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Objective: The present study used the RNA sequencing (RNA-seq) dataset to identify
prognostic snoRNAs and construct a prognostic signature of The Cancer Genome Atla
(TCGA) lower grade glioma (LGG) cohort, and comprehensive analysis of this signature.

Methods: RNA-seq dataset of 488 patients from TCGA LGG cohort were included in this
study. Comprehensive analysis including function enrichment, gene set enrichment
analysis (GSEA), immune infi ltration, cancer immune microenvironment, and
connectivity map (CMap) were used to evaluate the snoRNAs prognostic signature.

Results: We identified 21 LGG prognostic snoRNAs and constructed a novel eleven-
snoRNA prognostic signature for LGG patients. Survival analysis suggests that this
signature is an independent prognostic risk factor for LGG, and the prognosis of LGG
patients with a high-risk phenotype is poor (adjusted P = 0.003, adjusted hazard ratio =
2.076, 95% confidence interval = 1.290–3.340). GSEA and functional enrichment analysis
suggest that this signature may be involved in the following biological processes and
signaling pathways: such as cell cycle, Wnt, mitogen-activated protein kinase, janus
kinase/signal transducer and activator of tran-ions, T cell receptor, nuclear factor-kappa B
signaling pathway. CMap analysis screened out ten targeted therapy drugs for this
signature: 15-delta prostaglandin J2, MG-262, vorinostat, 5155877, puromycin,
anisomycin, withaferin A, ciclopirox, chloropyrazine and megestrol. We also found that
high- and low-risk score phenotypes of LGG patients have significant differences in
immune infiltration and cancer immune microenvironment.

Conclusions: The present study identified a novel eleven-snoRNA prognostic signature
of LGG and performed a integrative analysis of its molecular mechanisms and relationship
with tumor immunity.

Keywords: small nucleolar RNA, lower grade glioma, The Cancer Genome Atlas, molecular mechanism,
immune infiltration
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INTRODUCTION

Tumors derived from the neuroepithelium are collectively called
gliomas and are the most common malignant primary
intracranial tumor (1). Lower-grade gliomas are well-
differentiated gliomas, and their preferred treatment is surgery,
followed by radiotherapy, chemotherapy, immunotherapy, and
targeted therapy. Just like any other cancers, glioma is also due to
the interaction of innate genetic risk factors and environmental
carcinogenic factors (e.g., radiation exposure). Some known
genetic disease, such as neurofibromatosis (type I), is genetic
susceptibility factor for glioma (2). With the development of
high-throughput sequencing technology, we have found that
more and more genetic variants are connected with the
occurrence, development and clinical outcome of cancers.
TCGA is a database resource for whole-genome multi-omics
sequencing of 33 human cancers based on high-throughput
sequencing technology (3). It can provide the whole genome
multi-omics data set of glioma, so that we can further explore its
genetic variation (4).

SnoRNA belong to a small non-coding RNA, mostly enriched
in nucleolus (5). SnoRNA plays an important role in the splicing
processing and post-transcriptional modification of ribosomal
precursor RNA. Previous research reports suggested that
snoRNAs were dysregulated between glioma tumor and
adjacent non-tumor tissues, and involved in the regulation of
cancer cell apoptosis, proliferation and invasion, including in
glioma (6–8). However, there are few reports on the prognostic
value of snoRNA in gliomas (8). We found that there is no
research report on screening LGG prognostic snoRNAs based on
genome-wide dataset. To fill this gap, we designed and
implemented this study. The present study was used the RNA
sequencing (RNA-seq) dataset to screen prognostic-related
snoRNAs and construct a prognostic signature for The Cancer
Genome Atla (TCGA) lower grade glioma (LGG) cohort, and
conduct a comprehensive investigation of its molecular
mechanisms and relationship with tumor immunity.
MATERIALS AND METHODS

Data Source
The original level 3 raw RNA sequencing (RNA-seq) dataset of
lower grade glioma used in our study comes from TCGA data
portal (4). Clinical parameters of TCGA LGG cohort were
obtained from UCSC Xena (http://xena.ucsc.edu) (9). We
obtained 940 snoRNAs from TCGA RNA-seq dataset into the
current analysis. The original HTSeq-Counts RNA-seq data set
was normalized in the R platform through the edgeR package
(10). We eliminated snoRNAs with a mean value less than 1, and
obtained a total of 137 snoRNAs for subsequent survival analysis.
We obtained a total of 529 RNA-seq data sets of 511 patients
from the TCGA data portal, and we excluded 18 recurrent cancer
tissues. Of the 511 patients, we excluded five patients whose
survival time was 0 or who had no survival time. We also
excluded 18 patients who had a history of other malignancies
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or who received radiotherapy or chemotherapy before surgery.
Finally, 488 patients were recruited for the subsequent
comprehensive analysis, which included survival analysis and
functional mechanism analysis. IDH1 mutation data of TCGA
LGG cohort were obtained from cBioPortal for Cancer
Genomics (https://www.cbioportal.org/index.do).

Survival Analysis of snoRNAs Signature
Prognostic snoRNAs screening was performed on the R platform
using survival packet and univariate Cox proportional hazards
regression model. The prognostic snoRNAs signature is
constructed in the R platform using the step function. We use
prognostic-related snoRNAs as variables into the multivariate
Cox proportional hazard regression model, and the Cox
regression coefficient (b) as the weight of each snoRNAs
included in the signature to compose the risk score. The
snoRNAs signature calculation formula was as follows: risk
score = Exp of snoRNA1 × b1snoRNA1 + Exp of snoRNA2 ×
b2snoRNA2 + Exp of snoRNAn × bnsnoRNAn (Exp: expression)
(11–13). Subsequently, we also used the time-dependent ROC
curve, nomogram, and combined effect survival analysis to
conduct a comprehensive analysis of the prognostic value of
this risk score signature in LGG. The nomogram was drawn in
the R platform using the rms package. The time-dependent ROC
curve was performed in the R platform using the survival ROC
package. The combined effect survival analysis was performed in
SPSS version 22.0 using the multivariate Cox proportional
hazards regression model.

Functional Enrichment Analysis of
snoRNAs Signature Based on Whole-Gene
RNA-seq Dataset
SnoRNA is a small non-coding RNA encoded by introns, and its
function is exerted through the regulation of protein-coding
genes (PCGs). We use the Cor function and whole genome
encoded RNA-seq dataset of LGG tumor tissues samples to
screen the PCGs that related to snoRNAs, were performed on
the R platform. We identified that the absolute value of Pearson
correlation coefficient (r) between snoRNAs and genes were
greater than 0.4 and P <0.05 considered to be the co-
expression PCGs of snoRNA. The normalization of PCGs’
RNA-seq dataset was also performed by edgeR. Then, we use
the Database for Annotation, Visualization and Integrated
Discovery v6.8 (DAVID v6.8, https://david.ncifcrf.gov/home.
jsp) online tool to perform functional annotations on the
snoRNAs we have screened through the snoRNA co-
expression PCGs (14). In addition, we also used the gene set
enrichment analysis (GSEA, http://software.broadinstitute.org/
gsea/index.jsp) desktop installer to perform functional
enrichment analysis between high-risk and low-risk
phenotypes for purpose of further investigate the molecular
mechanisms of prognostic differences between this two
phenotypes (15). For further investigate the molecular
mechanism, we further used edgeR to screen differentially
expressed genes (DEGs) between high-risk and low-risk
phenotypes. Then we use DAVID v6.8 to annotate the
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functions of these DEGs. We subsequently used these DEGs and
connectivity map (CMap, https://portals.broadinstitute.org/
cmap/) online tool to identify potential drugs for LGG patients
with a high-risk phenotype (16, 17). PubChem (https://pubchem.
ncbi.nlm.nih.gov) and STITCH (http://stitch.embl.de/cgi/)
online tools were applied to obtain the chemical structure of
drugs and the drug-gene interaction networks, respectively
(18, 19).

Tumor Immune Infiltration and
Microenvironment Analysis
CIBERSORT package was used to compute the abundance and
scale of 22 immune cells in LGG tumor tissues to assess the
degree of immune infiltration of LGG tumor samples (20, 21).
We use the ESTIMATE (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data) package
and LGG’s whole genome RNA-seq dataset to calculate the
tumor immune microenvironment on the R platform,
including the values of immune and stromal cells (22).

Statistical Analysis
The calculation of FDR adopts Benjamini–Hochberg method
(23). Survival analysis uses log-rank test of Kaplan–Meier
algorithm, as well as univariate and multivariate Cox
proportional hazards regression models. Clinical parameters
with P <0.05 were included in multivariate Cox proportional
hazards regression model for adjustment. Survival curves, heat
maps and volcano maps were drawn on the R platform using the
ggplot2 package. P <0.05 identified the difference to reach
statistical significance. All statistics are computed by SPSS
version 22.0.
RESULTS

Survival Analysis of snoRNAs Signature
Clinical parameters of TCGA LGG cohort were summarized in
Table 1. Through survival analysis, we obtained 21 snoRNAs
that are markedly connected with the clinical outcome of LGG
(Figure 1 and Table S1). Then we use the step function to screen
a risk score signature from these 21 prognostic-related snoRNAs.
Through the screening of the step function, we finally
constructed a signature composed of 11 prognostic snoRNAs.
The expression of risk score is below: risk score = (–0.2258) ×
Exp of SNORD73B + (0.1889) × Exp of SNORD91A + (–0.2338)
× Exp of SNORA80D + (0.2783) × Exp of ACA59 + (0.3153) ×
Exp of SNORA63 + (0.2547) × Exp of SNORA72 + (–0.1293) ×
Exp of SNORA31 + (–0.2354) × Exp of SNORD115-45 +
(0.2076) × Exp of SNORA22B + (–0.2054) × Exp of U3 + (–
0.2230) × Exp of SNORA40. Kaplan–Meier curves of 11
prognostic snoRNAs were display in Figures 2A–K. By
comparing the distribution between survival time of LGG
patients and risk score, we found that patients with high risk
score had poorer clinical outcome than those with low risk score
(Figures 3A, B, log rank P <0.0001). We used multivariate Cox
proportional hazard regression model to analyze risk score and
Frontiers in Oncology | www.frontiersin.org 3
found that LGG patients with high risk score had a higher risk of
death (adjusted P = 0.003, adjusted HR = 2.076, 95%CI = 1.290–
3.340). Then we used survivalROC to assess the accuracy of this
risk score for predicting the clinical outcome of LGG patients.
We found that this risk score had the highest accuracy in assess
the one year prognosis of LGG patients, and the area under curve
(AUC) was 0.850 (Figure 3C). The accuracy of the prognosis
signature exceeded 0.7 in the clinical outcome prediction of LGG
patients from one to five years (Figure 3C). We also use this
prognostic signature and clinical parameters with P <0.01 to
perform a joint effect survival analysis, these clinical parameters
including age, grade, IDH1 mutation, radiation therapy and
tumor location. The joint effect survival analysis can
significantly more accurately classify LGG patients and identify
subtypes of LGG patients with different prognostic outcomes
(Table 2 and Figures 4A–E). Through the combined effect
survival analysis, we found that the combination of age and
risk score can significantly divide LGG patients into four
subtypes with significant different prognosis (Table 2 and
Figure 4A, all adjusted P <0.05). For understand the
contribution of this prognostic signature to the clinical
outcome of LGG patients, we constructed a nomogram base on
eight LGG prognostic-related clinical parameters and risk score.
Through the nomogram, we found that the risk score has the
highest contribution to LGG survival, with scores ranging from 0
to 100 (Figure 5).

Functional Enrichment Analysis of
snoRNAs Signature
Through genome-wide co-expression analysis, 990 co-expression
pairs of snoRNAs-PCGs were identified, and the snoRNAs-
PCGs co-expression interaction network is shown in Figure
S1, since we did not screen the co-expressed PCGs of
SNORD91A in this cohort. Finally, we will screen the co-
expressed genes of 10 snoRNAs into the subsequent functional
enrichment analysis. Enrichment analysis reveals that these
snoRNA co-expressed PCGs may work by participating in the
following biological functions: DNA repair, neuromuscular
process controlling balance, covalent chromatin modification,
neurotransmitter secretion, voltage-gated calcium channel
activity, NIK/NF-kappaB signaling, nervous system
development, neuromuscular junction, neuronal action
potential, protein polyubiquitination, chemical synaptic
transmission, brain morphogenesis, regulation of long-term
neuronal synaptic plasticity, positive regulation of GTPase
activity, MAPK cascade, positive regulation of cyclin-
dependent protein serine/threonine kinase activity involved in
G1/S transition of mitotic cell cycle, protein kinase binding,
regulation of cell cycle, synaptic vesicle cycle and glutamatergic
synapse (Table S3). We also performed a multivariate survival
analysis on these snoRNA co-expressed PCGs, and obtained 180
prognostic PCGs of LGG (Figure 6A). The top three significant
PCGs are zinc finger protein 821 (ZNF821, Figure 6B), solute
carrier family 8 member A3 (SLC8A3, Figure 6C) and cellular
communication network factor 4 (CCN4, also named as WISP1,
Figure 6D).
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TABLE 1 | Univariate survival analysis of clinical parameter in TCGA LGG cohort.

Variables Patients MST (days) HR (95% CI) Log-rank P

Race 0.576
White 451 2,660 1
Non-white 27 1,578 1.244 (0.578–2.675)
Missing 10

Gender 0.412
Male 269 2,433 1
Female 219 2,660 0.861 (0.601–1.232)

Age (years) <0.001
≤65 454 2,835 1
>65 34 547 5.877 (3.529–9.786)

First presenting symptom 0.010
Headaches 100 2,379 1
Mental Status Changes 37 1,351 2.124 (1.101–4.097)
Motor/Movement Changes 36 2,286 1.857 (0.909–3.792)
Seizures 238 2,835 0.968 (0.606–1.546)
Sensory or Visual Changes 28 4,695 0.532 (0.203–1.393)
Missing 49

First presenting symptom longest duration 0.075
0–30 Days 207 2,052 1
31–90 Days 75 2,379 1.07 (0.644–1.779)
91–180 Days 35 1,491 1.314 (0.702–2.46)
>181 Days 105 2,988 0.591 (0.361–0.969)
Missing 66

Histological_type 0.011
Astrocytoma 184 1,891 1
Oligoastrocytoma 122 3,200 0.628 (0.392–1.006)
Oligodendroglioma 182 2,907 0.559 (0.373–0.839)

Laterality 0.183
Left 236 1,762 1
Midline 6 682 0.947 (0.283–3.172)
Right 241 2,907 0.713 (0.494–1.027)
Missing 5

Grade <0.001
G2 237 3,571 1
G3 250 1,525 3.431 (2.316–5.083)
Missing 1

Preoperative antiseizure meds 0.257
No 104 2,988 1
Yes 253 2,660 1.335 (0.809–2.204)
Missing 131

Preoperative corticosteroids 0.052
No 203 2,988 1
Yes 145 2,433 1.553 (0.994–2.427)
Missing 140

Radiation therapy 0.002
No 168 2,988 1
Yes 276 2,000 2.033 (1.294–3.193)
Missing 44

Targeted molecular therapy 0.115
No 186 2,907 1
Yes 251 2,282 1.369 (0.925–2.026)
Missing 51

Tumor location 0.002
Frontal Lobe 288 3,200 1
Parietal Lobe 44 2,235 1.042 (0.498–2.182)
Temporal Lobe 137 1,666 2.009 (1.369–2.949)
Other 18 1,585 2.318 (0.928–5.790)
Missing 1

IDH1 mutation <0.001
Wild type 117 775 1
Mutant 371 2,907 0.264 (0.184–0.379)
Frontiers in Oncology | www.frontiersin.org
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In order to reveal the molecular mechanisms that cause the
prognosis difference of LGG patients with high- and low-risk
score phenotypes, we also compared patients with two
phenotypes using the GSEA approach. GSEA using the c5
reference gene set suggested that LGG patients with high-risk
score phenotypes are significantly different from low-risk score
phenotypes in the following biological processes: integrin
mediated signaling pathway, natural killer cell mediated
immunity, cell adhesion mediated by integrin, kappa B kinase
NF kappa B signaling, toll like receptor signaling pathway, T cell
mediated immunity, regulation of tumor necrosis factor
mediated signaling pathway, T cell receptor signaling pathway,
Wnt activated receptor activity, hippo signaling, Wnt protein
binding, receptor signaling pathway via STAT, regulation of cell
cycle G1/S phase transition, NIK/NF kappa B signaling, tumor
necrosis factor mediated signaling pathway, stem cell
proliferation (Figures 7A–P). GSEA using the c2 reference
gene set suggested that LGG patients with high-risk score
phenotypes are significantly different from low-risk score
phenotypes in the following pathways: CD8/TCR pathway,
natural killer cell mediated cytotoxicity, B cell receptor
signaling pathway, PI3KCI pathway, caspase pathway, TH1/
TH2 pathway, P53 pathway, metastasis up, tumor vasculature
up, JAK/STAT signaling pathway, cell adhesion molecules
CAMs, P38/MAPK pathway, Wnt pathway require Myc,
signaling by Rho gtpases, tumorigenesis up and NF-kB
pathway (Figures S2A–P).
Frontiers in Oncology | www.frontiersin.org 5
We screened 1319 DEGs between high- and low-risk score
phenotypes by edgeR, of them, 122 DEGs were down-regulation and
1197 DEGs were up-regulation (Figure 8, Figure S3 and Table S7).
Functional enrichment revealed that these DEGs may function by
participating in the following biological processes: positive
regulation of cell proliferation, cell-cell signaling, positive
regulation of ERK1 and ERK2 cascade, interferon-gamma-
mediated signaling pathway, regulation of immune response,
neuron migration, angiogenesis, positive regulation of cell
migration, cytokine-mediated signaling pathway, cell adhesion,
cellular response to interleukin-1, cell differentiation, positive
regulation of T cell proliferation, positive regulation of cytosolic
calcium ion concentration involved in phospholipase C-activating
G-protein coupled signaling pathway, cell surface receptor signaling
pathway, neuropeptide signaling pathway, JAK-STAT cascade,
mitotic sister chromatid segregation, cell division, mitotic nuclear
division, integrin binding, cell-matrix adhesion, T cell receptor
signaling pathway, response to hypoxia, positive regulation of
protein kinase B signaling, epithelial to mesenchymal transition,
regulation of vascular endothelial growth factor production, positive
regulation of MAPK cascade, cellular response to fibroblast growth
factor stimulus, phosphatidylinositol-4,5-bisphosphate 3-kinase
activity, Wnt-protein binding, cytokine–cytokine receptor
interaction, ECM-receptor interaction, cell adhesion molecules
(CAMs), focal adhesion, PI3K-Akt signaling pathway,
Proteoglycans in cancer, cell cycle, chemokine signaling pathway,
Jak-STAT signaling pathway, and transcriptional misregulation in
FIGURE 1 | Volcano plot of snoRNAs survival analysis results in TCGA LGG cohort.
June 2021 | Volume 11 | Article 650828
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cancer (Table S8). We also performed a multivariate survival
analysis on these DEGs, and obtained 320 prognostic DEGs of
LGG (Table S9 and Figure 9A). The top three significant DEGs
were calcium binding protein 4 (CABP4, Figure 9B), elastin
microfibril interfacer 3 (EMILIN3, Figure 9C) and ISL LIM
homeobox 2 (ISL2, Figure 9D). We use these DEGs through the
CMAP to identify the potential targeted therapy drugs of this
snoRNAs prognostic signature in LGG. We have obtained ten
targeted therapy drugs for this snoRNAs prognostic signature in
LGG. These drugs are 15-delta prostaglandin J2, MG-262,
Frontiers in Oncology | www.frontiersin.org 6
vorinostat, 5155877, puromycin, anisomycin, withaferin A,
ciclopirox, chloropyrazine and megestrol (Table 3). The chemical
structures of nine drugs (except 15-delta prostaglandin J2) can be
obtained through PubChem, which are shown in Figures 10A–I.
Subsequently, we also constructed the drug-genes interaction
network by STITCH, In addition to 15-delta prostaglandin J2 and
5155877, we can obtain drug-genes interaction network for the
remaining 8 drugs (Figure S4). We found that these drugs can work
by regulating genes that are differentially expressed between high
and low-risk score phenotypes. MG-262 may function in LGG by
A B

D E F

G IH

J K

C

FIGURE 2 | Kaplan–Meier survival curves of 11 snoRNAs that constitute the prognostic signature. SNORA40 (A), SNORD115-45 (B), ACA59 (C), SNORD73B (D),
SNORA63 (E), SNORA31 (F), SNORA80D (G), SNORA72 (H), U3 (I), SNORD91A (J), ANORA22B (K).
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regulating cyclin dependent kinase 4 (CDK4), NME/NM23
family member 8 (NME8), chloride intracellular channel 6
(CLIC6) and acyl-coa dehydrogenase long chain (ACADL), while
withaferin A through regulating tubulin beta 6 class V (TUBB6),
vimentin (VIM), DLG associated protein 5 (DLGAP5), CDK4,
tubulin alpha 1c (TUBA1C), kinesin family member C1 (KIFC1).
Frontiers in Oncology | www.frontiersin.org 7
Vorinostat was function by regulating UDP glucuronosyltransferase
family 2 member B17 (UGT2B17), suppressor of cytokine
signaling 3 (SOCS3), epidermal growth factor receptor (EGFR),
Fas ligand (FASLG) and matrix metallopeptidase 9 (MMP9).
Ciclopirox was function by regulating lactotransferrin (LTF),
arachidonate 15-lipoxygenase (ALOX15) and baculoviral IAP
A B C

FIGURE 3 | Survival analysis of risk score. (A) Distribution of risk score and survival time of LGG patients; (B) Kaplan–Meier survival curves of risk score; (C) Time-
dependent ROC curve of risk score.
A B

D

E

C

FIGURE 4 | Joint effect survival analysis between risk score and clinical parameters. (A) Combination of risk score and age; (B) Combination of risk score and
grade; (C) Combination of risk score and radiation therapy; (D) Combination of risk score and tumor location. (E) Combination of risk score and IDH1 mutation.
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repeat containing 5 (BIRC5). Megestrol was function by regulating
gamma-aminobutyric acid type A receptor subunit gamma 2
(GABRG2) and neuronal PAS domain protein 4 (NPAS4).
Anisomycin was function by regulating MMP9, dual specificity
phosphatase 9 (DUSP9), EGFR, interleukin 6 (IL6), resistin
(RETN), growth differentiation factor 15 (GDF15), C-C motif
chemokine ligand 20 (CCL20), proteoglycan 4 (PRG4) and
mitogen-activated protein kinase 15 (MAPK15). Puromycin was
function by regulating actin gamma 2, smooth muscle (ACTG2),
fibronectin 1 (FN1), ATP binding cassette subfamily C member 3
(ABCC3), dipeptidyl peptidase 4 (DPP4), EGFR and syndecan
1 (SDC1).

Tumor Immune Infiltration and
Microenvironment Analysis
By using CIBERSORT to assess the degree of infiltration of 22
immune cells in LGG tumor tissues, we finally obtained distribution
histogram and abundance heatmap of immune cell infiltration of
116 LGG patients (Figures S5A–B), of which 52 patients were the
low-risk score phenotype and 64 patients were high-risk score
phenotype. By comparing the distribution of 22 immune cells
between high- and low-risk score phenotypes of LGG patients, we
Frontiers in Oncology | www.frontiersin.org 8
found that eight immune cells, including T cell CD8, T cells
follicular helper, T cells regulatory (Tregs), NK cells activated,
Monocytes, Macrophages M1, Macrophages M2 and Eosinophils,
showed significant differences between high- and low-risk score
phenotypes (Figure 11). Among the eight types of immune cells,
four types of immune cells [T cell CD8, T cells regulatory (Tregs),
Macrophages M1and Macrophages M2] in the high-risk phenotype
have a higher fraction than in the low-risk phenotype, whereas, four
types of immune cells (T cells follicular helper, NK cells activated,
Monocytes and Eosinophils) in the low-risk phenotype have a
higher fraction than these in the high-risk phenotype (Figure 11).
Subsequently, we also scored the immune cells and stromal cells in
tumor tissues of 488 LGG patients. We found that all the stromal,
immune, and ESTIMATE score for the tumormicroenvironment of
LGG patients were higher in the high-risk score phenotype (Figures
12A–C).
DISCUSSION

There has been a small amount of literature that used the TCGA
genome-wide data set to screen snoRNA prognostic biomarkers.
TABLE 2 | Joint effect survival analysis of the prognostic signature and clinical parameters with P <0.01.

Group Risk
score

Variables Patients
(n = 488)

MST
(days)

Crude HR (95% CI) Crude
P

Adjusted HR (95% CI) Adjusted
P§

Age (years)
A Low risk ≤65 228 4,084 1 1
B Low risk >65 16 962 8.270 (3.568–19.164) <0.001 9.172 (2.912–28.888) <0.001
C High risk ≤65 226 1,666 3.552 (2.305–5.474) <0.001 2.328 (1.411–3.841) 0.001
D High risk >65 18 347 18.841 (9.335–38.029) <0.001 6.477 (2.776–15.113) <0.001

Grade£
a Low risk G2 138 4,695 1 1
b Low risk G3 105 2,282 2.432 (1.263–4.684) 0.008 1.884 (0.897–3.956) 0.094
c High risk G2 99 2,875 2.278 (1.182–4.389) 0.014 1.740 (0.826–3.668) 0.145
d High risk G3 145 987 8.259 (4.687–14.552) <0.001 4.346 (2.180–8.662) <0.001

IDH1 mutation
I Low risk Wild type 20 NA 1 1
II Low risk Mutant 224 4,084 3.735 (0.509–27.387) 0.195 5.158 (0.601–44.300) 0.135
III High risk Wild type 97 648 26.906 (3.666–197.488) 0.001 26.208 (3.027–226.875) 0.003
IV High risk Mutant 147 2,235 6.348 (0.861–46.789) 0.070 7.157 (0.833–61.474) 0.073

Radiation
therapy¥

i Low risk No 107 2,988 1 1
ii Low risk Yes 121 4,084 1.084 (0.541–2.172) 0.821 0.523 (0.240–1.140) 0.103
iii High risk No 61 NA 1.753 (0.783–3.926) 0.173 1.014 (0.430–2.394) 0.974
iv High risk Yes 155 1,335 4.187 (2.312–7.584) <0.001 1.440 (0.711–2.919) 0.311

Tumor location
ɠ

1 Low risk Frontal Lobe 161 NA 1 1
2 Low risk Parietal Lobe 18 NA 7 × 10–6 (2.218 × 10−184–2.460 ×

10173)
0.955 8.792 × 10−7 (6.370 × 10−239–1.214 ×

10226)
0.959

3 Low risk Temporal Lobe 59 NA 1.095 (0.527–2.274) 0.808 1.103 (0.519–2.347) 0.799
4 Low risk Other 6 NA 1.828 (0.246–13.560) 0.555 NA NA
5 High risk Frontal Lobe 127 NA 2.145 (1.294–3.554) 0.003 1.256 (0.701–2.249) 0.444
6 High risk Parietal Lobe 26 NA 3.466 (1.547–7.766) 0.003 2.083 (0.856–5.067) 0.106
7 High risk Temporal Lobe 78 NA 5.787 (3.439–9.736) <0.001 2.655 (1.325–5.321) 0.006
8 High risk Other 12 NA 4.738 (1.640–13.690) 0.004 2.374 (0.653–8.635) 0.189
June 2021 | Volume 11 | Ar
£ Grade information is unavailable in one patient; ¥ Radiation therapy information are unavailable in 44 patients; ɠ Tumor location information are unavailable in one patients. §adjusted for
age, first presenting symptom, histological type, grade, radiation therapy, tumor location, IDH1 mutation.
MST, median survival time; HR, hazard ratio; CI, confidence interval; NA, not available.
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FIGURE 5 | A nomogram constructed in TCGA LGG cohort based on risk score and clinical parameters.
A B

DC

FIGURE 6 | Survival analysis results of snoRNAs co-expressed PCGs in TCGA LGG cohort. (A) Volcano plot of snoRNAs co-expressed PCGs survival analysis
results; (B) Kaplan–Meier survival curves of ZNF821; (C) Kaplan–Meier survival curves of SLC8A3; (D) Kaplan–Meier survival curves of WISP1.
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Liu et al. used TCGA genome-wide RNA-seq dataset to
investigate sarcoma prognostic-related snoRNAs, and identified
15 sarcoma prognostic-related snoRNAs, as well as constructed a
sarcoma prognostic signature base on four snoRNAs (24). Cao
et al. carried out screening for prognostic snoRNAs by using the
least absolute and selection operator (LASSO) Cox regression
method, and developed a bladder cancer prognostic signature
composed of five snoRNAs (25). Both of the above studies
confirmed that U3 can be used as a prognostic marker for
corresponding tumors (24, 25). Similarly, Zhao et al. also
constructed a renal clear cell carcinoma with six prognosis-
related snoRNA signatures, and conducted functional
enrichment analysis on these snoRNAs (26). Similar to
previous studies, our current study also used TCGA RNA-seq
Frontiers in Oncology | www.frontiersin.org 10
dataset to investigate prognostic snoRNAs, and also found that
U3 can be used as a prognostic biomarker for LGG. Therefore,
we inferred that U3 could be used as prognostic biomarker in
multiple cancers.

Lafaille et al. found that the genetic variation of SNORA31
was closely related to encephalitis in the forebrain. After alleles at
corresponding sites of SNORA31 were knocked out, in vitro
experiments proved that SNORA31 could change the sensitivity
of neurons to herpes simplex virus-1 (27). The expression of
SNORA31 was markedly down-regulated in CD19+ b-cells of
chronic myeloid leukemia (CLL) patients compared with normal
B-cells (28). Studies have shown that relapsing–remitting
multiple sclerosis (RRMS) patients ncRNA–mRNA network is
seriously affected by the disease, resulting in a large number of
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 7 | GSEA results using the c5 reference gene set. (A) integrin mediated signaling pathway; (B) natural killer cell mediated immunity; (C) cell adhesion
mediated by integrin; (D) kappa B kinase NF kappa B signaling; (E) toll like receptor signaling pathway; (F) T cell mediated immunity; (G) regulation of tumor necrosis
factor mediated signaling pathway; (H) T cell receptor signaling pathway; (I) Wnt activated receptor activity; (J) hippo signaling; (K) Wnt protein binding; (L) receptor
signaling pathway via STAT; (M) regulation of cell cycle G1/S phase transition; (N) NIK/NF kappa B signaling; (O) tumor necrosis factor mediated signaling pathway;
(P) stem cell proliferation.
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ncRNAs and mRNAs imbalance. By means of RNA sequencing,
Irizar et al. found that SNORA40 was disorder in RRMS and
might be a potential therapeutic target (29). We found that the
rest of snoRNAs had not been reported before. We found for the
first time that that these snoRNAs are related to LGG prognosis
through whole-genome RNA sequencing data. Through the
snoRNAs co-expression genes, GSEA and differentially
expressed genes, we have a further understanding the function
of this eleven-snoRNA prognostic signature. A large number of
pathways and biological function gene sets enriched by this
eleven-snoRNA prognostic signature have been reported as
classic or novel cancer-related signaling pathways in previous
studies , such as JAK/STAT, p38//MAPK, and Wnt
signaling pathways.

Xiong et al. screened the differentially expressed genes
between ovarian serous cystadencinoma (OSC) and ovarian
specimens, and used CMap method to determine that three
drugs, namely MG-132, puromycin and 15-delta prostaglandin
J2, could be potential target drugs for OSC (30). Shi et al. also
identified 15-delta Prostaglandin J2 as a potential therapeutic
agent by comparing gene expression profiles in patients
with diabetic nephropathy using bioinformatics analysis (31).
FIGURE 8 | Volcano plot of DEGs between high- and low-risk score
phenotypes.
A B

DC

FIGURE 9 | Survival analysis results of DEGs between high- and low-risk score phenotypes in TCGA LGG cohort. (A) Volcano plot of DEGs survival analysis results;
(B) Kaplan–Meier survival curves of CABP4; (C) Kaplan–Meier survival curves of EMILIN3; (D) Kaplan–Meier survival curves of ISL2.
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Wei et al. through genome-wide data and CMAP analysis
identified MC-262 as a potential targeted therapy for head and
neck squamous cell carcinoma (HNSCC), and its potential target
in HNSCC is proliferating cell nuclear antigen (32). Vorinostat in
the treatment of glioma has been widely reported in previous
studies. Clinical trials have shown that vorinostat combined with
Bevacizumab or Temozolomide can be used in the treatment of
glioma (33–35), as well recurrent malignant gliomas (36–39).
Frontiers in Oncology | www.frontiersin.org 12
Local Del ivery of vor inosta t can al ter the tumor
microenvironment, thereby inhibiting glioma recurrence (40).
Vorinostat can also mediate the regulation of cell cycle regulatory
proteins in glioma (41). Bortezomib can enhance the apoptosis of
glioma cells induced by vorinostat (42). Puromycin exerts
antitumor function in multiple cancers and can induce cancer
cell apoptosis. The aminopeptidase inhibitors based on
puromycin show high anti-tumor effect in vitro in hematologic
TABLE 3 | Connectivity map analysis results.

CMap name Mean connective score n Enrichment P value Specificity Percent non-null

15-delta prostaglandin J2 –0.393 15 –0.584 <0.001 0.0526 53
MG-262 –0.6 3 –0.837 0.00865 0.126 66
Vorinostat –0.412 12 –0.45 0.0092 0.4867 50
5155877 –0.408 4 –0.725 0.01172 0.0197 50
Puromycin –0.614 4 –0.722 0.01215 0.097 75
Anisomycin –0.366 4 –0.71 0.01456 0.0932 50
Withaferin A –0.542 4 –0.691 0.01959 0.1393 75
Ciclopirox –0.385 4 –0.682 0.02244 0.0762 50
Chloropyrazine –0.37 4 –0.671 0.02604 0.039 50
Megestrol –0.393 4 –0.635 0.04323 0.034 50
J
une 2021 | Volume 1
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FIGURE 10 | The chemical structure of the targeted therapeutic drugs of snoRNAs prognostic signature in LGG. (A) MG-262; (B) Vorinostat; (C) 5155877; (D)
Puromycin; (E) Anisomycin; (F) Withaferin A; (G) Ciclopirox; (H) Chloropyrazine; (I) Megestrol.
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malignancies and are expected to be potential therapeutic drugs
for hematologic diseases (43). Puromycin can induce apoptosis
of breast cancer cells MCF-7. Its apoptosis mechanism is not
exerted by insulin-like growth factor-1 (IGF-1), but is affected by
the level of IGF-1 receptor (44). Study have shown that
puromycin can induce apoptosis of glioma cells, but its
apoptotic mechanism is not exerted through the Fas/Fas ligand
pathway and Bcl-2 has only a small protective effect on
puromycin-induced apoptosis of glioma cells (45). Previous
studies have shown that anisomycin has anticancer effects in a
variety of cancers, but its molecular mechanisms are different in
different cancers. Anisomycin can inhibit angiogenesis in ovarian
cancer (OV) through take part in the ceRNA regulatory network
(lncRNA−Meg3/miR−421/platelet derived growth factor
receptor a axis), thereby inhibiting tumor cell growth (46).
LncRNA b-site APP cleaving enzyme 1 antisense strand
(BACE1-AS) is also a potential target of anisomycin in OV
(47). Anisomycin plays an anti-tumor role in primary
hepatocellular carcinoma by mediating natural killer cells, and
its main molecular mechanism has been found by genome
sequencing to be mediated by immunomodulatory genes (48).
Anisomycin can be involved in inhibiting the proliferation of
Frontiers in Oncology | www.frontiersin.org 13
colorectal cancer cells by mediating GATA binding protein 6
(49). Anisomycin can improve the efficacy of BCR-ABL tyrosine
kinase inhibitors in CLL by mediating Wnt/b-catenin signaling
pathway (50). Anisomycin can also mediate phosphorylated
mitogen-activated protein kinases (MAPKs) p38 and Jun N-
terminal kinase (JNK) to increase the apoptosis of
glucocorticoids-resistant acute lymphoblastic leukemia cell
lines (51). Anisomycin can also increase the sensitivity of
melanoma anti-tumor drugs (52). Anisomycin exerting an
anti-tumor effect in osteosarcoma through induces cell cycle
arrest and apoptosis by mediating mitochondrial biogenesis (53).
Anisomycin in renal cell carcinoma cells can mediate Bcl-2/c-
FLIP(L)/Mcl-1/death receptor 4 (DR4) to promote cell apoptosis
and exert anti-tumor effects (54, 55). Anisomycin induces
apoptosis of glioma cell lines (U251 and U87 cell lines) by
down-regulating PP2A catalytic subunit in in vitro cell
experiments (56). Studies found that withaferin A has great
potential in anti-tumor therapy (57, 58), as well as in brain
tumor (59, 60). The combination of Withaferin A and tumor
treating fields can improve its anti-tumor effect (61). The
potential molecular mechanism of Withaferin A in glioma may
be exerted by NF-KB nuclear translocation, activation of caspase
FIGURE 11 | Violin plot of 22 immune cells infiltration between high- and low-risk score phenotypes.
A B C

FIGURE 12 | Immune microenvironment score between high- and low-risk score phenotypes. (A) Stromal score; (B) Immune score; (C) ESTIMATE score.
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cascade and activating transcription factor 4(ATF4)-ATF3-
CHOP axis (62, 63). Grogan et al. found that withaferin A can
exert anti-tumor effects in glioblastoma multiforme through the
Akt/mTOR signaling pathway, block the cell cycle of
glioblastoma multiforme cells, induce apoptosis, and inhibit
cell proliferation and invasion (64, 65). Ciclopirox is also a
widely reported anti-tumor drug (66–69). However, after
reviewing the literature, we have not found an anti-tumor
study of ciclopirox in glioma. Megestrol exert anti-tumor
effects in multiple cancers, but has not been reported in the
treatment of glioma (70–72). Among the ten drugs we screened,
5155877 and chloropyrazine have not been reported in anti-
tumor studies.

This study still has some limitations that need to be clarified. First,
this study is a single-center study and lacks a validation cohort.
Therefore, our results need further validation in a multi-center, large
sample cohort. Second, the molecular mechanism analysis and drug
prediction of snoRNA in this study are based on bioinformatics
analysis methods, so our results require further verification by in vivo
and in vitro experiments. Despite the above limitations, our research
is still the first study to screen LGG prognosis snoRNAs based on
whole-genome RNA-seq dataset. Our research is also the first to
conduct a comprehensive analysis of LGG prognosis snoRNAs,
including molecular mechanism, targeted drug prediction, tumor
immune infiltration and tumor microenvironment. The above results
can provide a basis for future study on clinical application and
molecular mechanisms of snoRNAs in LGG.
CONCLUSION

In conclusion, our current study have identified 21 prognostic
snoRNAs and constructed a novel eleven-snoRNA prognostic
signature for LGG patients. GSEA and functional enrichment
analysis suggest that this signature may be involved in the
following biological processes and signaling pathways: such as
cell cycle, Wnt, mitogen-activated protein kinase, janus kinase/
signal transducer and activator of tran-ions, T cell receptor,
nuclear factor-kappa B signaling pathway. CMap analysis
screened out ten targeted therapy drugs for this signature: 15-
Frontiers in Oncology | www.frontiersin.org 14
delta prostaglandin J2, MG-262, vorinostat, 5155877,
puromycin , an isomycin , wi thafer in A, c ic lop irox ,
chloropyrazine and megestrol. We also found that high- and
low-risk score phenotypes of LGG patients have significant
differences in immune infiltration and cancer immune
microenvironment. The novel findings of our study are the
first comprehensive genome-wide investigation of the
prognostic related snoRNAs in LGG and the preliminary
identification of a novel prognostic snoRNAs signature. We
used the bioinformatics analysis to identify the prognostic
value and biological mechanisms of this signature. Since this
study is based on a single-center study, our results still need to be
further verified.
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