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The last decade has witnessed a significant rise in cancers in young adults. This spectrum
of solid organ cancers occurring in individuals under the age of 40 years (some reports
extending the age-group to <50 years) in whom aetiology of cancer cannot be traced
back to pre-existing familial cancer syndromes, is referred to as termed young-, or early-
onset cancers. The underlying causes for young-onset carcinogenesis have remained
speculative. We recently proposed a hypothesis to explain the causation of this entity. We
propose that the risk for young-onset cancer begins in the perinatal period as a result of
the exposure of the foetus to stressors, including maternal malnutrition, smoking or
alcohol, with the consequent epigenomic events triggered to help the foetus cope/adapt.
Exposure to the same stressors, early in the life of that individual, facilitates a re-activation
of these ‘responses designed to be protective’ but ultimately resulting in a loss of
regulation at a metabolic and/or genetic level culminating in the evolution of the
neoplastic process. In this manuscript, we will provide a rationale for this hypothesis
and present evidence to further support it by clarifying the pathways involved, including
elucidating a role for Acetyl-CoA and its effect on the epigenome. We present strategies
and experimental models that can be used to test the hypothesis. We believe that a
concerted effort by experts in different, but complementary fields, such as epidemiology,
genetics, and epigenetics united towards the common goal of deciphering the underlying
cause for young-onset cancers is the urgent need. Such efforts might serve to prove, or
disprove, the presented hypothesis. However, the more important aim is to develop
strategies to reverse the disturbing trend of the rise in young-onset cancers.
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INTRODUCTION

The term young-, or early- onset cancers (1, 2) encompasses a
spectrum of solid organ cancers occurring in individuals under
the age of 40 years [although some authors extend the upper
limit of the age-group to include those <50 years (3)] in whom
the aetiology of their cancers cannot be traced back to pre-
existing familial cancer syndromes (4–6). This entity has been
reported to affect nearly every solid organ including the pancreas
(7), breast (8), ovarian (5), oesophageal (9), colorectal (10, 11),
and gastric (12) cancer, amongst others. The large number of
reports on the rising incidence of this entity from around the
world (3, 13–15) have left oncologists questioning the cause for
the cancers and their disturbing trend. At the present time, the
only strategy to combat the rising incidence of young-onset
cancers is to reduce the age of screening (15).

Recent data on Adolescent and Young Adult (AYA) cancers
from the American Cancer Society (16) has indicated that while
the incidence of young-onset cancers has increased at the rate of
1% annually in adolescents and 0.4-1.1% annually in women
aged 20-39 years, the rising trend is not uniform across the board
for all cancers but demonstrates a characteristic pattern in terms
of organ involved based on age distribution (15-9years vs 20-
29years vs 30-39years), gender and race based on data from the
United States. For instance, adolescents (15- to 19-year-olds)
have a higher burden of acute lymphocytic leukaemia and
lymphoma, while 20–39-year-old individuals have a higher
incidence of solid organ cancers (17). The rise in the incidence
rates of cancers in females aged 20-39 years has largely been
driven by increases in breast cancer, as well as thyroid cancer and
melanoma of the skin (17). A significant increase in colorectal,
endometrial, renal and female breast cancers were noted in the
decade 2007-2016 in all adults between the ages 20-39years.

Exposure to antibiotics in early life, rising incidence of obesity,
cigarette smoking, impact of the gut microbiome, and variations in
MMR genes and MSI are some factors postulated to play a role in
young-onset carcinogenesis (4, 15). However, taking into
consideration the ‘two-hit’ hypothesis of carcinogenesis
postulated by Knudson (18) and their timing in sporadic cancers
based on the Cancer generative model (19), more recently, we
proposed a hypothesis for young-onset carcinogenesis. We
hypothesize that the risk for young-onset cancer begins in the
perinatal period following foetal exposure to stressors, including
maternal malnutrition, smoking or alcohol, with the consequent
triggering of epigenomic events aimed at helping the foetus cope/
adapt to these stressors. Exposure to the same stressors, early in
that individual’s life, reactivates these ‘responses designed to be
Abbreviations: ACSS2, acetyl-Co-A synthase-2; ARND, Alcohol-related
neurodevelopmental disorder; BMI, body mass index; BPDE1, Benzo(a)pyrene
diol epoxide 1; DNA, Deoxyribonucleic acid; DNMT, DNA methyltransferase;
DOHaD, Developmental Origins of Health and Disease; FAE, Foetal alcohol
effects; FAS, Foetal alcohol syndrome; FASD, Foetal alcohol spectrum disorder;
HAT, histone acetyltransferase; HMT, histone methyltransferase; HR, hazard
ratio; KAT, lysine acetyltransferases; MMR, Mismatch repair genes; MSI,
Microsatellite instability; NAD, Nicotinamide adenine dinucleotide; NADH,
Nicotinamide adenine dinucleotide + hydrogen; PAE, Prenatal alcohol
exposure; SAM, S-adenosylmethionine.
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protective’ but ultimately resulting in a loss of regulation at a
metabolic and/or genetic level culminating in neoplastic evolution
(Figure 1). In summary, we postulate that an ‘in utero’ insult to the
foetus speeds up, or leads to, the ‘first hit’. The second hit would
then be the result of processes occurring in childhood
and adolescence.

In this manuscript, we will provide a rationale for this
hypothesis and present evidence to further support it by
clarifying the pathways involved. We believe this will help
foster International collaboration to focus on combatting
potentially correctable underlying mechanisms to help reduce
the overall incidence of young-onset cancers.
RATIONALE FOR THE HYPOTHESIS

Hereditary cancer predisposition syndromes account for 5-10%
of all cancers that develop in individuals who have inherited a
genetic mutation conferring heightened susceptibility to specific
cancers (20). The various classes of genes involved in Hereditary
cancer predisposition include tumour suppressor genes,
oncogenes, genes encoding proteins involved in DNA repair
and cell cycle control, and genes involved in stimulating the
angiogenic pathway, or genes involved in carcinogen metabolism
(21). The hypothesis put forth by us is intended to explain
young-onset carcinogenesis amongst individuals in whom the
aetiology of their cancers cannot be traced back to pre-existing
familial cancer syndromes (4–6).

Earlier this year, Lahouel et al. (19) published a data-driven,
mathematical model of the process of tumour evolution taking
into consideration the fitness advantages for driver genes and
carrying capacity (19) to plot the timeline of mutational events in
driver genes. The authors drew on their vast experience of
decades of cancer research to prepare the model that accounts
for the 3 mechanisms that confer fitness advantage, namely, cell
fate, cell survival and genome maintenance, and total number of
clonal somatic mutations accumulated in a cell lineage. Using this
model, they shed light on the evolutionary dynamics of cancer by
suggesting a generalized early onset of tumorigenesis followed by
slow mutational waves. This was in stark contrast to previous
thought processes. They noted the ‘first hit’ to occur at a median
age of 14.4 year for colon cancer and 14.6 years for pancreatic
cancer, with the full development of malignancy taking on
average another 50 years. In young-onset cancers, we can
postulate an acceleration of events in terms of the timing of
both ‘hits’. However, it is difficult to accept that an individual
would be exposed to the proposed risk factors within the first
couple of decades of life to an extent that would induce mutations
and cancer by the age of 40 years. The ‘Developmental Origins of
Health and Disease (DOHaD)’ (22) hypothesis, postulated to
describe the incidence of chronic diseases in adult life highlighted
the significance of exposure of the developing foetus to a hostile
(nutritional deprivation or excess, chemical exposure, or
infections) environment in relation to an increased disease risk.
These in utero insults can trigger epigenetic and hormonal
modifications designed to permit the growing foetus to adapt
and survive. Would it be possible then that the effects of exposure
April 2021 | Volume 11 | Article 653289
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to similar risk factors in early childhood and adolescence could
trigger epigenetic modifications resulting in a premature
activation of driver mutations (the ‘second hit’) rendering the
young adult ‘at risk’ of developing a cancer? (1) The theory of
‘stress-induced’ mutagenesis (23) would certainly lend support
to this.

Traditional dogma would dictate that cancer is related to the
growth of the organ based on an appreciation that the number of
stem cell divisions occurring in a tissue during life might dictate
cancer risk (24). However, this is not entirely true, especially in
young-onset cancers where there is clearly demonstrable
variations in the organ involved depending on the individual’s
age, gender, and even race (16). This would point to importance
of other factors, ‘extrinsic’ to the gene (25), notably, metabolic
[including mitochondrial (26)] and epigenomic factors in
determining the self-renewal capacity of the cell (27).

To investigate the hypothesis, in the absence of direct causal
evidence for young-onset cancer, it is imperative that we
determine if there exists a chain of evidence linking perinatal
metabolic influences (including, but not limited to, alcohol,
smoking, illicit drugs, over-, as well as, under nutrition) to
similar influences in adolescence and early adulthood. We
would then need to find an increased risk of early-onset
carcinogenesis in this cohort of individuals. This approach
would allow us an opportunity to investigate the potential role
Frontiers in Oncology | www.frontiersin.org 3
of epigenetic mechanisms and other factors influencing the
changes in these individuals.
METABOLIC INFLUENCES IN THE
PERINATAL PERIOD AND THE RISK
ON THE OFFSPRING

We are in the midst of a global obesity pandemic (28) that
correlates with a high prevalence of maternal obesity (29). The
last few decades have witnessed a significant rise in childhood
and adolescent obesity (30). Maternal pre-pregnancy obesity and
weight gain during pregnancy are risk factors for obesity in the
offspring (31). Epidemiological evidence (32) supports the foetal
overnutrition hypothesis that proposes that greater maternal
adiposity results in increased obesity throughout life in the
offspring (33) - the effect extending even up to the age of 21
years (34). In fact, nutrition, as a whole, is a significant factor in
foetal programming in the context of the DOHaD hypothesis
(22). Evidence from individuals exposed to famines has
presented a unique glimpse into the risk of their offspring
being overweight and obese (35, 36). Environmental and
genetic factors alone cannot explain the risk of metabolic risk
factors in the offspring of affected individuals (37). There is
FIGURE 1 | Diagrammatic representation of the hypothesis for the causation of young-onset carcinogenesis. The risk for young-onset cancer begins in utero with
exposure of the foetus to maternal, stressors. The possibility of a paternal contribution through the damaging effects of stressors on the sperm are considered and
warrant consideration. Exposure to the same stressors, during adolescence or young adulthood, facilitates a re-activation of these ‘responses designed to be
protective’ but ultimately resulting in a loss of regulation at a metabolic and/or genetic level culminating in the evolution of the neoplastic process as a result of a
cumulative effect with environmental and other genetic factors.
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compelling evidence to support the role of maternal nutrition
on foetal metabolic programming mediated via epigenetic
modifications (38, 39).

Alcohol use during pregnancy is established as a risk
factor for adverse outcomes to the mother and foetus with the
global prevalence of alcohol use during pregnancy estimated to
be 9·8% (95% CI 8·9–11·1) (40). Alcohol consumption during
pregnancy is not restricted to a specific race (41), although
some ethnic backgrounds have been reported to be at a higher
risk of FAS and FASD (42). The significance of binge drinking
in these situations remains a concern (43). High-intensity
drinking remains a cause for concern as these behaviours
persist through to the adult years (44). Longitudinal studies
have clearly demonstrated that foetal alcohol exposure was
associated with alcohol problems in early adolescence (even
after controlling for family history of alcoholism, prenatal
nicotine exposure, parenting style, current parental drinking,
household stress, and self-esteem) (45) and young adulthood
(46). Thus, although there has been a demonstrable overall
reduction in adolescent drinking worldwide (47), this does
not hold true for the offspring of mothers who used alcohol
during pregnancy.

Similarly, tobacco and illicit substance use (up to 15%) is a
concern amongst women in the reproductive age group and
pregnant women (48, 49). The risk of misuse amongst offspring
has been confirmed (50) with the possibility of genetic
transmission of the risk being touted as an underlying mechanism.

The three factors proposed for epigenetic events serve as
examples. As reviewed by Dai et al. (51) epigenetic regulation
can occur not only on DNA, but also on RNA and nuclear
histones. Furthermore, there are several potential epigenetic
alterations that have been identified in addition to acetylation
and methylation. These include lactylation, succinylation,
homocysteinylation, and butylation, among others (51). These
findings indicate that the nutritional state, microbiome,
inflammation through changes in metabolite availability, and the
redox state (in addition to expression of enzymes needed) can have
epigenetic effects. Table 1 lists some of the stressors and the
proven mechanisms by which they alter the epigenome (52–65).
Further, because the exposures in adulthood likely differ from the
in utero environment, the secondary events during adulthood can
differ biochemically. This raises the possibility that dissimilar, but
interacting, epigenetic events could promote carcinogenesis.

In summary, children born to mothers with metabolic risk
factors (malnutrition, smoking and/or alcohol exposure) are at
an increased risk of, or susceptible to, similar risk factors in their
own lifetimes. Additionally, these risks are noted to occur early in
the lives of the offspring.
METABOLIC INFLUENCES ON
SPERMATOGENESIS – IS THERE A
PATERNAL CONTRIBUTORY INFLUENCE?

A hitherto underappreciated contribution to perinatal stressors
includes the effects of the metabolic influences (nutrition,
Frontiers in Oncology | www.frontiersin.org 4
alcohol and smoking, amongst others) on spermatogenesis
and the sperm. This is likely due to the belief that these
stressors would deleteriously affect spermatogenesis to a point
of inducing infertility (66, 67), and hence be inconsequential
in terms of affecting the offspring. Besides, the Investigators
in the Pregnancy And Childhood Epigenetics Consortium
PACE have recently reported the lack of an effect of paternal
BMI on their offspring-blood DNA methylation (68). However,
there is evidence that smoking, for instance, may damage the
sperm not to the extent to induce infertility (69, 70), but as a
result of oxidative stress led to the formation of DNA and
protein adducts in spermatozoa (71). Perrin et al. (72)
determined that the formation of these DNA adducts in
sperm cells may give rise to carcinogenic damage and
prezygotic DNA damage that can be transmitted to offspring.
This has been found by other investigators to assume the form
of paternally derived BPDE‐DNA adducts in preimplantation
embryos (73).

Alcohol, too, alters epigenetic mechanisms in the sperm
(74) in murine experimental models including DNA
methylation, chromatin modifications, and non-coding RNAs
(74). These effects have been noted to be transferable across
generations (74).

The high risk of foetal abortion or developmental disorders
amongst fertile men exposed to stressors such as smoking (69)
would further reduce the impact of paternal contributory
factors towards young-onset carcinogenesis. However, this
remains an area that warrants conclusive evidence to refute its
contribution altogether.
TABLE 1 | Factors listed as examples of stressors in the presented hypothesis
and the mechanisms by which they alter the epigenome.

Metabolic Factor Epigenetic modification References

Malnutrition
Methionine restriction
Folate deficiency

DNA/histone methylation through the
action of intracellular SAM

(52–54)

High fat diet Histone acetylation through the action
of Acyl-CoA
DNA methylation

(55)

(56, 57)

High glucose intake Histone acetylation through the action
of Acetyl-CoA

(58)

Smoking Histone acetylation through the effects
of acrolein

(59)

Altered DNA methylation through the
effects of PAH and

(60)

perfluoroalkyl compounds, especially
PFOA

(61)

Alcohol Histone acetylation through the action
of Acetyl-CoA

(62–64)

Microbiome Histone crotonylation through histone
deacetylases

(65)
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CHILDHOOD OBESITY AND YOUNG-
ONSET CANCERS

Observational studies have noted a higher incidence of adult
cancers in individuals who were obese during childhood. The
incidence of endometroid adenocarcinoma was found to be
significantly higher in girls who were obese as children. A BMI
z-score of 1.5 at the age of 7 years was associated with a had a
hazard ratio=1.53 (95% confidence interval: 1.29-1.82) for
endometroid adenocarcinoma compared to a z-score of 0 (75).
Similarly, childhood BMI z-score at the age of 13 years was
positively associated with a risk of colon cancer in adulthood
(HR=1.09; 95% CI 1.04-1.14) (76). Being overweight and/or
obese in adolescence is associated with a risk for colon cancer
among both adult men (HR for overweight, 1.53; 95% confidence
interval [CI], 1.28-1.84; HR for obesity, 1.54; 95% CI, 1.15-2.06;
statistically significant from a BMI of 23.4 kg/m2) and women
(HR for overweight, 1.54; 95% CI, 1.22-1.93; HR for obesity, 1.51;
95% CI, 0.89-2.57; significant from a BMI of 23.6 kg/m2).
However, only obesity, but not being overweight in
adolescence, was associated with a risk for rectal cancer
amongst adult men (HR, 1.71; 95% CI, 1.11-2.65; significant
from a BMI of 29.6 kg/m2) and women (HR, 2.03; 95% CI, 0.90-
4.58; significant from a BMI of 30.6 kg/m2) (77).

A recent review of the studies using the Copenhagen
School Health Records Register (78) found that childhood
obesity was positively associated with risks of bladder
(only late childhood), colon, endometrial, kidney, liver,
oesophageal (only late childhood), ovarian, pancreatic (<70
years), prostate (only before childhood height adjustment) and
thyroid cancer.
FOETAL ALCOHOL SPECTRUM DISORDER
(FASD) AND YOUNG-ONSET CANCERS

Himmelreich et al. (79) recently published the results of an
anonymous, community-based health survey developed by them
in adults with FASD. They analysed the data from 541 (out of 612)
respondents who completed the survey. The ages of the
respondents ranged from ≤16 to greater than 60 years, with the
greatest number of individuals in the 16–40-year range.
The sample was reasonably balanced by gender, with 52.8%
females and 45.5% males, and including 0.8% “other” and 1.0%
“rather not say”. Altogether, 47.8% of respondents were diagnosed
with FAS and 17% with ARND while the remaining ~35% were
diagnosed with pFAS, FAE, static encephalopathy PAE, and
other disorders.

In this survey, 18 individuals (3.75% of respondents) reported
having had some form of cancer (including cervical, Hodgkin’s
lymphoma, liver, malignant melanoma, prostate, skin, thyroid,
and embryonal rhabdomyosarcoma): five during childhood (<18
years), nine at 18–44 years, and four at 45–55 years. Most
respondents who reported cancer were under 44 years of age
leading to the frequency among these individuals being almost
twice the prevalence in the general population.
Frontiers in Oncology | www.frontiersin.org 5
Maternal alcohol consumption during pregnancy is
associated with a significant risk of acute myeloid leukaemia in
young children (80) prompting a call for primary prevention to
reduce the risk (81).

In summary, children exposed to prenatal metabolic risk
factors, through their mothers, are at a higher risk of cancer
compared to the general population.
METABOLIC EFFECTS ON THE
EPIGENOME

Epigenetic mechanisms are essential for normal development and
maintenance of tissue-specific gene expression patterns (82).
However, patterns of DNA methylation and chromatin structure
are altered in cancer (83). Epigenetic alterations are believed to be
key initiating events in carcinogenesis (84). Zhang et al. (85)
hypothesized a role for epigenetic mechanisms underlying the
effect of maternal stress and associated sleeping disorders on their
offspring which ultimately shape the immune system and gut health
leading to an increased the risk for early-onset colorectal cancer.

The epigenome is susceptible to metabolic effects owing to
metabolites serving the role of substrates for the generation of
chromatin modifications (86). Chromatin is susceptible to
alterations by covalent modifications on the histones by the
actions of enzymes including DNMTs, HMTs and HATs. The
rates of reaction of these enzymes are dependent on changes in
substrate availability (86). Nutrient uptake by the cell, and its
subsequent metabolism, results in the generation of key
substrates, including, though not limited to, Acetyl-CoA and
SAM. Levels of these substrates are thus regulated by nutrient
availability (87). In murine models, maternal obesity has been
found to induce epigenetic modifications in the foetus (88).

Obesity is a proven risk factor for cancer and cancer-related
mortality (89). Calle et al. (90) interrogated the data of nearly
900,000 adults in the United States and noted that a BMI ≥40kg/
m2 was associated with a higher cancer-related mortality for all
cancers combined in addition to cancers at multiple specific sites.
A state of chronic inflammation encountered in obese
individuals has been touted to be one of the more significant
drivers of obesity-related cancer (91). Nutrient excess, as well as
deprivation, can influence the epigenome. Diet impacts tissue
acyl-CoA and histone acetylation levels (55).

During nutrient deprivation, nuclear-cytoplasmic acetylation
of proteins may decrease as aconsequence of both reduced
availability of acetyl-CoA to promote KAT activation and
rising levels of NAD+ or NAD+/NADH to promote sirtuin
deacetylase activity (92). Reciprocally, in high nutrient
situations, metabolic conditions inhibit sirtuins and high
availability of acetyl-CoA could facilitate KAT activity (92).
KATs act as central players in regulating transcription. They
modify the levels of acetylation on target proteins and thereby
allow cells to detect, respond, and directly meet their homeostatic
needs (93).

Alcohol is metabolised by dehydrogenases to acetate and
further into Acetyl-CoA (62) by the action of chromatin-
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Barreto and Pandol Young-Onset Carcinogenesis
bound ACSS2 (63) which contributes to histone acetylation (64).
Compelling evidence from murine models indicates that
gestational exposure to alcohol results in epigenetic alterations
in the developing foetus (94). Cigarette smoke activates enzymes
involved in DNA methylation and histone post-translational
modifications, in addition to effects on non-coding RNA
sequences (95). Prenatal cigarette smoking has been found to
be associated with epigenetic modifications that persist in the
offspring through to adolescence (96).

In addition to affecting epigenetics, metabolites also influence
adult and embryonal stem cell behaviour through the action of
Acetyl-CoA serving as an acyl donor for histone acetylation (97).
However, we must remind the reader that epigenetic alterations
are reversible (98). Cancer cells maintain an intrinsic plasticity
that allows them to easily change their phenotype in response to
new signals and possibly switch between cellular states (27).
INCREASED CANCER RISK IN THE
OFFSPRING

It is noteworthy that the epigenome is susceptible to metabolic
influences occurring at any period in an individual’s lifetime,
commencing in utero. These effects on the epigenome not only
last the entire lifetime of an individual (99), but have the
potential to be transmitted across generations (74, 100), which
is intriguing because it points to the observation that epigenomic
changes “acquired” in one generation may be the inherited ‘first
hit’ in the next, and potentially regardless of maternal behaviour.

It is important to clarify that the epigenome plays a role in the
two-hit hypothesis either on its own (with evidence to support the
role of DNA methylation as the second hit (101)) or by exerting its
effect on tumour suppressor genes through the process of epigenetic
silencing (102). Our hypothesis presented in this manuscript thus
represents a variation from the long-held dogmas of carcinogenesis,
namely, the inherited genetic susceptibility and acquired two-hit
hypothesis (of Knudson) (18). The significance of the finding of
germline mutations in cancer-predisposing genes, noted in 8.5% of
children and adolescents with cancer, in the absence of a clear
family history to predict the presence of an underlying
predisposition syndrome (103), has yet to be clarified in the
context of young-onset carcinogenesis. Metabolic (including
mitochondrial) and genetic factors are not mutually exclusive.
Acquired abnormalities in mitochondrial function could produce
a type of vicious cycle where impaired mitochondrial energy
production might initiate genome instability and mutability,
which in turn could accelerate mitochondrial dysfunction and
energy impairment in a cumulative way (104).

As highlighted above, offspring of mothers exposed to
significant metabolic stressors during pregnancy (capable of
inducing epigenetic modifications) are not only at an increased
risk of similar metabolic stressors during their own lifetime with
resultant effects on the epigenome, but would also be increasingly
susceptible to premature activation of driver mutations by the
concept referred to as ‘stress-induced mutagenesis’ (23). We can
only deduce that the location of the resultant cancer would be
Frontiers in Oncology | www.frontiersin.org 6
strongly correlated (0.81) with the total number of divisions
of the normal self-renewing cells maintaining that tissue’s
homeostasis (24).
TESTING THE HYPOTHESIS AND ITS
IMPLICATIONS

A deeper understanding of variations in young-onset cancer
incidence based on subsites, age, sex and race might offer insights
into the potential drivers of carcinogenesis and enable a testing of
our proposed hypothesis.

There are various ways to test our hypothesis. While
mathematical modelling using the Cancer Generative model
(19) may help plot the time course of the first and second hit
and support the hypothesis, another experimental design would
involve a longitudinal observational study tracing pregnant
females, their partners, and their offspring (including
documenting their metabolic stressors such as nutrition,
medical conditions, alcohol and smoking use), throughout
their lives. Being able to document the actual incidence of
cancer development would constitute the most objective
strategy to prove, or disprove, the hypothesis. Frozen buffy
coat specimens (105) collected from the mother, the male
partner, the cord blood of the foetus (106), as well as from the
offspring through various stages in their life, namely, childhood,
adolescence and adulthood to study epigenetic modifications,
including those related to acetyl-CoA could be a useful strategy
to identify risks within that offspring, as well as, potential
biomarkers for the early detection of cancer. The cohort of the
patients studied by the American Cancer Society (90) that
includes patients with an already proven increased risk of
cancer mortality associated with overweight and obesity could
be approached to test the hypotheses presented in this
manuscript. Blood specimens, with or without specimens of
saliva, could be collected from these individuals and assessed
for abnormalities in their epigenome. Another cohort that can be
approached to test this hypothesis are those patients with familial
clustering, in whom inherited genetic susceptibility has been
ruled out. Two such cohorts have been identified in Scandinavia
(107, 108). The cohort of patients with breast cancer in the study
by Heikkinen et al. (107) is a perfect example of a testable
study group.

We accept that despite all these efforts, it may yet remain a
challenge to prove cause and effect. Longitudinal studies with
biochemical measurements following up children through to
adulthood may show associations. These associations could be
tested in preclinical models to prove causation and even elucidate
the underlying mechanisms (109).

Data management and analysis of patients with young-onset
cancers using artificial intelligence, machine learning and natural
language processing addressing specific areas, especially genetics
and environmental data (medical and lifestyle, social and
commercial) will help define prediction modelling in terms of
developing a framework focussing on early detection of
these cancers.
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However, the overarching question is, “Do we need to prove
this hypothesis to commence interventions to reduce the risk of
cancer in the offspring at risk?” The evidence to support the
hypothesis is compelling. More importantly, the hypothesis
raises issues that warrant urgent attention irrespective of the
risk of carcinogenesis. Maternal, paternal, and childhood
malnutrition (110), perinatal smoking (111) and alcohol abuse
(40), teenage alcohol abuse (112) and smoking (113) remain
major global health issues that need stronger preventative as well
as remedial strategies to be laid down. Equally relevant is the fact
that these stressors are inter-related. For instance, maternal
smoking during pregnancy has been found to be associated not
only with obesity in their own children (114), but even their
grandchildren (115). The information generated from a better
understanding of the timeline of carcinogenesis, would also serve
to guide International Collaborative Initiatives, such as the
CONCORD programme (116), to suggest recommendations on
cancer surveillance for young adults who are deemed ‘at risk’. In
addition, there is evidence to support the role of simple strategies
such as dietary interventions, including caloric restriction,
intermittent fasting or time-restricted feeding, in terms of
improving the patients’ overall metabolic profiles (i.e., reduced
body weight, improved glucose homeostasis) (37).
CONCLUSION

Herein we propose a novel evidence-backed hypothesis for
young-onset carcinogenesis. The implications of this
hypothesis are significant and effort is necessary to investigate
it to confirm, or refute, its veracity. We hope this hypothesis will
Frontiers in Oncology | www.frontiersin.org 7
serve as the starting point for directed research into the growing
burden of young-onset carcinogenesis. The possibility that the
stressors described in this manuscript could affect not only
sperm quality (including density, motility, morphology and
viability), but also its genetic and epigenetic content warrants
consideration. The manuscript represents a call for action from
various groups to work together to reduce the increasing burden
of young-onset carcinogenesis.
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