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Hepatocellular carcinoma (HCC) is a highly lethal and complex malignancy strongly

influenced by the surrounding tumor microenvironment. The HCC microenvironment

comprises hepatic stellate cells (HSCs), tumor-associated macrophages (TAMs),

stromal and endothelial cells, and the underlying extracellular matrix (ECM). Emerging

evidence demonstrates that epigenetic regulation plays a crucial role in altering

numerous components of the HCC tumor microenvironment. In this review, we

summarize the current understanding of the mechanisms of epigenetic regulation of

the microenvironment in HCC. We review recent studies demonstrating how specific

epigenetic mechanisms (DNA methylation, histone regulation, and non-coding RNAs

mediated regulation) in HSCs, TAMs, and ECM, and how they contribute to HCC

development, so as to gain new insights into the treatment of HCC via regulating

epigenetic regulation in the tumor microenvironment.

Keywords: tumor microenvironment, DNA methylation, histone methyltransferases, histone deacetylases,

microRNAs, hepatic stellate cells, tumor-associated macrophages, extracellular matrix

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer death worldwide
(1, 2). HCC patients’ prognosis is low, with a 5-year survival of just 18% (2). For many years, the
only FDA-approved systemic treatment option for advanced HCC was the multi-kinase inhibitor
sorafenib, which itself provided only a modest increase in overall survival of 2.8 months compared
to placebo (3). More recently, other therapeutics have garnered first-line treatment approval,
including lenvatinib and atezolizumab combined with bevacizumab (4, 5). Second-line treatment
options for relapsed and refractory HCC have also expanded in recent years to include regorafenib,
cabozantinib, and the PD-1 checkpoint inhibitors nivolumab and pembrolizumab (6–9). While the
arsenal of therapies for advanced HCC has expanded, all aforementioned agents are marked by low
response rates and limited improvements in overall survival (4–9). Understanding the molecular
mechanisms underlying HCC development are critical to identifying new drug candidates capable
of providing enhanced clinical benefit.

In recent years, researchers have started to decipher the complicated crosstalk between
the tumor and the surrounding tumor microenvironment (TME). The TME is composed of
numerous different elements depending on the tumor type but generally includes surrounding
vasculature, immune cells, fibroblasts, and the underlying extracellular matrix (ECM). TME has
been repeatedly shown to significantly contribute to tumor initiation, progression, invasiveness,
metastases formation, and angiogenesis (10–12). In the context of HCC, the TME primarily
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consists of hepatic stellate cells (HSCs), tumor-associated
macrophages (TAMs), the ECM, mesenchymal stem/stromal
cells (MSCs), myeloid-derived suppressor cells (MDSCs), and
endothelial cells (ECs) with each element performing its unique
role in HCC pathogenesis (13–21).

Epigenetics is the heritable modification of gene function
without changes in the DNA sequence, which is mediated by a
number of different factors, including but not limited to, DNA
methylation, histone modifications, and non-coding RNAs (22,
23). Epigenetic regulation in tumor cells is extensively studied
and plays critical roles in HCC development (24–26). Emerging
evidence demonstrates that epigenetic alterations in TME also
contribute to the initiation and progression of HCC (27–33). As
the epigenetic regulation of MSCs, MDSCs, and ECs in HCC
remain poorly defined, this review will focus on the epigenetics
of HSCs, TAMs, and the ECM (Table 1).

Hepatic Stellate Cells
HSCs are resident perisinusoidal cells that contribute to diverse
aspects of liver physiology, including hepatic organogenesis,
regeneration, vitamin A storage, and wound healing (34). Under
non-pathologic conditions, HSCs remain quiescent in the liver
and are only activated in response to liver injury (35). In addition
to serving as the primary source of ECM proteins, activated
HSCs secrete a multitude of cytokines and growth factors that
are required for fibrogenesis and promote HCC tumorigenesis
(34–39). Namely, HSCs canmodulate the ECM through secretion
and upregulation of matrix metalloproteinases (MMPs), such
as MMP2 and MMP9, both of which promote HCC tumor
migration (40–43). Moreover, activated HSCs promote FAK-
MMP9 signaling and invasiveness in HCC, highlighting the
crosstalk between tumor cells and act ivated HSCs in the hepatic
TME (44–46). The activation of HSCs is the result of extensive,
but reversible, alterations in gene expression: activated HSCs can
reclaim their quiescent state upon regression/resolution of liver
damage in a dynamic process that is modulated extensively by
epigenetic reprogramming (38, 47–49).

DNA Methylation in HSC Activation
DNA methylation influences HSC activation and activity.
Activation of HSCs in vitro results in significant changes in
DNA methylation and treatment with the DNA methylation
inhibitor 5-aza-2’-deoxycytidine (5-azadC) block can block
HSC transdifferentiation (50, 51). DNA methyltransferase 1
(DNMT1)-mediated hypermethylation of the Phosphatase and
tensin homolog (PTEN) promoter leads to a loss of PTEN
expression, subsequent activation of the PI3K/AKT and ERK
pathways, and HSC activation (52). DNMT1 expression is
increased in activated HSCs and rat liver fibrosis tissue, which
leads to enhanced methylation of the lncRNA H19 promoter and
elevates H19 expression and ERK activation. Treatment with 5’-
aza-2’-deoxycytidine in activated HSCs model reduced fibrosis-
associated gene expression as well as DNMT1 expression while
simultaneously enhancing H19 expression and attenuated HSCs
activation. Consistently, sennoside A can prevent liver fibrosis
by binding DNMT1 and suppress DNMT1-mediated PTEN
hypermethylation in HSC activation and proliferation (53).

Inhibition of DNA methyltransferase 3a (DNMT3a) causes
activated HSCs to lose the fibrogenic phenotype in a carbon
tetrachloride (CCl4)-induced liver fibrosis model (54). In
addition to PTEN, DNA methylation of prostacyclin synthase
(PTGIS) enhances HSC activation and liver fibrogenesis, with
its methylation being induced by DNMT1 as well as DNMT3b,
as determined by chromatin immunoprecipitation (ChIP) (55).
DNMT3a has also been reported to regulate the methylation
of Septin9 to promote hepatic stellate cell activation and liver
fibrogenesis (56).

SAD1/UNC84 domain protein-2 (SUN2) gene
hypermethylation at CpG sites has also been identified
during liver fibrogenesis in mice with CCl4-induced hepatic
fibrosis, accompanied by low expression of SUN2 (57). In vivo
overexpression of SUN2 following adeno-associated virus-9
(AAV9) administration inhibited CCl4-induced liver injury
and reduced fibrogenesis marker expression. Mechanistically,
DNMT3b is the principal regulator of SUN2 expression, and
inhibition of AKT phosphorylation may be a crucial pathway
for SUN2-mediated HSC activation. S-adenosylmethionine
suppresses the expression of Smad3/4 in activated human
hepatic stellate cells via Rac1 promoter methylation (58).
Methylation of RCAN1.4 is mediated by DNMT1 and DNMT3b
and enhances HSC activation and liver fibrogenesis through
Calcineurin/NFAT3 signaling (59).

Methionine adenosyltransferases (MATs) catalyze
the biosynthesis of S-adenosylmethionine (SAMe), the
principal methyl donor in DNA methylation. Methionine
adenosyltransferase 2A and 2B (MAT2A and MAT2B), the sole
regulators of the SAMe homeostasis in HSCs, are induced during
in vitro and in vivo HSC activation. MATII enzyme activity
and intracellular SAMe levels decline during HSC activation,
accompanied by a global decrease in DNA methylation.
MAT2A and MAT2B are induced during HSC activation and
are essential for this process. The SAMe level falls, resulting
in global DNA hypomethylation (60). Elevated nicotinamide
N-methyltransferase (NNMT) expression induced by hepatic
stellate cells promotes HCCmetastasis by altering the histone H3
methylation and transcriptionally activating CD44 (61).

Histone Modification in HSC Activation
Histone modification also plays a critical in HSC activation.
Acetylation and methylation are the two most extensively
characterized histone modifications. Histone acetylation and
methylation are carried out by two families of enzymes: histone
acetyltransferases (HATs) and histone methyltransferases
(HMTs). In opposition to these enzymes, histones are
deacetylated and demethylated by histone deacetylases
(HDACs) and histone demethylases (HDMTs), respectively.
Both epigenetic marks can change quickly in response to
intracellular and environmental cues and confer immense
control of cellular responses (62). The p300 HAT is involved
in stiffness-mediated HSC activation to promote liver tumor
metastasis (63). Mechanistically, stiffness induces p300 nuclear
accumulation, which, in turn, promotes the p300-dependent
transcription of critical fibrogenic genes and several secreted
profibrogenic and tumor-promoting factors. Furthermore,

Frontiers in Oncology | www.frontiersin.org 2 March 2021 | Volume 11 | Article 653037

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Epigenetics of TAMs in HCC

TABLE 1 | The epigenetic regulation of tumor microenvironment in hepatocellular carcinoma.

Hepatic stellate cells (HSCs) Tumor-associated macrophages (TAMs) Extracellular matrix (ECM)

DNA

methylation

• DNMT1-mediated hypermethylation of

PTEN, H19, and RCAN1.4 promotes HSC

activation.

• DNMT3a-mediated DNA methylation of

PTGIS and Septin9 promotes HSC

activation.

• DNMT3b-mediated hypermethylation of

SUN2 promotes HSC activation.

• Increased expression of MAT2A and MAT2β

results in global DNA hypomethylation and

promotes HSC activation.

• NNMT induced by HSCs activation promotes

HCC metastasis.

Methylation of CSF1R regulates TAM trafficking

and promotes HCC growth.

Suppressed expression of TIMP3 by promoter

methylation promotes HCC development.

Histone

modifications

• P300 HAT promotes HSC activation and

HCC metastasis.

• HDAC3 promotes HSC activation by

regulating TGFβ expression.

• HDAC4 promotes HSC activation by

regulating MMP9 and MMP13.

• MLL1 promotes ethanol-induced HSC

activation.

• EZH2 promotes HSC activation by

downregulating PPARγ.

• JMJD2D promotes HSC activation by

regulating TLR4 transcription.

• SIRT6 deacetylates SMAD3 and suppresses

HSC activation.

• HDAC7 suppresses HSC activation by

inhibiting HGF expression.

• JMJD1A inhibits HSC activation by

regulating PPARγ.

• SIRT1 facilitates M1 macrophage polarization

and suppresses HCC metastasis.

• SIRT4 inhibits macrophage activation and

HCC growth.

• HDAC4 represses the expression of MMP9

and MMP13 in HCC cells.

• EZH2 decreases MMP9 expression in HSCs.

Non-coding

RNAs

MiRNAs that promote HSC activation:

• MiR-21, MiR-221, MiR-151, MiR-214,

MiR-542-3p, MiR-942, MiR-146b,

MiR-17-5p, MiR-34a, MiR-125a-5p

MiRNAs that suppress HSC activation:

• MiR-96-5p, MiR-23b/27b, MiR-338-3p,

MiR-378, MiR-155, MiR-146a-5p, MiR-9-5p,

MiR-130-3p, MiR-30a

• MiR-98 targets IL10 to modulate

macrophage polarization, thus stifling the

effects of TAMs.

• MiR-101 targets DUSP1 to inhibit

TAM-induced HCC growth.

• Decreased miR-28-5p targets IL-34 to

suppress TAM infiltration and HCC growth.

• Reduced miR-125a and miR-125b and

increased miR-15b secret from TAMs

promote HCC growth.

• lncRNA cox-2 reduces HCC by suppressing

M2 macrophage polarization

• LncRNA H19, induced by TAMs, promotes

HCC progression.

MiRNAs that downregulated MMPs and

TIMPs expression:

• MMP2: MiR-29b; MiR-107

• MMP9: MiR-107; MiR-328-3p; MiR-133a

• TIMP2: MiR-519d

• TIMP3: MiR-191; MiR-181b; MiR-221/222

Sirtuin 6 (SIRT6), a NAD-dependent histone deacetylase which
is a critical epigenetic regulator in alcoholic liver disease (64),
deacetylates Smad family member 3 (Smad3) and attenuates its
expression induced by transforming growth factor β (TGF-β) in
the activated HSCs (65).

HSC activation and transdifferentiation are accompanied
by gene expression changes in numerous HDACs. Notably,
HDAC1, HDAC2, HDAC9, and HDAC10 were reported to be
downregulated during HSC activation, while the expression
of HDAC4, HDAC5, HDAC6, and HDAC8 is increased (66).
MC1568, a class II selective HDAC4 and HDAC5 inhibitor,
abrogates HSC activation and proliferation in vitro and in
vivo (67). Inhibition of HDAC1, HDAC2, and HDAC4 by

nilotinib is also known to induce HSC cell death (68). The
mechanisms by which several of these HDACs regulate HSC
activation and activity have been characterized in detail. For
example, HDAC4 accumulates during HSC activation, and
forced overexpression of HDAC4 in quiescent HSCs suppresses
expression of the endopeptidasesMMP9 andMMP13 resulting in
ECM accumulation (66, 67, 69). Conversely, genetic knockdown
of HDAC4 in activated HSCs promotes the expression of MMP9
and MMP13, thereby promoting ECM degradation. HDAC7
is also known to contribute to HSC activation by regulating
the expression of hepatocyte growth factor (HGF), inhibiting
HSC activation and liver fibrosis (70). The expression of HGF
is reduced during the activation of HSCs, and knockdown
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of HDAC7 restores HGF levels to quiescent HSC levels (70).
HDAC3 is required to activate HSCs by regulating TGF-β, which
plays a crucial role in ECM formation and remodeling (71).
Consistently, HDAC inhibitors such as SAHA suppress HSC
activation and liver fibrosis by attenuating the TGF-β signaling
pathway (72).

Besides HDACs, HMTs regulate gene expression during
HSC activation. Ethanol exposure promotes HSC activation by
inducing the expression of mixed lineage leukemia protein-
1 (MLL1), a histone 3 lysine 4 (H3K4) methyltransferase.
Following increased expression, MLL1 is recruited to the elastin
gene promoter, where it is associated with increased H3K4me3
levels, increased ECM deposition, and HSC transdifferentiation
(73). During HSC activation, several histone methyltransferases,
such as ASH2, WDR5, and SET1, are recruited to the
promoters of pro-fibrogenic genes in response to TGF-β
treatment by myocardin-related transcription factor A (MRTF-
A) (74). Enhancer of zeste homolog 2 (EZH2), the catalytic
methyltransferase subunit of the polycomb repressive complex
2 (PCR2), is another HMT that regulates HSC activation and
hepatic fibrosis. EZH2 expression is induced in HSCs upon
TGF-β treatment in both in vitro and CCl4-treated mouse
livers (75). Upregulation of EZH2 downregulates expression of
peroxisome proliferator-activated receptor-gamma (PPARγ), a
nuclear receptor essential for HSC activation (76, 77).

Histone demethylation by HDMTs is also a process critical
to HSC activation. Jumonji domain-containing protein 1A
(JMJD1A) is one of these HDMTs. JMJD1A knockdown
in HSCs increases H3K9me2 levels on the PPARγ gene
promoter and represses the expression of PPARγ (78).
JMJD2D, a histone H3 demethylase, also contributes to
HSC activation by demethylating H3K9 residues. The result
of this demethylation is increased TLR4 transcription and
activation of the TLR4/MyD88/NF-kB signaling pathway,
which has a well-established role in liver fibrosis (79). JMJD2D
expression is markedly increased in activated HSCs, and AAV9
shRNA-mediated knockdown of JMJD2D suppresses hepatic
fibrosis in the CCl4 model of liver fibrosis (80).

Micro-RNA Involvement in HSC Activation
miRNAs are small, non-coding RNAs (20–25 nucleotides in
length) that regulate gene expression by binding to target mRNA
transcripts and subsequently facilitating the transcript’s cleavage,
destabilization, or inhibiting its translation (81). MiRNAs
can also control the activation of HSCs by several different
mechanisms (38). Namely, HCC cells secrete extracellular
vesicles (EV) with oncogenic miRNAs (oncomiRs), specifically
miR-21, miR-221, and miR-151, which can activate HSCs.
This activation promotes HCC cell invasion, epithelial to
mesenchymal transition (EMT), and activation of the AKT/ERK
signaling pathway (82). miR-214 promotes HSC activation
by inhibiting the expression of suppressor-of-fused homolog
(Sufu), a negative regulator of Hedgehog signaling pathway
(83). miR-542-3p is also capable of stimulating HSC activation
and fibrosis by targeting bone morphogenetic protein 7
(BMP7), a potent surpressor of TGF-β signaling (84). miR-
942, which is induced by both TGF-β and LPS, assists

HSC activation through downregulation of BMP and activin
membrane-bound inhibitor homolog (BAMBI) (85). miR-146b
boosts HSC activation by targeting of Kruppel-like factor 4
(KLF4) (86). miR-17-5p targets Smad7 thus stimulating the
activation of HSCs (87). Likewise, miR-34a facilitates HSC
activation through decreasing the expression of acyl-CoA
synthetase-1 (ACSL1) (88). miR-125a-5p advances activation of
HSCs by targeting a negative regulator of hypoxia-inducible
factor 1 (HIF1), the aptly named factor inhibiting HIF-1 or
FIH1 (89).

Conversely, several miRNAs have been shown to suppress
HSC activation. miR-96-5p suppresses the activation of HSCs by
inhibiting ATG7 and autophagy (90). The miR-23b/27b cluster

bind to 3
′

-UTR of gremlin 1, contributing to the reduction
of TGF-β expression and HSC inactivation (91). Additionally,
miR-338-3p inhibits HSC activation and proliferation through
targeting cyclin-dependent kinase 4 (CDK4) (92). mi-378
represses HSC activation by targeting Gli3 and reducing the
expression of Gli3 (93). miR-155 inhibits STAT5 and FOXO3a
expression, thus silencing HSC activation (94). miR-146a-5p
abrogates HSC activation by inhibiting TGF-β1/Smad and
LPS/NF-κB signaling pathways (95, 96). Similarly, both miR-
9-5p and miR-130-3p attenuate the activation of HSCs by
targeting TGFβR1 and TGFβR2 (97). miR-30a impedes HSC
activation through the inhibition of EMT via directly targeting
SNAI1 (98).

Tumor-Associated Macrophages
Macrophages are essential innate immune cells in the tumor
microenvironment and are also closely associated with
cancer occurrence, metastases, and disease progression (99).
Tumor-associated macrophages (TAMs) that reside in the
surrounding TME are crucial components in the HCC immune
microenvironment for the formation and development of HCC
(100, 101). TAMs promote HCC growth, angiogenesis, invasion,
and migration while simultaneously suppressing the antitumor
immune response (20). The epigenetic regulation of TAMs has
been shown to be critical to their differentiation and functional
programming (102–105).

DNA Methylation and Histone Modification in TAMs
DNA methylation and histone modification are critical
regulatory mechanisms in TAMs for promoting tumor growth
and progression (106–109). However, the regulation of DNA
methylation and histone modification of TAMs in HCC
remains poorly understood. A recent study showed that
colony-stimulating factor 1 receptor (CSF1R), which plays an
essential role in forming TAMs (108, 110), is regulated by DNA
methylation in HCC (111). DNA methylation leads to decreased
expression of CSF1R in HCC tissues and associates with poor
clinicopathological characteristics of HCC (111). SIRT1, a
NAD-dependent histone deacetylase, suppresses HCCmetastasis
by facilitating M1 macrophage polarization via the stimulation
of the NF-κB pathway (112). Downregulation of SIRT4, another
sirtuin protein, in TAMs promotes macrophages activation and
HCC growth via the FAO-PPARδ-STAT3 axis (113).
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FIGURE 1 | HCC microenvironment components and their epigenetic regulation.

miRNAs and Long Non-coding RNAs in TAMs
The epigenetic remodeling by miRNA regulates macrophages’
activation and functional programming (114–117). For example,
the down-regulation of miR-98 was accompanied by up-
regulation of IL-10 in TAMs of HCC (118). miR-98 modulates
macrophage polarization from M2 to M1 in HCC by targeting
IL-10, thus stifling the effects of TAMs on advancing EMT
and HCC metastasis (118, 119). miR-101 targets dual-specificity
phosphatase 1 (DUSP1) to inhibit TAM-induced HCC growth
through TGF-β secretion regulation (120). Decreased expression
of miR-28-5p suppresses HCC growth and metastasis by directly
targeting interleukin-34 (IL-34) and affecting IL-34-mediated
TAM infiltration (121). Reduced expression of miR-125a and
miR-125b secreted from TAMs promote HCC proliferation and
cancer stem cell properties directly targeting CD90 (122). miR-
15b secreted from TAMs promotes the aggressiveness of HCC by
impeding the LATS1-mediated hippo pathway (123).

Long non-coding RNAs (lncRNAs) are a class of RNAs >200
nucleotides in length, which lack protein-coding capabilities and
have gained increased attention in recent years due to their ability
to function guides, signals, and decoys in a highly tissue-specific
manner (124). Several lncRNAs have been shown to participate
in tumorigenesis and cancer progression, a number of which
do so by modulating elements of the TME (125, 126). In the

context of HCC, lncRNA cox-2 reduces HCC immune evasion
and metastasis formation by suppressing M2 macrophage
polarization (127). lncRNA H19, induced by TAMs, promotes
the progression of HCC via regulating the miR-193b/MAPK1
axis (128).

Epigenetics in the Extracellular Matrix
The ECM plays a critical role in physiological and pathological
processes in HCC (129). MMPs, which digest the ECM, are
key players in ECM remodeling and are associated with tumor
growth and invasion through collagen and matrix degradation
(130, 131). Metallopeptidase inhibitor proteins (TIMPs) are
natural inhibitors of MMPs (132). Epigenetic modification is a
critical mechanism for regulating MMP and TIMP expression,
thus playing a pivotal role in HCC development (133).

DNA Methylation and Histone Modification in MMPs

and TIMPs
Overexpression of MMPs, such as MMP2 and MMP9, is
frequently observed in HCC patients and associated with cancer
invasive potential (41, 42). While some studies have shown
that DNA methylation can regulate the expression of MMPs in
other cancers, it remains unknown if DNA methylation directly
regulates the expression of MMPs in HCC (134). Emerging
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evidence, however, indicates that DNAmethylation promotes the
dysregulation of TIMPs in HCC. Specifically, TIMP3 suppresses
HCC cell proliferation and survival, and TIMP3 expression is
suppressed by promoter methylation in HCC cells (135, 136).
Histone deacetylation by HDAC4 represses MMP promoter
activities and the expression of MMP9 and MMP13 in HSCs
(66, 137). Sodium butyrate, a histone deacetylase inhibitor,
decreases MMP1 mRNA expression in human liver cancer
cells (138). Further, overexpression of histone methyltransferase
EZH2 decreases MMP9 expression in HSCs (139).

miRNAs in MMPs and TIMPs
miRNAs are also involved in the Regulation of MMP and TIMP
expression (140). For instance, miR-29b directly targets MMP2
and suppresses HCC growth (141). The blocking ofMMP2, either
by neutralizing antibody or RNA interference, phenocopies the
anti-invasion and antiangiogenesis effects of miR-29b, whereas,
the introduction of MMP2 antagonizes the function of miR-29b
in HCC (141). miR-107 has also been shown to downregulate
MMP2 and MMP9 in HCC cells (142). miR-328-3p and miR-
133a modulate the expression of MMP9 to inhibit HCC cell
proliferation (143, 144). miR-191 promotes EMT and HCC
tumor growth by directly targeting TIMP3 and inhibiting TIMP3
expression (145). MiR-181b and miR-221/222 can also target
TIMP3 to promote HCC growth (146, 147). Moreover, miR-
519d targets TIMP2 and promotes HCC cell proliferation and
metastasis (148).

CONCLUSION AND FUTURE
PERSPECTIVES

The tumor microenvironment plays a critical role in HCC
initiation and progression. Epigenetic regulation is a crucial

mechanism for the alteration of TMEs in HCC. Overall,
epigenetic reprogramming extensively modulates gene
expression alterations in HSCs, TAMs, and ECMs, thus
promoting HCC development (Figure 1). The effect of metabolic
factors (e.g., SAMe) on epigenetic alterations of TMEs in HCC is
evident, suggesting dysregulation metabolites establish can affect
the epigenome and subsequently impact HCC development.
The mechanisms of epigenetic regulation in MSCs, MDSCs,
and ECs remain poorly investigated, thus necessitating future
study. Understanding the interactions between tumors and
TMEs will further enhance our understanding of critical
drivers or suppressors for tumor progression. Despite
substantial advances in understanding the mechanisms of
TMEs, developing therapeutics using this knowledge remains
a challenge. Further examination and deciphering of the
complex epigenetic landscape of the TME in HCC will
help identify new targets and strategies for the treatment
of HCC.
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