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Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of
breast cancer (BC). The ECM comprises of highly variable and dynamic components.
Compared with normal breast tissue under homeostasis, the ECM undergoes many
changes in composition and organization during BC progression. Induced ECM proteins,
including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been
identified as important components of BC metastatic cells in recent years. These proteins
play major roles in BC progression, invasion, and metastasis. Importantly, several specific
ECMmolecules, receptors, and remodeling enzymes are involved in promoting resistance
to therapeutic intervention. Additional analysis of these ECM proteins and their
downstream signaling pathways may reveal promising therapeutic targets against BC.
These potential drug targets may be combined with new nanoparticle technologies. This
review summarizes recent advances in functional nanoparticles that target the ECM to
treat BC. Accurate nanomaterials may offer a new approach to BC treatment.
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INTRODUCTION

According to global cancer data, the incidence and mortality rates of breast cancer (BC) in women
in 2019 were 24.20% and 15.00%, respectively, and both ranked first among female malignant
tumors. Despite significant advances in the diagnosis and early treatment of BC, this malignant
tumor still accounts for more than 600,000 deaths annually. Most cancer-related deaths are
associated with cancer cells metastasizing to other sites of the body and causing new tumors in
secondary organs (1). Although early BC has good prognosis after treatment, controlling cancer
metastasis in clinical settings remains challenging (2, 3). There is an urgent need to better
understand the mechanisms of metastasis and exploit novel strategies to prevent and treat
advanced BC.
Abbreviations: ADC, antibody-drug conjugate; BC, breast cancer; CAF, cancer-associated fibroblast; ECM, extracellular
matrix; FAK, Src-focal adhesion kinase; FN, fibronectin; GAG, glycosaminoglycan; HA, hyaluronic acid; HAS2, hyaluronan
synthase; IL, interleukin; LN, laminin; LOX, lysyl oxidase; MMP, matrix metalloproteinase; MPI, MMP inhibitor; NP,
nanoparticle; PEG, polyethylene glycol.
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The extracellular matrix (ECM) is an important component
of cellular biology (4). Proteins in the ECM include collagen,
laminin (LN), fibronectin (FN), hyaluronan, and matricellular
proteins that serve as structural scaffolds to maintain tissue
integrity and sustainability (5). The ECM is crucial for
embryonic development, production of new tissue structures,
and maintenance of human tissues and homeostasis (6, 7).
However, the ECM is not just a simple framework; it is a
highly dynamic and complex network of molecules
surrounding cells within the tissue. ECM components provide
biochemical and biomechanical contexts for cells and have
received increasing attention for their important biological
roles in BC progression and metastasis (8). Evidence suggests
that ECM components are dynamic during cancer progression
and may promote metastatic spread (9). Regulation of key ECM
components via targeting of matrix-mediated pre-tumorigenic
signals or via promotion of tumor suppressive signals may be a
promising strategy to address BC invasion and metastasis (10).

Nanoparticles (NPs) are widely used in biomedical research
and are increasingly applied in oncologic research because of their
excellent physicochemical properties (11). They generally consist
of an outer shell and an inner core of buried drugs or proteins (12).
Myriad NPs are used in antitumor therapy; liposomes, micelles,
polymers, metal NPs, viral NPs, antibodies, and dendrimers have
been widely applied in biological applications, including as drug
carriers, tumor monitors, and cell markers (11, 12). Abnormalities
of some receptors, enzymes and other components in the ECM
allow breast tumors to be distinguished from the normal
mammary gland. Specific metabolic pathways and rapid tumor
proliferation lead to pathological blood vessel formation, low pH,
low oxygen tension, and high interstitial pressure—aspects that are
fundamental to the design of NP drug delivery systems (13). ECM
serves as the soil for tumor cells to grow in, but it also contains
complex factors to interfere with tumor progression and
prognosis. By re-educating the ECM, the tumor constructs a
micro-ecosystem to develop itself, escape immune attack, and
even resist exogenous injury. NPs based on ECM regulation have
been extensively studied because of their ability to accurately target
tumor ECM components and reverse tumor progression (14–17).

In this review, we discuss the roles for ECM in the development
and metastasis of BC, including ECM composition, molecular
mechanisms related to ECM dynamics and remodeling in cancer,
therapy resistance, and potential therapeutic targets. We also
highlight ECM-regulated nanotherapeutic strategies, including
degradation of the tumor ECM, mimic of the ECM to inhibit
tumor progression, and alteration of the ECM fabrication as
approaches to efficient BC suppression. Finally, we consider the
future expectations for and challenges of ECM-targeted
nanotherapeutics for clinical cancer therapy.
ECM COMPOSITION IN BC PROGRESSION

Increasing evidence indicates that the ECM composition
continues to change during BC progression and may promote
metastatic spread. The morphology, physical strength,
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biochemical characteristics, and other parameters of the ECM
in BC differ from the ECM of normal breast tissue (18–20). ECM
components can be divided into three groups: (1) structural
proteins, such as collagen and elastin, that give the ECM strength
and toughness; (2) glycosaminoglycans (GAGs) and
proteoglycans that can form water-based colloids and that
contain many other matrix components; and (3) adhesive
proteins, such as FN and LN, that are used to bind to the
stroma (21).

Collagens
Excessive production of collagens is a common feature of breast
fibrosis and malignant BC. Collagens are the most abundant
proteins in animals, accounting for more than 30% of the total
protein content in the human body. Collagen is found in various
organs and tissues and serves as the ECM framework. It can be
synthesized and secreted into the ECM by fibroblasts,
chondrocytes, osteoblasts, and some epithelial cells. At least 28
different types of collagen have been found; they are encoded by
different structural genes and have various chemical structures
and immunological properties (22, 23). The composition of
collagen changes significantly in BC, with increased
accumulation of type I, III, and V fibrillar collagens and
decreased amounts of type IV collagen. The marked reduction
of type IV collagen in BC is mainly due to basement membrane
degradation (24). Studies have shown that certain collagen genes
expressed in patients with primary BC are associated with an
increased risk of metastasis. Increased expression of fibrillar
collagen (e.g., type I and type III collagen) in BC may be
associated with tumor invasion and aggressive tumor behavior.
The relationship between changes in collagen production and BC
progression may be functionally important (25–27).

The structural and physical properties of the ECM are
continually changing in BC (28). Collagen type I is usually
highly linearized, unlike the nondirectional fibrils. Linearized
collagen type I is aligned along the epithelium or vertically into
the tissue. Collagen can be used as a scaffold to facilitate the
migration of cancer cells or stromal cells. Consistent with these
observations, malignancy-associated fibrotic reactions, called
fibrous hyperplasia, have been associated with poor prognoses
in patients with BC. Collagen in the ECM of BC is heavily
deposited in early cancer progression and plays a major role in
maintaining tissue hardness (the stroma of BC is 10 times harder
than normal), thereby triggering signal transduction in
noncancer and tumor epithelial cells (29).

Certain collagens processed in the ECM are catalyzed by
specific proteases, and the expression of enzymes associated with
ECM remodeling is often upregulated in human cancers (30, 31).
In many cancers, heparanases, cysteine cathepsin, 6-o-sulfonase,
urokinase, and matrix metalloproteinases (MMPs) have been
overexpressed. Lysyl oxidase (LOX) and lysine hydroxylase
catalyze cross-linking between collagen and elastin molecules,
further altering cellular behavior by regulating the ECM elasticity
and strength (32). Any type of modification or addition of a
cross-linked matrix makes BC tissue stiffer and enhances cell
growth, survival, and migration-related signaling pathways (33).
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Elastin
Elastin gives tissues the flexibility they need to stretch and return
to their original state. This property is helpful to lungs, skin,
blood vessels, and neck ligaments. Smooth muscle and
fibroblasts contain much elastin. Tropoelastins are the
precursors of elastin; they are bound to a chaperone when they
are secreted; they are additionally modified when they come into
contact with mature elastin fibers, when then chemically
transform into elastin chains. Lack of elastin in the ECM can
lead to cutis laxa and Williams syndrome (34–36).

Elastosis is generally believed to be caused by the abnormal
increase in the expression of elasticfiber components such as elastin
and the degradation of normal elastic fiber. Elastosis is a common
feature in BC (37). Ductal elastosis is closely related to cancer,
especially invasive cancer. Elastosis reportedly increases with
increasing severity of breast disease (37). BC elastosis is a
complex phenomenon resulting in both deposition of elastotic
masses and local production of elastin fragments. These two
manifestations must be distinguished within the matrix. Signals
from the fragments of the degradedmatrix differ substantially from
those provided by their parent proteins. For example, stromal cells
adhere to elastin but cause cellmigration and/or proliferationwhen
they are incubated with elastin fragments (38).

Studies have shown that elastin-derived peptides have numerous
biological activities in cancer cells and their surrounding stroma
(36). They enhance tumor cell migration and stromal invasion
(39, 40). Elastin-derived peptides also stimulate the migration and
proliferation of skin fibroblasts and monocytes. They upregulate
the expression of MMPs through a fibroblast-induced remodeling
program, thus facilitating the invasion of melanoma cells (41,
42). In addition, they promote angiogenesis, chemotaxis for
inflammatory cells, and the release of elastase. Finally, elastin-
derived peptides provide a powerful survival signal, because they
promote resistance to apoptosis (43, 44).
Glycosaminoglycans and Proteoglycans
GAGs are unbranched long-chain polysaccharides composed of
repeating disaccharides. The disaccharide unit usually consists of
amino hexose (glucosamine or glucosamine galactose) and
uronic acid; however, in keratinic sulfate, the uronic acid is
replaced with galactose (45). Hyaluronic acid (HA) is the only
aminoglycan that does not undergo sulfation, and its sugar chain
is extremely long. Aminoglycans generally consist of fewer than
300 monosaccharides, whereas HA may contain 100,000 glycosyl
groups. HAmolecules in solution are in an irregular, curled state;
if forced to stretch, their length can reach 20 m. The entire
molecule consists of the repeated arrangement of glucuronic acid
and acetylglucosamine disaccharides. HA can bind numerous
water molecules because of the large number of negatively
charged hydrophilic groups on its surface. Even at a very low
concentration, it can form a viscous gel that occupies a large
space and produces turgor. HA forms a significant part of the
ECM and plays many biological roles in physiological and
pathophysiological processes, depending on the size of its
polymer and its interaction with other secreted proteins and
cellular receptors (46, 47).
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HA is involved in cancer progression and is remarkably
increased in BC versus in normal breast tissue (48). Clinically,
HA may be associated with highly invasive BC. Serum HA levels
in patients with metastatic BC were significantly higher than
those in patients without metastatic BC (49). HA regulates a
variety of cellular behaviors, such as adhesion, growth, motility,
and differentiation, and acts through surface receptors, such as
the HA-mediated motor receptor (50) and CD44 (51).
Hyaluronan synthase (HAS) is the key enzyme in HA
biosynthesis (52). In animal models of BC, HAS2 expression
promoted breast tumor progression and metastasis (53).
Furthermore, in BC models, inhibition of HAS2 significantly
reduced cancer progression, suggesting that it plays an important
role in this process (54). Additionally, HA induces the invasive
behavior of cancer cells themselves and causes increased
hydration and interstitial pressure via CD44, which promotes
fibroblast penetration as well as the migration and invasion
activity of cancer cells (55).

Laminin
LN is a large glycoprotein that, with collagen type IV, forms the
ECM base. LN is involved in the embryonic development of
ECM components at the earliest phase. LN molecules have at
least eight binding sites. For example, the IKVAV pentapeptide
sequence on the chain binds to neuronal cells and promotes
nerve growth. The RGD sequence on the first chain of rat LN can
bind to avb3 integrins (5, 56). LN has high sugar content
(accounting for 15%–28%), and it has approximately 50 sugar
chains connected with N-terminal. It is the most complex
glycoprotein with a sugar chain structure identified so far.
Moreover, the multiple receptors of LN recognize and bind its
sugar chain structure. The basement membrane is the soft,
specialized ECM under epithelial cells that also surrounds
muscle, fat, and Schwann cells. It protects and filters cells, and
it determines their polarity, which affects cell metabolism,
survival, migration, proliferation, and differentiation (57).

Several LN subtypes play important roles in the development
of BC. These subtypes include LM-111, LM-332, and LM-511
(58–60). LM-111, an important component of the basement
membrane, is secreted by normal breast myofibroblasts and
maintains epithelial cell polarity. LM-111 promotes prolactin-
induced mammary epithelial cell maturation. In breast tumors,
LM-111 expression is often lost, which results in changes in cell
polarity. Studies have shown that LM-111 can induce cell–cell
adhesion, suggesting that LM-111 may inhibit the spread of BC
(61). There is growing evidence that other laminins containing
a4 subunits, such as LM-332 and LM-511, may promote tumor
progression. Expression of LM-332 is associated with aggressive
BC, and cancer-derived LM-332 has promoted anchor-
independent survival by interacting with a6b4 integrin
receptors (62). In addition, LM-332 has induced migration and
invasion of BC cells through a3 integrin. LM-511 has mediated
adhesion, migration, and invasion in vitro and metastasis in vivo
through integrin interactions in experimental models of BC. LM-
511 interacted with the integrin a6b1 receptor in a
subpopulation of BC cells capable of self-renewal and tumor
initiation (63).
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Fibronectin
FN is a large glycoprotein found in all vertebrates; it has amolecular
sugar content of 4.5%–9.5%. The sugar chain structure varies
according to the origin and differentiation state of the tissue’s cells
(64). FN connects cells to the ECM. Some of the short peptide
sequences inFNare the smallest structuralunits for recognizingand
binding to FN receptors on the cell surface. For example, the RGD
(ARG-gly-ASP) sequence exists in the cell-binding module at the
center of the peptide chain, where cell surface integrin receptors
recognize and bind to them. FNmolecules on the cell surface and in
the ECM are cross-linked by disulfide bonds and assembled into
fibers (65). Unlike collagen, FN does not self-assemble into fibers.
Instead, it is directed by cell surface receptors that exist only on the
surface of certain cells (e.g., fibroblasts). The decrease or loss of FN
fibers on the surface of transformed cells and tumor cells is due to
the abnormality of FN receptors on the cell surface (66, 67).

In cancer, FN is expressed by cancer-associated fibroblasts
(CAFs) and by the cancer cells themselves (68). The upregulation
of FN in cancer cells may occur through different mechanisms.
Mechanical compression can lead an over expression of FN in
cancer cells and increased invasion and migration behavior in
tumors (69, 70). In general, FN expression in BC is associated
with adverse clinical outcomes. Some studies have shown that
cancer-derived FN is particularly associated with poor outcomes
in BC, including increased metastases and reduced overall
survival (70). In addition, FN expression has been detected in
circulating tumor cells of patients with BC. Evidence from
samples from patients with BC suggests that circulating tumor
cells may have the property of epithelial-mesenchymal
transformation; as a result, loss of cell polarity and cell–cell
adhesion are observed in the epithelium, and a mesenchymal
phenotype with high motility is acquired. FN is an established
mesenchymal marker, and it has promoted transforming growth
factor b–induced epithelial-mesenchymal transformation (25).
ECM REMODELING ENZYMES

During tissue regeneration and cancer, changes in the ECM also
affect remodeling enzymes (18). Multiple ECM remodeling
enzymes that promote stem/progenitor cell signaling pathways
and metastasis are induced in BC (71). The process of ECM
reconstruction in BC involves different signaling pathways of
ECM regulation, including Wnt, PI3K/Akt, extracellular signal-
regulated kinase, jun N-terminal kinase, Src-focal adhesion kinase
(FAK), and others (20). Themain induced proteins in the ECMare
fibrinogen, proteoglycans, and matricellular cell proteins—all of
which may be potential drug targets (29, 72). ECM remodeling
enzymes such as MMPs, heparanase, urokinase plasminogen
activator, cross-linking enzymes of the LOX family, and
cathepsin, are often upregulated in breast tumors and have great
significance to BC progression and metastasis (73–76). These
enzymes modify the ECM in different ways to enable pathways of
minimal resistance that promote cancer cell invasionandmigration
(18, 19). They can directly affect the biological properties and
functions of ECM components by exposing cryptic sites or
Frontiers in Oncology | www.frontiersin.org 4
releasing ECM-bound growth factors or soluble domains of ECM
proteins. Moreover, remodeling enzymes can change the physical
properties of ECM structures by means of cross-linking and other
modifications. These functions promoted by ECM remodeling
enzymes are critical for BC progression and metastasis.
TREATMENT RESISTANCE INDUCED
BY ECM

The ECM in breast tumors is integral to the invasion andmetastasis
of BC. In recent years, increasing evidence has indicated that the
ECM may also play an important role in mediating resistance to
existing treatments (77–79). It provides an adhesion matrix and
specific matrix components that promote survival mechanisms to
support and induce stem cell pathways and enhance cell metastasis
and invasion (80). Some researchers have found that BC matrix
components are resistant to the chemotherapy drugs 5-fluorouracil
(81), epirubicin (82), and cyclophosphamide (83). The ECM plays
an important role in promoting resistance of cancer cells to
treatment. Matrix proteins that induce chemotherapeutic drug
resistance include the matricellular cell proteins, namely secreted
phosphoprotein 1, tenascin C (84), B-lymphoma Mo-MLV
insertion region 1, and phosphatase and tensin homolog (85).
Hypoxia-induced ECM remodeling has been reported in BC (86).
LOX is a key inducer of chemotherapeutic resistance. Inhibition of
LOX can reduce collagen cross-linking and fibrinogen assembly,
increase drug penetration, and downregulate ITGA5/FN1
expression, thereby inhibiting the Src/FAK signaling pathway and
inducing apoptosis and chemotherapeutic resensitization. In
addition, the ECM is associated with resistance to endocrine-
targeted therapy and radiotherapy. Helleman et al. (2008)
reported that ECM gene clusters were associated with resistance
to first-line tamoxifen treatment in patients with metastatic BC.
They indicated that expression levels of FN1, LOX, SPARC, and
tissue inhibitor of metalloproteinase 3 were associated with
prognosis in patients with BC, whereas tenascin C was associated
with tamoxifen resistance (87).

Furthermore, the constitutive activation of PI3K as a result of
both PIK3CA mutation and PTEN deletion are associated with
resistance to human epidermal growth factor receptor 2–targeted
therapy. This mechanism may explain the poor prognoses of
some patients after trastuzumab treatment (88).

Finally, the ECM also promotes resistance to radiation
therapy in BC. Resistance to single or combined drugs and
radiation exposure, as mediated by cell adhesion, is driven by
specific ECM proteins. Specifically, FN and LN enhance the
resistance of human tumor cells and normal cells to ionizing
radiation and cytotoxic drugs in vitro (89).
POTENTIAL THERAPEUTIC TARGETS IN
THE ECM FOR BC

An increasing number of experimental studies have explored the
biological roles of the ECM in BC and indicate that ECM
April 2021 | Volume 11 | Article 650453
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components and ECM-mediated functions might be promising
therapeutic targets (90–92). Many approaches are available to
interfere with ECM function in BC. Chemical and biological
agents that modulate the ECM in cancer are being investigated as
potential treatments for BC (Table 1).

Inhibition of ECM Components
Inhibiting ECM components that promote tumor progression
and metastasis might be an attractive treatment strategy for BC
(20). One possible approach is to suppress the synthesis of ECM
components with pro-tumor functions. Preclinical studies in
animal models have shown that this approach is feasible and
can be translated into clinical practice (101–103). A recent study
found that 4-methylumbelliferone can significantly reduce the
migration, adhesion, and invasion of estrogen receptor cells in
BC and reduce the expressions and activities of several pro-
tumor matrix-degrading enzymes and pro-inflammatory
molecules. The results suggest that 4-methylumbelliferone
could be a new treatment for specific BC subtypes according to
estrogen receptor status by inhibiting the synthesis of HA and
regulating HAS2, CD44, matrix-degrading enzymes, and
inflammatory mediators (93). Direct neutralization of tumor-
causing ECM components is an attractive approach. Recent
preclinical models have yielded encouraging results, showing
that ECM components can be directly blocked by targeted
peptides, neutralizing antibodies, or DNA aptamers (19). For
example, Li et al. (91) found that R5 (a neutralizing antibody to
Robo1) significantly inhibited BC growth and metastasis in an
MMTV-PyMT transgenic mouse model and in a xenografted BC
model. Lida et al. sed the SELEX (systematic evolution of ligand
by exponential enrichment) method to develop DNA aptamers
that specifically recognize the CD44 exon V10. These special
Frontiers in Oncology | www.frontiersin.org 5
aptamers significantly inhibited BC cell migration. The pull-
down analysis indicated that the exon interacted with EphA2,
which plays a key role in promoting tumor invasion and
metastasis; this interaction was inhibited by the aptamers. The
results of this study suggest that a novel molecular complex
composed of CD44 and EphA2 can promote the progression of
triple-negative BC (92).

Targeting the ECM Remodeling Enzymes
Collagen cross-linking and ECM remodeling enzymes play vital
roles in the development of rigid fibrotic tissue. They promote
BC progression and metastatic spread. Antifibrotic therapies that
target ECM remodeling enzymes may represent a good cancer
treatment strategy (19).

MMPs are considered promising targets for cancer treatment.
Numerous evidence indicates that MMPs play important roles in
tumor invasion, metastasis, and angiogenesis; these findings have
led to the development and clinical application of MMP
inhibitors (MPIs). The new generation of MPIs is more
selective for pre-metastatic MMPs and is currently being
developed and tested in preclinical cancer models (104–107).
In different models, tumor necrosis and apoptosis were induced
by drug administration alone or in combination with
chemotherapy. The clinical applications of many MPIs are not
ideal because of their high musculoskeletal toxicity, poor
bioavailability, low selectivity, or lack of efficiency (108). The
conclusion from early trials was that inhibitor specificity was the
key problem. Devel et al. optimized S1′ pocket interactions and
recruited phosphinate or P2′ glutamate as alternatives to more
traditional zinc-chelating groups, resulting in very selective
MMP-12 inhibitors (109–111). A unique approach to limiting
MPI toxicity was recently reported in a study aimed at achieving
TABLE 1 | Examples of potential therapeutic targets in the ECM of breast cancer.

Target Therapeutic
agent

Type Effects on breast cancer Ref.

HAS2, CD44 4-MU Small molecule
inhibitor

Inhibiting hyaluronic acid synthesis, regulating HAS2, CD44, matrix degrading enzymes, and
inflammatory mediators

(93)

Robo1 R5 Neutralizing antibody Significantly inhibited BC growth and metastasis MMTV-PyMT transgenic mouse model and xenografted
breast cancer model

(91)

EphA2 CD44 exon
V10

DNA aptamers Significantly inhibited BC cell migration (92)

MMP-2 MMPIs Remodeling enzyme
inhibitor

Specifically inhibited MMP-2 and prevent breast tumor growth and associated bone destruction (94)

Heparanase 9E8, H1023 Monoclonal antibody Significantly inhibited cell invasion and tumor metastasis, no significant cytotoxicity to BC cells (95)
Zinc
transporter
LIV-1

SGM-LIV1A Blocking antibody SGN-LIV1A displays specific in vitro cytotoxic activity against LIV-1-expressing cancer cells; in vitro
results are recapitulated in vivo with antitumor activity in animal models

(96)

(VCP)/p97 NPD8733 Small molecule
inhibitor

NPD8733 silenced VCP expression in NIH3T3 fibroblasts and reduced the migration of the co-cultured
NIH3T3 fibroblasts

(97)

Src/FAK Lycorine Small molecule
inhibitor

Inhibited tumor growth in a breast cancer xenograft model and inhibited breast cancer metastasis in the
MDA-MB-231 caudal vein model

(98)

TAMs Endostatin Recombinant peptide Indicate the mouse breast cancer growth in vivo by regulating the polarization of tumor-associated
macrophages

(99)

Endostatin rh-Endostatin Recombinant peptide Chemotherapy combined with rh-endostatin is more effective than chemotherapy alone and is
considered a promising breast cancer treatment strategy (100)
April 2021 | Volume 11 | Article 65
HAS2, Hyaluronan synthase 2; 4-MU: 4-methylumbelliferone; EphA2, Erythrogenic human hepatocytes A; MMP-2, matrix metalloproteinase-2; MMPIs, MMP inhibitors; VCP, valosin-
containing protein; Src/FAK, Src-focal adhesion kinase; TAM, tumor-associated macrophage; BC, breast cancer.
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selectivity not only to the target enzyme but also through
targeted drug delivery. Although MMP-2 is not generally
considered a drug target in cancer because of its ubiquitous
presence and involvement in many physiological processes, the
importance of this enzyme in the progression of bone-metastatic
BC suggests that it may be a useful target for this particular
environment (94). Tauro et al. investigated phosphonic acid–
based inhibitors selective for MMP-2 instead of the similar
MMP-9. Because of the affinity of bisphosphonate for
hydroxyapatite, these MPIs efficiently localized in the bone
microenvironment. In a mouse model, the MPIs specifically
inhibited MMP-2 and prevented breast tumor growth and its
associated bone destruction (94).

Experimental evidence suggests that inhibiting heparanase
may inhibit BC growth and metastasis. Therefore, drugs that
have this effect may be feasible treatments for breast tumors.
Several carbohydrate-based heparanase inhibitors have entered
clinical trials. These compounds are highly similar to enzymes
and work in combination with the heparin/Heparan sulfate
(HS) -substrate binding domain of the enzyme, thus blocking
their accessibility to the natural HS substrates (112). Weissmann
et al. designed two monoclonal antibodies (9E8 and H1023) that
neutralized the enzymatic activity of heparanase and significantly
inhibited cell invasion and tumor metastasis without significant
toxicity to BC cells themselves. This result suggests that
monoclonal antibodies affect the tumor microenvironment
rather than the BC cells, thus offering a newer and safer mode
to obstruct both tumor growth and metastasis (95).
Antibodies Against Remodeled ECM
Certain ECM components are highly expressed in areas of active
tumor invasion and thus can be used as biomarkers. Anti-
remodeling ECM antibodies may introduce bioactive-inhibiting
cues or radioactive substances into tumor sites. This approach
can enhance the effectiveness of radiation, chemotherapy, or
targeted therapy by concentrating radioisotopes, drugs, or
antitumor biologics on the active tumor sites while minimizing
their distribution in healthy tissue (113–116). Huang et al.
enhanced the potency of a whole-cell BC vaccine in mice with
an antibody–interleukin (IL)-2 immunocytokine that targets
exposed phosphatidylserine. Immune cytokines (2AG4-IL2)
were prepared by linking IL-2 to the 2aG4 gene, a targeted
antibody that blocks the immunosuppressive effects of
phosphatidylserine. The 2AG4-IL2/4T1 vaccine was prepared
after phosphatidylserine-exposed, irradiated 4T1 cells were
coated with 2AG4-IL2. The incidence and number of
spontaneous lung metastases in the 2AG4-IL2/4T1 group were
significantly lower than those in other groups. Spleen cells of
mice immunized with 2AG4-IL2/4T1 showed significantly
higher 4T1-specific cytotoxicity and demonstrated a greater
ability to secret interferon-g than spleen cells of other groups.
These results suggest that 2AG4-IL2 encapsulation of radioactive
tumor cells can produce an effective whole-cell vaccine (117).
Sussman et al. investigated a novel antibody-drug conjugate
(ADC; SGN–LIV-1A) that targeted the zinc transporter LIV-1
(SLC39A6) for the treatment of metastatic BC. LIV-1 is
Frontiers in Oncology | www.frontiersin.org 6
expressed by estrogen receptor–positive BC. The data on the
latest ADCs and their recent successes support the use of SGN–
LIV-1A as a new treatment for refractory metastatic BC and
other LIV-1–positive indications (96).

Cell Surface Receptor Blockers
Cell surface receptor blockers that interact with ECM
components may be a way to treat metastatic BC. Interactions
between cells and ECM proteins are often mediated by integrins.
Integrins belong to the transmembrane protein family and act as
cell surface receptors that mediate cell-to-cell and cell-to-matrix
adhesion by identifying components of ECM, such as FN,
laminin, collagen, and transmit information from ECM to cells
(118), leading to the recruitment and activation of intracellular
signaling proteins, which in turn initiates a signaling cascade that
promotes breast cancer cell migration, proliferation, and survival
(119, 120). The increase of integrins will facilitate the tumor cells
adhesion to the basement membrane and promote the invasion
and metastasis of tumor cells. Therefore, integrins represent an
interesting target for metastatic BC therapies. In addition, recent
researches in the xenograft mouse model showed that surface
integrin a2b1 contacts and activates Wnt-b-catenin. The
integrin a2b1 plays a pro-metastatic role in BC progression,
and integrin a2b1–silencing has a potential effect in inhibiting
breast cancer metastasis (121, 122). A study conducted by Archis
Bagati et al. indicated that SOX4 expression is regulated by the
integrin avb6 receptor on the tumor cell surface, which activates
TGFb from a potential precursor. They identified that SOX4
transcription factor acts as an important T cell-mediated
cytotoxic resistance mechanism of TNBC. An integrin avb6/8-
blocking monoclonal antibody (mAb) inhibits SOX4 expression
and sensitizes TNBC cells to cytotoxic T cells. In a highly
metastatic mouse model of TNBC, this integrin mAb induced
a substantial survival benefit (123).

Targeting Cancer Associated Fibroblasts
CAFs are the major players in dysregulation of collagen
transformation during tumor progression, leading to tumor
fibrosis characterized by excessive depositions of collagen
around the tumor (124). Unlike normal fibroblasts, CAFs
overexpress a number of biomarker proteins. Generally
speaking, the interaction between CAFs and tumor cells
promotes tumor progression mainly through the release of
various secreted proteins (e.g., transforming growth factor-b,
insulin-like growth factor, and IL-6), direct interaction with
tumor cells, immune response regulation, and ECM
remodeling. These multiple actions suggest that several stromal
therapeutic targets exist (25, 125, 126). Suvarna et al.
demonstrated that NIH3T3 fibroblast migration was enhanced
after co-cultured with MCF7 BC cells. They found that a small-
molecule ligand (NPD8733) of valosin-containing protein/p97
inhibited cancer cell–accelerated fibroblast migration. This
mechanism offers potential for BC treatment (97). Many
activated CAFs are present in the BC stroma, and they have
the ability to promote tumor formation and development.
Studies have shown that CAFs are the main factor involved in
ECM remodeling (127, 128). Activated CAFs can specifically
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change some ECM components, transforming the ECM from
loose and irregular to linear, and driving changes in
biomechanical conduction (69). Cell polarity changes when
cancer cells perceive changes in extracellular stress; invasion
and metastasis. The mechanism by which CAFs remodel the
ECM and thus affect the function of cancer cells has been
discovered gradually. CAFs come from numerous sources,
especially from normal fibroblasts (70). The transformation of
normal fibroblasts to CAFs is a process of cell differentiation, and
miRNA plays an important role in embryonic development
(129–132). A Study has shown that miR-200 mediates the
differentiation of normal fibroblasts into CAFs by regulating
the expression of cell differentiation–related transcription
factors, TCL12 and FLI-1, and miR-200 maintains the
activation state of CAFs. The continuously activated CAFs
directly or interactively regulate the expression of ECM-related
genes, participate in the remodeling of ECM, and further
promote the occurrence and development of breast tumors (71).

Targeting Endostatin
Some ECM cues suppress tumor and metastasis development, so
enhancing these biological effects may offer a feasible approach to
BC treatment (19). Angiogenesis plays a critical role in the
pathogenesis, growth, invasion, and metastasis of solid
tumors. Endostatin, which was first isolated in 1997, is one of
the most effective anti-angiogenic factors and has significantly
reduced blood vessel formation in tumors (133). Guo et al.
demonstrated that endostatin induced RAW264.7 phenotype
polarization to M1 in vitro. They proposed that endostatin may
inhibit mouse BC growth in vivo by regulating the polarization of
tumor-associated macrophages via two possible mechanisms: by
shifting the polarity of the tumor-associated macrophage from an
M2-like to an M1-like functional phenotype or by increasing the
proportion of M1-like tumor-associated macrophage via specific
inhibition of M2 polarity (99). Chen et al. conducted a phase III,
multicenter, prospective, randomized, controlled clinical trial to
explore the efficacy and safety of rh-endostatin. Patients received
neoadjuvant therapy with docetaxel and epirubicin or that
combination plus rh-endostatin. After three cycles of neoadjuvant
therapy, the objective effective rates of the docetaxel and epirubicin
group and of rh-endostatin group were 77.9% and 91.0%,
respectively (p < 0.001). Chemotherapy combined with rh-
endostatin is more effective than chemotherapy alone and is
considered a promising treatment strategy for BC (100).
NOVEL NANOPARTICLE-BASED
APPROACHES TO MODULATE ECM
COMPONENTS IN BC

The strategies for ECM-based therapy have been attractive in
recent years, so many drugs are emerging to target the
ECM. Currently, targeted drug delivery systems can effectively
solve the problems conventional chemotherapy caused. They can
preferentially deliver drugs to tumor tissue, thus preventing the
Frontiers in Oncology | www.frontiersin.org 7
dose-limiting adverse effects that occur in normal tissues (11–13,
134). Several nano-based therapies targeting the ECM have been
used for tumor theranostics. Some of these NPs are single drug
carriers, but many more are drugs, genes, antibodies, or aptamers
combined; some have multiple functions, such as diagnostics,
therapeutics, and monitoring. These emerging nanotherapeutics
that can regulate the ECM have roughly three approaches:
(1) degrading the tumor ECM; (2) mimicing tumor ECM to
inhibit tumor progression; and (3) intervening the native ECM
fabrication. The first is aimed at breaking barriers to improve
tumor penetration of the nanomedicine delivery system; the
second is aimed at enhancing measures to block tumor
metastasis in the early stages of tumor progression; and the last
is aimed at specific stages in the body when the tumor’s ECM is
made. This review presents the recent developments of NPs in
ECM-targeted therapy (Table 2).

Nanoparticle Based ECM Degradation
The cleavage of ECM components depends on the balance of
proteases and protease inhibitors, which promotes the release
of bioactive molecules. In particular, MMPs and tissue inhibitors
of metalloproteinases play important roles in controlling the
ECM (13). The strategy to degrade ECM components and
increase NP affinity is widely used. Because NPs cannot reach
deep-seated tumors via conventional methods, many
contractible NPs have been designed to penetrate tumor
vasculature and tissue. Through the interaction between the
coated gelatin layer and the MMP-2 in the ECM, large-sized
gold NPs become smaller, which enables deeper tumor
infiltration (135). Kessenbrock et al. designed a liposome
modified with a GPLPLR peptide sequence to target MT1-
MMP, which was more effective than uncoated liposomes in
binding and treating tumors (137). They also designed gold NPs
combined with MMP-sensitive peptides for drug delivery and
tumor imaging. These gold NPs have efficient drug delivery and
imaging capabilities at tumor sites. Suresh et al. (136) found that
MMP-2–sensitive gold NPs improved targeted delivery to
human BC cells and increased cellular uptake. The proteases
collagenase and hyaluronidase are also commonly used to
control ECM degradation. For example, Liu et al. synthesized
collagenase-encapsulated nanoscale coordination polymers
based on Mn2+ and an acid-sensitive benzoic-imine organic
linker that was then modified by polyethylene glycol (PEG).
The results indicated that released collagenase could
specifically degrade collagens, leading to a loosened ECM
structure, enhanced tumor perfusion, and decreased hypoxia
(Figure 1) (138).

Mimicing the Tumor ECM to Inhibit
Tumor Progression
Tumor metastasis refers to the formation of a new nidus at a
distant site from the original tumor; it is the main reason for the
high cancer-associated mortality rate. As mentioned above, the
tumor ECM is critical to progression, and it provides an
important protective layer to prevent tumor metastasis. Tumor
cells overexpress some enzymes, such as MMP, to overcome
April 2021 | Volume 11 | Article 650453
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ECM barriers and prepare for tumor metastasis. Many scientists
have proposed mimicing the tumor ECM to inhibit tumor
metastasis, and some promising results have been achieved
(144–146). For example, Suo et al. (140) designed a dual-
degradable and injectable HA hydrogel to mimic the ECM for
a 3D culture of MCF-7 BC cells.

Inspired by the natural ECM formation, our laboratory
constructed a “fibrin integrin receptor” structural peptide
Frontiers in Oncology | www.frontiersin.org 8
(AANL-KLVFFK-GGDGR-YIGSR) to initiate and participate in
the physiological reconstruction of the ECM in BC. LN is one of the
most important ECM components (147); the YIGSR sequence in
the LNb1 chain and the RGD sequence in the LNa chain are
considered essential to integrin identification. They also combine
specific loci, including metal ions (Ca2+, Mg2+) adhesive dots, and
produce the mechanical force behind cell actin filaments during
ECM self-assembly. YIGSR targets integrin’s RGD receptor.
TABLE 2 | Overview of selected nanoparticles that target the breast cancer ECM.

Application NPs Characteristics and functions Ref.

Degrading the tumor
ECM

Gold NPs Through the interaction between the coated gelatin layer and MMP-2 in the ECM, large-sized
gold NPs become smaller, enabling deeper tumor infiltration (135)
Gold NPs combined with MMP-sensitive peptides can be employed in drug delivery and tumor
imaging (136)

Liposomes with GPLPLR peptide A GPLPLR peptide sequence modified to target MT1-MMP was more effective in binding and
treating tumors than uncoated liposomes (137)

Collagenase-encapsulated
polymers

Released CLG enzyme can specifically degrade collagens, leading to a loosened ECM structure,
enhanced tumor perfusion, and less hypoxia (138)

Simulating tumor ECM Transformable laminin (LN)-mimic
peptide

Efficiently inhibited lung metastasis in breast and melanoma tumor models
(139)

Dual-degradable and injectable
hyaluronic acid hydrogel

Expression levels of VEGF, IL-8, and bFGF in hydrogel-cultured cells were significantly greater
than those in 2D culture (140)

Intervening the native
ECM fabrication

LOXab-NPs LOXab-NPs are highly specific for tumor targeting in xenograft models
(141)

pH-sensitive cleavable liposomes Depletion of collagen I by PTX-Cl-Lip and the combination of free losartan and PTX-CL-Lip could
enhance the antitumor efficacy of chemical drugs (142)

DOX-AuNPs-GNPs Pretreatment with losartan significantly decreased collagen levels and improved tumor penetration
(143)
April 2021 | Volume 11 | Article 65
ECM, extracellular matrix; NPs, nanoparticles; LOXs: lysyl oxidase family; MMP-2, matrix metalloproteinase-2; PTX, paclitaxel; VEGF, vascular endothelial growth factor; IL-8, interleukin 8;
FGF, fibroblast growth factor; DOX, doxorubicin.
FIGURE 1 | Synthesis and characterization of CLG@NCP-PEG NPs. Scheme for the preparation of NCP NPs and CLG-encapsulated CLG@NCP nanoparticles,
surface modification, and pH-sensitive degradation. Reproduced with permission from (138).
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In normal cells and on a mature endothelial cell surface, integrin
avb3 expression is low, but it is highly expressed during tumor
angiogenesis (148). The drug delivery system can specifically bind
tumor cells that express integrins, effectively mediate the drug
delivery system to enable tumor cell entry, reduce distribution in
normal tissue, and prevent fibrosis of the normal tissue cell matrix.
In addition, we are currently synthesizing a peptide-PEG-PLGA
three-block conjugate to obtain biodegradable polymer micelles
through self-assembly. These novel NPs comprise three units: (1)
YIGSR and RGD targets to induce nanomicelle transfer to the
tumor site; (2) enzyme-sensitive groups of peptide-PEG-PLGA,
under the action of a legumain, to easily dissociate in a tumor pH
(pH 4–6.5) (148); and (3) KLVFF peptides that participate in ECM
remodeling, curing the tumor tissue protein fiber layer. Then, after
PLGA-PEG/PTX enters the cell, glutathione dissolves the disulfide
bond between PLGA and PEG to release PTX. This release inhibits
tumor cell tubulin depolymerization and promotes cell apoptosis in
BC (Figure 2; data to be published).
Frontiers in Oncology | www.frontiersin.org 9
Intervening in Native ECM Fabrication
With a better understanding of the natural assembly process of
the native tumor ECM, it is now possible to interfere with the
specific stages of ECM fabrication in a tumor. An anti–LOX-like
2 antibody can alter the natural assembly of endogenous fibrous
collagen. LOX-like 2 interference with collagen can significantly
affect the adhesion and invasion of human BC cells, and tumor
growth can be effectively inhibited by LOX-like 2 antibody
treatment in mice bearing mammary tumors (149–151).
PLGA-based LOX-traceable NPs consisting of LOX antibodies
and paclitaxel were successfully synthesized and can be used as a
tumor-targeting drug carrier for chemotherapy and targeted
radiotherapy. LOX antibodies have high specificity to target
tumors in xenograft models (141). These NPs can affect ECM
fabrication in tumors by altering collagen assembly; in addition,
they can increase drug concentrations in tumor radiotherapy
sites and enhance the chemotherapeutic effect of paclitaxel,
which achieves the same result as the method described in 6.2.
A

B

C

FIGURE 2 | Synthesis and characterization of Peptide PS/PTX micelles. (A) Scheme of the lock copolymer structural sequence. (B) Peptide-PEG-PLGA conjugate is mixed
with PTX and self-assembled into Peptide PS/PTX micelles. (C) Surface-modified peptide PS/PTX micelles and is pH-sensitive and glutathione-sensitive degradation.
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DISCUSSION

BC metastasis is a complex process with different regulatory
mechanisms that involve many processes, including changes in
the ECM (74). The ECM is a proven barrier to cells. During the
process of tumor invasion and metastasis, a series of dynamic
changes occurs in tumor cells and the surrounding ECM (19).
These events involve MMPs (e.g., MMP-2 and MMP-9),
cathepsin, fiber protease release, type IV collagen, LN, gelatin,
fiber connection proteins, other components outside the matrix
involved in synthesis and degradation, collagen enzyme
inhibitors (e.g., tissue inhibitors of metalloproteinase 1 and 2),
adhesion molecules, and tumor cells that release fibroblast
growth factor, vascular endothelial growth factor, and
angiogenesis inhibitors (20). Greater insight into the
occurrence of metastasis and its mechanisms in BC, as well as
a better understanding of ECM structure and regulation, will
help spur the development of new therapeutic targets for
antineoplastic drugs (12, 13, 146).

NPs offer an innovative technology with great potential for
biomedical applications. A growing number of studies has
demonstrated that ECM-targeted NPs hold great promise for
early BC diagnosis and treatment. Nanomaterials are useful
vehicles for improving anticancer drug efficacy. New advances
have been made in the study of multifunctional NPs that provide
simultaneous targeting of both tumor cells and the ECM (152,
153). However, many challenges remain in designing effective
nanodrugs for clinical cancer treatment. For example, the
interaction between the ECM and tumor cells is still largely
unknown. Appropriate experimental and preclinical models
must be designed to better describe the ECM and accelerate
the development of existing NP systems. In addition, many
problems in tumor metastasis and drug resistance urgently
need solved. An immunosuppressive ECM impedes the
implementation of effective immunotherapies (154). These
cancer therapy obstacles require an advanced NP system that
can precisely target the molecular determinants of the ECM.
Future research should focus on developing NP systems that
Frontiers in Oncology | www.frontiersin.org 10
regulate ECM at the metabolic and immune levels; such a system
would likely yield great clinical achievements.
CONCLUSIONS

This review focused on the role of the ECM in the development
and metastasis of BC and on the application of NPs that target
this structure. The ECM composition dynamically changes in BC
and is very different from that of a normal mammary gland.
Various ECM-modifying enzymes play an important role in BC
progression and metastasis. Moreover, the ECMmay be involved
in regulating resistance to treatments, including chemotherapy,
endocrine targeted therapy, and radiotherapy. The ECM
provides many potential therapeutic targets, and NPs are
promising carriers for improving drug activity and efficacy.
Additional research is needed to promote the development of
ECM-targeted nanotherapeutics that effectively control
BC tumors.
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