 variant in a
patient with ovarian serous carcinoma. In accordance with
literature data reporting the presence of CDH1 PVs in >80% of
invasive lobular BC, CDH1 has been found mutated in a patient
with lobular BC (56, 57). Since the discovery of RAD51C in 2010
as a gene responsible for hereditary BC and OC, indication of
including the gene in routine clinical genetic testing has been
controversial, due to the lower prevalence or the absence of
mutations found in subsequent studies (58–60). The present
study confirms the role of RAD51C in HBOC being found
mutated in a patient with BC.

Regarding new candidate non-canonical HBOC genes, the
most frequently mutated wasMUTYH (4/200; 2%). TheMUTYH
gene encodes a DNA glycosylase involved in the base excision
repair (61). Biallelic MUTYH mutations are involved in the
pathogenesis of a form of autosomal recessive colorectal
adenomatous polyposis (MUTYH-associated polyposis
syndrome, MAP) (62). A study focused on MUTYH-associated
extracolonic cancers demonstrated that monoallelic variants are
associated with an increased risk of gastric and liver cancers, as
well as a slightly increased risk of endometrial and breast cancers
(63). Here, we found four BC patients with MUTYH PVs: two
with ductal in situ and two with ductal infiltrating carcinoma.
They all have a strong family history of cancer. The DPYD gene
encodes a protein that is active in the catabolic pathway of 5-
fluorouracil and DPYD mutations result in an increased risk of
toxicity in cancer patients receiving 5-fluorouracil chemotherapy
(64). The rs291593 SNP in DPYD is associated with survival of
BC patients (65). In our cohort, DPYP was mutated in a patient
affected by unilateral BC. The variant was already demonstrated
to affect the transcript resulting in the skipping of exon 14
leading to an inactive DPYD allele (66). ERBB3, encodes for
HER3, a member of the EGFR family of receptor tyrosine kinases
(67). The role of ERBB3 as somatic driver of tumorigenesis has
been well documented, however, there is few data available about
the role of germline variants (68). There is only a study reporting
the identification of a germline predisposing mutation in a case
of erythroleukemia (69). We found an ERBB3 nonsense variant
in a patient with monolateral infiltrating ductal BC and a positive
cancer history among both paternal and maternal relatives.
ERCC2 encodes for an essential component of transcription
factor IIH involved in basal cellular transcription and
nucleotide excision repair (NER) of DNA lesions (36, 70). Data
Frontiers in Oncology | www.frontiersin.org 9
about its involvement in BC are at present not convincing (71).
Here, we report an ERCC2 missense variant in a patient with
monolateral infiltrating ductal BC and a positive oncological
history. NQO2 encodes a flavoprotein that catalyzes the 2-
electron reduction of various quinones, redox dyes, and the
vitamin K menadione (72). In 2009, Yu and colleagues
proposed NQO2 as a susceptibil ity gene for breast
carcinogenesis (73). Here, we identified a patient with a splice
site variant in the NQO2 gene that was never reported. mRNA
analysis demonstrated that the variant has splicing impact
generating two aberrant transcripts. NTHL1 initiates DNA base
excision repair of oxidized ring saturated pyrimidine residues
(74). Biallelic mutations in NTHL1 are responsible for familial
adenomatous polyposis-3 (FAP3) (48). Subsequently, since
NTHL1 mutations can cause a wide variety of cancers in
addition to colorectal cancer, the designation “NTHL1
syndrome” was proposed (75). We found a mutation of this
gene in a woman affected by ovarian cancer and subsequently by
pancreatic cancer, suggesting an HBOC spectrum phenotype.
PARK2, encoding a RING domain-containing E3 ubiquitin
ligase, was originally identified as a gene responsible for
autosomal recessive juvenile Parkinson disease-2 (PARK2, or
PDJ) (76). In more recent years, PARK2 has been characterized
as a tumor suppressor gene whose loss of heterozygosity
(LOH) and loss of expression have been observed in different
tumors such as lung, brain, breast, and ovarian cancer (77–79).
We found a PARK2 PV in a patient with sarcoma of the left leg
and monolateral lobular infiltrating BC. She has a positive BC
family history. RAD54L is a gene that was found mutated in
primary cancers, including BC (80). In the present study, we
identified a BC patient with a truncating variant in RAD54L.
RNASEL, encoding the endoribonuclease RNase L, is a key
enzyme in the interferon induced antiviral and anti-proliferate
pathway (81, 82). Mutations in RNASEL segregate with the
disease in prostate cancer families and specific genotypes are
associated with an increased risk of prostate cancer (49). In
accordance, we found a RNASEL stopgain variant in a patient
with a diagnosis of prostate cancer and a father dead at 62 years
of prostate cancer.

In conclusion, ES analysis in a cohort of HBOC suspected
patients allowed a diagnostic yield of a further −5% in non
BRCA1-2 genes. Canonical genes would have been included in a
multigene panel for diagnostic purposes while mutations in
candidate non-canonical genes would not have emerged if a
ES approach had not been carried out, overlapping the
boundaries of clinical conditions, often simplistically separated.
However, to make a diagnosis other experiments such as
segregation analysis should be performed and these genes
remains candidates. Variants in DPYD, MUTYH (c.536A>G
and c.933+3A>C), NTHL1, and RNASEL genes were also
found in controls, suggesting that these variants are probably
low–penetrance risk alleles. Finally although it is true that this
strategy increases the level of complication of the analysis and the
number of VUS per sample, their identification appears to be
essential for future definitive classification pooling together the
data of different studies.
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Supplementary Figure 1 | MLPA results for BRCA1 gene. MLPA results for
BRCA1 gene of a patient (#1369/19) with familial BC. MLPA size probes for each
exon (top) and genomic position (bottom), are given on the X axis. Calculated probe
ratios of test sample normalized to the reference samples is given on the Y axis.
Probe ratios are indicated by the dots. Black dots indicate probes within the
confidence interval (ratio 0.7 to 1.3 by default). Red dot reveals a heterozygous
deletion, probe ratio 0.5, in the test sample.

Supplementary Figure 2 | Pedigrees of patients carrying pathogenic variants in
BRCA1-2. Pedigree of patients #3027/20, 352/20, 5632/20, 5647/19, 2734/20,
1568/20, 937/20, 1946/20, 2523/20, 1356/20, 1354/20, and 1369/19. The gene
and their variants are reported below the symbol of each proband. The arrows
indicate the proband from each family. The black symbols indicate “HBOC-
spectrum phenotypes” while striped symbols indicate “other neoplasms.”
Abbreviations as in Figure 1.

Supplementary Table 1 | Pathogenic variants found in HBOC genes. HGVS,
Human Genome Variation Society (http://www.hgvs.org); ClinVar, Clinical Variation
database (https://www.ncbi.nlm.nih.gov/clinvar/); MAF, Minor Allele Frequency;
CADD, Combined Annotation Dependent Depletion; NA, non applicable; NR,
non reported.

Supplementary Table 2 | VUS variants found in HBOC genes. HGVS, Human
Genome Variation Society (http://www.hgvs.org); ClinVar, Clinical Variation
database (https://www.ncbi.nlm.nih.gov/clinvar/); MAF, Minor Allele Frequency;
CADD, Combined Annotation Dependent Depletion; NA, non applicable; NR,
non reported.

Supplementary Table 3 | VUS found in canonical and non-canonical HBOC
genes. HGVS, Human Genome Variation Society (http://www.hgvs.org); ClinVar,
Clinical Variation database (https://www.ncbi.nlm.nih.gov/clinvar/); MAF, Minor
Allele Frequency; CADD, Combined Annotation Dependent Depletion; NA, non
applicable; NR, non reported.

Supplementary Table 4 | Comparison of variant frequencies with an internal
biobank of 1022 samples (median range 34-95 years) without any history of
tumor and analysed by WES. HGVS, Human Genome Variation Society
(http://www.hgvs.org).
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Abe-Sandes K, et al. The Germline Mutational Landscape of BRCA1 and
BRCA2 in Brazil. Sci Rep (2018) 8:9188. doi: 10.1038/s41598-018-27315-2

36. Wang J, Li W, Shi Y, Huang Y, Sun T, Tang L, et al. Germline Mutation
Landscape of Chinese PatientsWith Familial Breast/Ovarian Cancer in a Panel of
22 Susceptibility Genes. Cancer Med (2019) 8:2074–84. doi: 10.1002/cam4.2093

37. Berx G, Cleton-Jansen AM, Nollet F, De Leeuw WJF, Van De Vijver MJ,
Cornelisse C, et al. E-Cadherin is a Tumour/Invasion Suppressor Gene
Mutated in Human Lobular Breast Cancers. EMBO J (1995) 14:6107–15.
doi: 10.1002/j.1460-2075.1995.tb00301.x

38. Vagena A, Papamentzelopoulou M, Kalfakakou D, Kollia P, Papadimitriou C,
Psyrri A, et al. Palb2 c.2257C>T Truncating Variant is a Greek Founder and is
Associated With High Breast Cancer Risk. J Hum Genet (2019) 64:767–73.
doi: 10.1038/s10038-019-0612-6
May 2021 | Volume 11 | Article 649435

https://doi.org/10.1002/ijc.25516
https://doi.org/10.3322/caac.21332
https://doi.org/10.1007/s10689-011-9506-2
https://doi.org/10.1007/s10689-011-9506-2
https://doi.org/10.1136/jmg.2004.028829
https://doi.org/10.1073/pnas.85.9.3044
https://doi.org/10.1073/pnas.85.9.3044
https://doi.org/10.1126/science.2270482
https://doi.org/10.1126/science.7545954
https://doi.org/10.1200/JCO.2006.09.1066
https://doi.org/10.1001/jama.2017.7112
https://doi.org/10.1001/jama.2010.1237
https://doi.org/10.3322/canjclin.57.2.75
https://doi.org/10.3322/canjclin.57.2.75
https://doi.org/10.1126/science.aam7344
https://doi.org/10.1002/cncr.30498
https://doi.org/10.1007/s10689-016-9956-7
https://doi.org/10.18632/oncotarget.16791
https://doi.org/10.1007/s10549-016-3948-z
https://doi.org/10.1038/gim.2014.40
https://doi.org/10.1200/JCO.2015.65.0747
https://doi.org/10.1200/JCO.2015.65.0747
https://doi.org/10.3390/cancers12092415
https://doi.org/10.3390/cancers12092415
https://doi.org/10.1038/gim.2015.166
https://doi.org/10.1038/nrc.2016.72
https://doi.org/10.3389/fgene.2019.01005
https://doi.org/10.6004/jnccn.2020.0017
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1101/201178
https://doi.org/10.1007/s13167-010-0037-y
https://doi.org/10.1016/j.jmoldx.2018.06.003
https://doi.org/10.1001/jamanetworkopen.2018.2140
https://doi.org/10.1002/humu.23842
https://doi.org/10.1042/BSR20182471
https://doi.org/10.1002/humu.23818
https://doi.org/10.1038/s41598-018-27315-2
https://doi.org/10.1002/cam4.2093
https://doi.org/10.1002/j.1460-2075.1995.tb00301.x
https://doi.org/10.1038/s10038-019-0612-6
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Doddato et al. Genes Beyond BRCA1-2 in HBOC Patients
39. Ngeow J, Stanuch K, Mester JL, Barnholtz-Sloan JS, Eng C. Second Malignant
Neoplasms in Patients With Cowden Syndrome With Underlying Germline
PTEN Mutations. J Clin Oncol (2014) 32:1818–24. doi: 10.1200/
JCO.2013.53.6656

40. Reifenberger J, Rauch L, Beckmann MW, Megahed M, Ruzicka T,
Reifenberger G. Cowden’s Disease: Clinical and Molecular Genetic Findings
in a Patient With a Novel PTEN Germline Mutation. Br J Dermatol (2003)
148:1040–6. doi: 10.1046/j.1365-2133.2003.05322.x

41. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al.
Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D
Genes to Ovarian Cancer in the Population. J Clin Oncol (2015) 33:2901–7.
doi: 10.1200/JCO.2015.61.2408

42. Dutta S, Pregartner G, Rücker FG, Heitzer E, Zebisch A, Bullinger L, et al.
Functional Classification of tp53 Mutations in Acute Myeloid Leukemia.
Cancers (Basel) (2020) 12:637. doi: 10.3390/cancers12030637

43. de Andrade KC, Frone MN, Wegman-Ostrosky T, Khincha PP, Kim J,
Amadou A, et al. Variable Population Prevalence Estimates of Germline
TP53 Variants: A gnomAD-based Analysis. Hum Mutat (2019) 40:97–105.
doi: 10.1002/humu.23673

44. Stavraka C, Pouptsis A, Okonta L, DeSouza K, Charlton P, Kapiris M, et al.
Clinical Implementation of Pre-Treatment DPYD Genotyping in
Capecitabine-Treated Metastatic Breast Cancer Patients. Breast Cancer Res
Treat (2019) 175:511–7. doi: 10.1007/s10549-019-05144-9

45. Boyle J, Ueda T, Oh KS, Imoto K, Tamura D, Jagdeo J, et al. Persistence of
Repair Proteins At Unrepaired DNA Damage Distinguishes Diseases With
ERCC2 (XPD) Mutations: Cancer-prone Xeroderma Pigmentosum vs. non-
Cancer-Prone Trichothiodystrophy. Hum Mutat (2008) 29:1194–208.
doi: 10.1002/humu.20768

46. Rizzolo P, Silvestri V, Bucalo A, Zelli V, Valentini V, Catucci I, et al.
Contribution of MUtYH Variants to Male Breast Cancer Risk: Results
From a Multicenter Study in Italy. Front Oncol (2018) 8:583. doi: 10.3389/
fonc.2018.00583

47. Pin E, Pastrello C, Tricarico R, Papi L, Quaia M, Fornasarig M, et al. Mutyh
c.933+3A>C, Associated With a Severely Impaired Gene Expression, is the
First Italian Founder Mutation in MUTYH-Associated Polyposis. Int J Cancer
(2013) 132:1060–9. doi: 10.1002/ijc.27761

48. Belhadj S, Quintana I, Mur P, Munoz-Torres PM, Alonso MH, Navarro M,
et al. NTHL1 Biallelic Mutations Seldom Cause Colorectal Cancer, Serrated
Polyposis or a Multi-Tumor Phenotype, in Absence of Colorectal Adenomas.
Sci Rep (2019) 9:9020. doi: 10.1038/s41598-019-45281-1

49. Rökman A, Ikonen T, Seppälä EH, Nupponen N, Autio V, Mononen N, et al.
Germline Alterations of the RNASEL Gene, a Candidate HPC1 Gene At 1q25,
in Patients and Families With Prostate Cancer. Am J Hum Genet (2002)
70:1299–304. doi: 10.1086/340450.

50. Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P, et al. Li-
Fraumeni and Related Syndromes: Correlation Between Tumor Type, Family
Structure, and TP53 Genotype. Cancer Res (2003) 63:6643–50.

51. Eng C. Will the Real Cowden Syndrome Please Stand Up: Revised Diagnostic
Criteria. J Med Genet (2000) 37:828–30. doi: 10.1136/jmg.37.11.828

52. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J,
et al. Breast-Cancer Risk in Families With Mutations in PALB2. N Engl J Med
(2014) 371:497–506. doi: 10.1056/nejmoa1400382

53. Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATMGene Mutations in
Breast Cancer: A Meta-Analysis of Different Measures of Risk. Genet
Epidemiol (2016) 40:425–31. doi: 10.1002/gepi.21971

54. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al. Truncating
Mutations in the Fanconi Anemia J Gene BRIP1 are Low-Penetrance Breast
Cancer Susceptibility Alleles. Nat Genet (2006) 38:1239–41. doi: 10.1038/ng1902

55. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al.
BACH1, a Novel Helicase-Like Protein, Interacts Directly With BRCA1 and
Contributes to its DNA Repair Function. Cell (2001) 105:149–60.
doi: 10.1016/S0092-8674(01)00304-X

56. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al.
Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell
(2015) 163:506–19. doi: 10.1016/j.cell.2015.09.033.

57. Desmedt C, Zoppoli G, Gundem G, Pruneri G, Larsimont D, Fornili M, et al.
Genomic Characterization of Primary Invasive Lobular Breast Cancer. J Clin
Oncol (2016) 34:1872–81. doi: 10.1200/JCO.2015.64.0334
Frontiers in Oncology | www.frontiersin.org 12
58. Zheng Y, Zhang J, Hope K, Niu Q, Huo D, Olopade OI. Screening RAD51C
Nucleotide Alterations in Patients With a Family History of Breast and
Ovarian Cancer. Breast Cancer Res Treat (2010) 124:857–61. doi: 10.1007/
s10549-010-1095-5

59. Akbari MR, Tonin P, Foulkes WD, Ghadirian P, Tischkowitz M, Narod SA.
RAD51C Germline Mutations in Breast and Ovarian Cancer Patients. Breast
Cancer Res (2010) 12:404. doi: 10.1186/bcr2619

60. Vuorela M, Pylkäs K, Hartikainen JM, Sundfeldt K, Lindblom A, Von
Wachenfeldt Wäppling A, et al. Further Evidence for the Contribution of
the RAD51C Gene in Hereditary Breast and Ovarian Cancer Susceptibility.
Breast Cancer Res Treat (2011) 130:1003–10. doi: 10.1007/s10549-011-1677-x

61. Venesio T, Balsamo A, D’Agostino VG, Ranzani GN. MUTYH-Associated
Polyposis (MAP), the Syndrome Implicating Base Excision Repair in
Inherited Predisposition to Colorectal Tumors. Front Oncol (2012) 2:83.
doi: 10.3389/fonc.2012.00083

62. Kashfi SMH, Golmohammadi M, Behboudi F, Nazemalhosseini-Mojarad E,
Zali MR. MUTYH the Base Excision Repair Gene Family Member Associated
With Polyposis Colorectal Cancer. Gastroenterol Hepatol Bed to Bench (2013)
6:S1–S10. doi: 10.22037/ghfbb.v6i0.458

63. Win AK, Reece JC, Dowty JG, Buchanan DD, Clendenning M, Rosty C, et al.
Risk of Extracolonic Cancers for People With Biallelic and Monoallelic
Mutations inMUTYH. Int J Cancer (2016) 139:1557–63. doi: 10.1002/ijc.30197

64. Van Kuilenburg ABP. Dihydropyrimidine Dehydrogenase and the Efficacy
and Toxicity of 5-Fluorouracil. Eur J Cancer (2004) 40:939–50. doi: 10.1016/
j.ejca.2003.12.004

65. Pamuła-Piłat J, Tęcza K, Kalinowska-Herok M, Grzybowska E. Genetic 3′
UTR Variations and Clinical Factors Significantly Contribute to Survival
Prediction and Clinical Response in Breast Cancer Patients. Sci Rep (2020)
10:5736. doi: 10.1038/s41598-020-62662-z

66. Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P.
Molecular Basis of the Human Dihydropyrimidine Dehydrogenase Deficiency
and 5-Fluorouracil Toxicity. J Clin Invest (1996) 98:610–5. doi: 10.1172/
JCI118830

67. Sithanandam G, Anderson LM. The ERBB3 Receptor in Cancer and Cancer
Gene Therapy. Cancer Gene Ther (2008) 15:413–48. doi: 10.1038/cgt.2008.15

68. Kiavue N, Cabel L, Melaabi S, Bataillon G, Callens C, Lerebours F, et al.
ERBB3Mutations in Cancer: Biological Aspects, Prevalence and Therapeutics.
Oncogene (2020) 39:487–502. doi: 10.1038/s41388-019-1001-5

69. Braunstein EM, Li R, Sobreira N, Marosy B, Hetrick K, Doheny K, et al. A
Germline ERBB3 Variant is a Candidate for Predisposition to Erythroid MDS/
Erythroleukemia. Leukemia (2016) 30:2242–5. doi: 10.1038/leu.2016.173

70. Takayama K, Salazar EP, Lehmann A, Stefanini M, Thompson LH,
Weber CA. Defects in the DNA Repair and Transcription Gene ERCC2 in
the Cancer-prone Disorder Xeroderma Pigmentosum Group D. Cancer Res
(1995) 55:5656–63.

71. Rump A, Benet-Pages A, Schubert S, Kuhlmann JD, Janavičius R, Macháčková
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