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Introduction:Glioblastomamultiforme (GBM) develops through the accumulation of both
genetic and expression alterations. Although many gene signatures have been developed
as prognostic and predictive biomarkers, their robustness and functional aspects are less
well characterized. The expression of most genes is regulated by transcription factors
(TFs); therefore, we aimed to investigate a TF signature relevant to GBM prognosis.

Methods: We used bioinformatic methods and data from public databases to establish
four clusters of key TF genes, among which cluster 1, comprising 24 TFs, showed
significant prognostic value. Further in silico functional analyses were applied to investigate
the utility of the TF signature.

Results: Different mutation and copy number variation patterns were observed between
different risk score groups (based on the TF signature). In silico analyses suggested that
the cases with relative high risk scores were involved in immune and inflammatory
processes or pathways.

Conclusion: The TF signature has significant prognostic value in different cohorts or
subgroups of patients with GBM and could lead to the development immunotherapy for
GBM.

Keywords: GBM, prognosis, bioinformatics, immunity, inflammation
INTRODUCTION

Diffuse gliomas include lower-grade glioma (LGG, grade II and III) and the highly malignant
glioblastoma multiforme (GBM, grade IV) (1). GBM is an aggressive and frequently diagnosed
glioma. Under standard therapy, GBM has an average overall survival (OS) of 14.6 months and a
26.5% 2‑year survival rate (2). The “integrated” phenotypic and genotypic parameters for central
nervous system (CNS) tumor classification were introduced in the 2016World Health Organization
(WHO) Classification of Tumors of the Central Nervous System (3), which emphasizes the
molecular impact on the tumorigenesis and prognosis of glioma. The clinical hallmarks of the
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poor prognosis of GBM comprise inevitable recurrence, limited
therapeutic response, and aggressive growth (4). The
development of molecularly targeted methods has resulted in a
paradigm shift in the diagnosis and treatment of cancers.
Informed therapeutic choices are increasingly made by
combining histology with molecular analysis (5, 6).

Glioma, especially GBM, has high heterogeneity, which
originates from complex interactions between developmental and
genetic factors. To date, based on transcriptomic classification,
GBM has been divided into classical (CL), neural (NE), proneural
(PN), and mesenchymal (ME) subtypes (7). Increasing research has
attempted to identify prognostic molecular markers. However, little
attention has paid to related transcription factors (TFs) as markers.
Therefore, it would be clinically significant to identify a TF signature
representing a tumor’s intrinsic characteristics and heterogeneity to
predict patient outcome.

The control of eukaryotic gene expression involves a
combination of regulatory signals exerted by a variety of factors
(8). The integration of regulatory elements, such as microRNAs,
epigenetic markers, specific transcription factors and their cofactors,
and other input signals, allows the coordination of gene expression
patterns in a spatiotemporal context‑dependent manner (9). In
particular, TF control of gene expression is a highly conserved
mechanism by which signals are integrated in key regulatory
pathways, and their study permits the identification of the TF-
controlled genes and their associated regulatory mechanisms.
“Cooperative” TFs participate in multi-protein complexes that
often recruit further TFs or cofactors to fine‑tune their regulatory
abilities (10). In protein interaction networks, the distances between
cooperative TFs are shorter and more clustered than would be
expected by chance (11). In addition, TFs promote regulatory
activities in basic eukaryotic processes, such as the cell cycle
(12), cell differentiation (13), immunity (14), and malignant
transformation (15, 16). Emerging evidence suggests that
dysregulation of immunity and cancer initiation are closely
correlated (15, 16). However, the complex roles of cooperative
TFs in the context of glioma are unclear.

The current study aimed to develop a key signature TF gene
set that correlated with patient prognosis. To achieve this, a
supervised approach associated with clinical covariates was
carried out. This resulted in a combined analysis that identified
a robust immunity and inflammation‑related TF gene set and the
establishment of a risk score system. Further bioinformatic
analyses revealed that the risk score had good prognostic value
in stratifying patients and was associated with different mutation
or copy number variation (CNV) patterns.
MATERIALS AND METHODS

Datasets
Normalized whole genome mRNA expression microarray data and
associated clinical date were obtained from The Cancer Genome
Atlas (TCGA) GBM dataset (7) (http://cancergenome.nih.gov/) as
the training cohort. As validation cohorts, three datasets were
obtained: GSE16011 from the Gene Expression Omnibus database
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(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011)
(17), whole genome mRNA expression RNA-seq data from the
Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.
org.cn) (18), and RNA‑seq data integrated with CNV and somatic
mutation data from the TCGA glioma (lower-grade glioma, LGG
and GBM) project (19). The training dataset comprised 525 cases
(GSE16011 n = 155, CGGA RNA-seq n = 117 GBM samples;
TCGA RNA-seq n = 663 glioma samples (153 GBMs and 510
LGGs)). Patients’ characteristics are summarized in Table S1.

Statistical Analysis
The time interval from the diagnosis date to death or last follow-up
defined overall survival (OS). The differences in prognosis for
patients with high or low expression of a certain gene or risk
score (compared with the median value) were calculated using the
Kaplan–Meier method, together with a two-sided log-rank test, in
the “survival” package of the R software (version 4.0.3 for
Windows). We also used the “survival” package to perform
univariate and multivariate COX regression analysis. Principle
component analysis (PCA) of the genes was also carried out in R.
To compare the numerical values between two groups, we used a
two‑tailed Student’s t-test. To analyze the differences of the means
among groups, we used analysis of variance (ANOVA). To compare
the frequencies between groups, we used Fisher’s exact test and the
Chi‑squared test. For receiver operating characteristic (ROC) curve
analysis and comparisons between factors, we used the package
“pROC” in R. To combine two factors, we used fitting of a
generalized linear model. Area Under the Receiver Operating
Characteristic Curve (AUC) estimation was used to evaluate
prediction performance. In the ROC analysis, we excluded those
patients who were not censored at the last follow-up and whose
disease durations were less than the mean OS. Associations between
two variables were performed using Pearson correlation (r) analysis.
Statistical significance was accepted at P <0.05.

Bioinformatic Analysis
Differentially expressed genes (DEGs) were identified using the
“Limma” package of R according to a false discovery rate (FDR)
threshold of less than 0.05. In R, the “ConsensusClusterPlus”
package was used to cluster genes into different subgroups (20).
STRING was used for protein‑protein interaction analysis (21).
Relevant biological implications were investigated using the
“TCGAbiolinks” package of R (22). Gene set enrichment analysis
(GSEA) (23) was used to further verify the biological phenotypes.
The gene set variation analysis (GSVA) package of R (24) was used
to construct the immune cell gene sets and single sample GSEA
(ssGSEA) enriched gene sets, based on the summarized gene list of
immune cells described by Gabriela et al. (25).

RESULTS

Selection of Transcription Factors and
Their Role in Different Categories
of Glioma
A total of 525 patients with GBM with mRNA expression and
clinical data were obtained as the training cohort from the TCGA
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database. 1666 TFs were confirmed from the whole gene expression
data. To investigate the role TFs in regulating the biological behavior
and clinical outcome of glioma, PCA was carried out using the TFs
of either cohort. The TFs could distinguish LGG fromGBM (Figure
1A) and long-term survival from short-term survival (Figure 1B) in
the TCGA RNA‑seq cohort. Furthermore, the TFs showed different
patterns of distribution in the four transcriptional subtypes (CL, NE,
PN, and ME) in either the training (Figure 1C) or TCGA RNA-seq
(Figure 1D) cohorts. Median absolute deviation (MAD) was
calculated for each of the 1666 TFs in the training cohort from
525 tumor samples to further select genes with high heterogeneity.
The resulting 88 TFs with an MAD >1.0 were thus defined as
key regulators.

Clustering of The Key TFs and The
Prognostic Value of Clusters
Different TFs have different functions in regulating glioma
oncogenesis and progression. Therefore, we performed consensus
clustering of the 88 TFs to cluster them into different groups with
Frontiers in Oncology | www.frontiersin.org 3
similar expression profiles. Four clusters of TFs were defined in the
training cohort (Figure 1E and Supplementary Figures S1, S2A-
D). Thereafter, we calculated a score for each cluster using the
ssGSEA method. Of the four cluster scores, only the score for
dichotomized cluster 1 (risk signature: AHR, ATF3, BLNK, CEBPA,
EGR2, FAS, FHL2, FOS, HCK, ID1, IQCG,MAFB,MYLK,MYO1B,
NR2F2, PDLIM1, PDLIM4, PLK2, PRRX1, SAMSN1, SLA, SNAI2,
TNFRSF11B, and TWIST1) showed significant prognostic value in
the training cohort (Figure 1F, P = 0.0003). To confirm whether the
genes in the TF signature were “cooperative”, Pearson’s correlation
value was calculated between all pairs of genes (mean r = 0.241,
Supplementary Figure S2E) and protein-protein interaction (PPI)
analysis was performed (Supplementary Figure S2F). To validate
the TF risk signature in other populations, we calculated the risk
score for each patient in the validation cohorts using the same
method. Patients were classified into high or low risk groups in
comparison with the median risk score. As expected, the survival
curves showed a greater reduction in OS for the high risk patients
than the low risk ones (Figures 1G–I).
A B E

F G
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FIGURE 1 | Overview of the transcription factors (TFs) used to stratify different grades, prognosis, and subtypes of glioma, and the selection of the TF signature with
its prognostic value across cohorts. (A) Principle component analysis (PCA) indicating that the TFs could distinguish LGG from GBM in the TCGA RNA-seq cohort.
Green: LGG; Red: GBM. (B) PCA indicating that the TFs could distinguish long-term survival from short-term survival in the TCGA RNA-seq cohort. Green: OS > 3
years; Red: OS < 1 year. (C) PCA indicating that the TFs could distinguish different transcriptional subtypes of GBM in the training cohort. Green: PN; Blue: NE;
Yellow: CL; Red: ME. (D) PCA indicating that the TFs could distinguish different transcriptional subtypes of glioma in the TCGA RNA-seq cohort. Green: PN; Blue:
NE; Yellow: CL; Red: ME. (E) Heatmap depicting the Z-scored expression values and the clustering of 88 key TF genes in the training cohort. Columns represent
each sample and are labeled with their clinical characteristics, rows represent genes and were clustered into four groups. Cluster 1 represents the signature.
(F) Kaplan–Meier survival analysis based on the median cutoff value of the risk score developed using the cluster 1 gene set in the training cohort. (G) Kaplan–Meier
survival analysis based on the median cutoff value of the risk score developed using the cluster 1 gene set in the GSE16011 cohort. (H) Kaplan–Meier survival
analysis based on the median cutoff value of the risk score developed using the cluster 1 gene set in the CGGA RNA-seq cohort. (I) Kaplan–Meier survival analysis
based on the median cutoff value of the risk score developed using cluster 1 gene set in the TCGA RNA-seq cohort. LGG, Lower grade glioma; Mutant, IDH1
mutant; WT, IDH1 wild type; NE, Neural; PN, Pro-neural; CL, Classical; ME, Mesenchymal; NA, Not acquired.
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Risk Score Distribution and Prognostic
Value among Glioma Subgroups
Clinicopathological factors, such as transcriptional subtypes, the
methylation status of MGMT (encoding O-6-methylguanine-
DNA methyltransferase), the mutation status of IDH1 (encoding
isocitrate dehydrogenase (NADP(+)) 1), grade, sex, and age, were
used to stratify the patients in the training cohort. Patients with
male sex (P = 0.027), IDH1 wild-type (P = 3.1e-06), and
unmethylated MGMT status (P = 0.029) demonstrated higher
risk scores, whereas age (P = 0.82) had almost no effect on the
distribution of the risk score. For the transcriptional subtypes (P <
2.2e-16, ANOVA), the ME subtype had the highest risk score
(median 0.321) and the PN subtype had the lowest risk score
(median 0.172), whereas the NE and CL subtypes had
intermediate risk scores (Supplementary Figure S3A). There
were only two overlapping genes (FHL2 and MAFB in the ME
subtype) between the TF signature and the transcriptional subtype
genes. The distribution of the risk score among subgroups in the
validation cohorts is shown in Supplementary Figure S4, which
showed good correspondence with the distribution pattern in the
training cohort. Notably, the risk score increased with grade
progression in the TCGA RNA-seq cohort. To validate the
different risk score patterns in the transcriptional subtypes, we
queried the genes representing the highest and lowest risk score
subtypes (mesenchymal and proneural gene sets) and sorted the
expression profile of these genes according to increased risk score
(Supplementary Figure S3B). This analysis showed that the
expression value of mesenchymal genes was higher with
increased risk score, while the opposite pattern was observed for
proneural genes. Furthermore, Pearson correlation analysis was
conducted with key genes in either gene set. CHI3L1, also known
as YKL‑40 (r = 0.520, P <0.001; Supplementary Figure S3C) and
TGFB1 (r = 0.520, P <0.001; Supplementary Figure S3D)
correlated positively with the risk score, while OLIG2
(r = −0.450, P < 0.001; Supplementary Figure S3E) and DLL3
(r = −0.402, P < 0.001; Supplementary Figure S3F) showed a
negative correlation.

In each subgroup, the patients were assigned to either a high or
low risk supergroup on the basis of the median cut-off of the risk
score in the training cohort. To determine the prognostic value,
the dichotomized risk score of the whole cohort was applied to
all the subgroups. The results were almost universal among most
of the subgroups (Figure 2), in that a high risk score correlated
markedly with poor prognosis and a low risk sore was associated
with better prognosis. After adjusting for other clinical covariates,
the risk score was identified as an independent prognostic factor
using univariate and multivariate Cox regression analyses (Table
1). Furthermore, the risk score was applied in the TCGA RNA-seq
cohort for ROC analysis to explore the sensitivity and specificity of
the risk score compared with other covariates, providing the AUC
of disease status (GBM vs. LGG, AUC = 0.6953), IDH1 mutation
status (wild-type vs. mutant, AUC = 0.7711),MGMTmethylation
status (unmethylated vs. methylated, AUC=0.6488), and the risk
score (as a continuous variable, AUC = 0.7490, Supplementary
Figure S5). The risk score outperformed disease status (P =
0.0192) and MGMT methylation status (P = 0.0001), but
Frontiers in Oncology | www.frontiersin.org 4
showed no significant difference compared with the IDH1
mutation status (P = 0.2954). A significantly higher AUC
(combined, AUC = 0.8072) was achieved when fitting of a
generalized linear model was applied to the risk score (P <
0.0001) and IDH1 mutation status (P = 0.0060).

Distinct Patterns of CNVs an Somatic
Mutations were Associated with the
Risk Score
To further determine the effect of the risk score at the DNA level,
the TCGA RNA-seq data, with available CNV and somatic
mutation information, which was more comprehensive than
the training microarray cohort, were analyzed. Using the
increasing risk score as the basis, we divided the cases into
four subgroups that were more representative for intergroup
comparison. We then analyzed the mutation status of known
glioma regulators (Figure 3A). Frequent mutations in IDH1
(p < 0.001), CIC (p <0.001), and ATRX (p = 0.029) showed
significant enrichment in cases with a lower risk score. PTEN
(p < 0.001), EGFR (p < 0.001), NF1 (p < 0.001), PDGFRA
(p = 0.002), RB1 (p = 0.002), and BRAF (p = 0.015) mutations
were enriched significantly in cases with a higher risk score. In
addition, significantly different mutation frequencies of FLG,
RYR2, TTN, SPTA1,MUC17, and KEL were attributed to various
risk score subgroups. However, existing studies have barely
explored their roles in glioma.

Investigation of the CNV data between the high and low risk
score groups revealed distinct chromosomal alteration patterns.
With decreasing risk score, the incidence of the 1p/19q
codeletion (a genomic hallmark of oligodendroglioma)
increased. The frequency of the GBM representative event
comprising Chr 7 amplification paired with Chr 10 loss
increased in the high risk score group (Figure 3B). Additional
CNVs comprising frequently deleted genomic regions were
9p21.3, which encompasses CDKN2A and CDKN2B (mean
deletion, CDKN2A −0.162 1st quarter vs. −0.682 4th quarter,
p <0.001; CDKN2B −0.162 1st quarter vs. -0.659 4th quarter,
p <0.001), and 10q23.3 encompassing PTEN (−0.067 1st

quarter vs. −0.574 4th quarter, p <0.001). While 7p11.2, which
encompasses EGFR (mean amplification, 0.087 1st quarter vs.
1.732 4th quarter, p <0.001), PDGFRA (4q12; -0.038 1st quarter
vs. 0.422 4th quarter, p <0.001), CDK4 (12q14.1; 0.039 1st quarter
vs. 0.483 4th quarter, p <0.001), and mouse double minute 2
homolog or 4 homolog (MDM2/MDM4; 12q15/1q32.1; MDM2
−0.016 1st quarter vs. 0.171 4th quarter, p = 0.006; MDM4 0.021
1st quarter vs. 0.387 4th quarter, p < 0.001) were amplified
frequently, with a higher risk score (Figures 3B–D).

High Risk Score GBM Exhibited an
Immunity and Inflammatory
Enriched Phenotype
GO analysis was carried out to assess the functional features
associated with the prognostic value and different patterns of
CNVs and somatic mutations depending on the risk score,
using the Pearson correlation score (r) calculated for each gene
in the training cohort. Using 779 genes whose expression
April 2021 | Volume 11 | Article 657531

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Transcription Factors in GBM Prognosis

Frontiers in Oncology | www.frontiersin.org 5
correlated positively with the risk score (r > 0.4), the GO
analys i s revea led high enr ichment for immuni ty ,
inflammation, and their related functions. For validation,
DEGs analysis was performed based on the high or low risk
scores in the training cohort. This identified that 751 genes
were upregulated in the high risk score group (FDR <0.05 and a
lowest log-fold change of 0.5), which were then subjected to GO
analysis (Figure 4A). The GO results for the positively
correlated genes and the DEGs both identified enrichment for
immunity, inflammation, and their related functions.
Meanwhile, cell proliferation was also found in the GO
results in both panels. The same method was applied to the
other three validation cohorts, and similar results (immune
response and inflammatory response being the top two GO
annotations) were obtained (Supplementary Figure S6).

Next, we performed GSEA of the risk score, which
demonstrated an association between the risk score and
pathways and processes that are closely related to
inflammation and immunity. Hallmark interferon gamma
response, Hallmark inflammatory response, KEGG NOD-like
receptor signaling pathway, KEGG TOLL-like receptor signaling
pathway, GO inflammatory response, and GO immune response
A B C D

E F G H

I J K L

FIGURE 2 | Prognostic value of the risk score in different clinicopathological subgroups. (A, B) Kaplan–Meier survival analysis based on the median cutoff value of
the risk score developed using the cluster 1 gene set in the training cohort in different age subgroups. (C, D) Kaplan–Meier survival analysis in different sex
subgroups. (E) Kaplan–Meier survival analysis in KPS ≥ 80 patient subgroup. (F) Kaplan–Meier survival analysis in IDH1 wild-type patient subgroup. (G, H) Kaplan–
Meier survival analysis in different MGMT methylation status subgroups. (I) Kaplan–Meier survival analysis in the classical subtype patient subgroup. (J–L) Kaplan–
Meier survival analysis based on different patient subgroups that underwent chemotherapy, radiotherapy, or combination therapy. KPS: Karnofsky Performance
Status.
TABLE 1 | COX regression analysis of the risk score based on the TF signature
and other covariates in GBM.

Variables TCGA Microarray
Univariate

TCGA Microarray
Multivariate

HR P HR P

Signature
(High vs. Low)

1.41 0.0003 1.42 0.0260

Age
(≥ 60 vs. < 60)

1.85 <0.0001 1.35 0.0681

Sex
(Male vs. Female)

1.16 0.1223 – –

KPS
(<80 vs. ≥80)

2.18 <0.0001 1.37 0.0926

IDH1
(Wild-type vs. Mutant)

2.86 <0.0001 2.00 0.0259

MGMT
(Unmethylated vs. Methylated)

1.38 0.0086 1.09 0.5941

Chemotherapy
(Yes vs. No)

0.41 <0.0001 0.74 0.2729

Radiotherapy
(Yes vs. No)

0.35 <0.0001 0.34 <0.0001
HR, hazard ratio; Univariate, Univariate Cox Regression; Multivariate, Multivariate Cox
Regression; Bolded values indicates statistically significant.
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were among the top enriched GSEA terms in the high risk score
group (Figure 4B).

GO and GSEA analyses based on the other three TF gene sets
indicated that the cluster 2 gene set was associated with neuron
development, the cluster 3 gene set was associated with the cell cycle,
and the cluster 4 gene set was associated with metabolic and neuron
morphogenesis (Supplementary Figure S7). The failure of the three
gene sets’ ssGESA scores to achieve a significant prognostic value
suggested that the related biological functions might be universal
processes regulating glioma malignancy.
Frontiers in Oncology | www.frontiersin.org 6
Association between The Immune Score
and The Risk Score
The high correlation between the immunity and inflammatory
processes and pathways and the risk score suggested that tumor
and non-tumor fractions (e.g., immune cells) were present in
glioma tumors. Therefore, to infer the tumor compartment, a
recently developed universal algorithm based on transcriptomic
expression data was used. The algorithm can quantify the tumor
cell content in the tissue and estimate immune cell infiltration.
Thus, for each sample, an immune score was calculated using the
A B

C D

FIGURE 3 | Different mutation and copy number variation pattern of the risk score. (A) Summary of well-known individual regulators of glioma from the lower and
higher risk score samples from the TCGA RNA-seq cohort. Columns are sorted by samples with increasing risk score. Top histogram, sum of mutations in each
sample category indicated by the legend; Right histogram, sum of mutations in each gene indicated by the legend. (B) The overall copy number variation (CNV)
profile in order of increasing risk score in the TCGA RNA-seq cohort. (C, D) A distinct recurrent CNV and mutation profile is observed between gliomas with a lower
and higher risk score in the TCGA RNA-seq cohort. *P < 0.05; **P < 0.01; ***P < 0.001.
April 2021 | Volume 11 | Article 657531

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Transcription Factors in GBM Prognosis
A B

C D

E F

FIGURE 4 | High risk score GBM exhibited immune and inflammatory enriched phenotype. (A) Upper chart: Top 25 GO terms enriched by genes that correlated
highly (r > 0.4) with the risk score, suggested that they were highly enriched in immunity, inflammation, and related processes (red). Lower chart: Top 25 GO terms
enriched by the upregulated DEGs (at the FDR of 0.05 and the lowest log fold change of 0.5) analyzed between the high risk score group and the low risk score
group. (B) GSEA analysis reveals that the risk score was associated with processes or pathways closely associated with immunity, inflammation, and related
processes. (C) Pearson correlation analysis between the risk score (signature) and the immune score of the training cohort. (D) PCA showing that the genes used to
construct the risk score were highly associated with the genes used to construct the immune score gene set. Red: genes of the risk score gene set; Blue: genes of
the immune score gene set. (E) Heatmap showing the relationship between the risk score (signature) and the ssGSEA score of each immune cell. Red: high score;
Blue: low score. (F) Pearson correlation analysis between the risk score and the ssGSEA score of each immune cell. The vertical bar indicates the r value.
Frontiers in Oncology | www.frontiersin.org April 2021 | Volume 11 | Article 6575317
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ESTIMATE algorithm. A high correlation was observed between
the risk score and the immune score (r = 0.799, P < 0.001, Figure
4C). Subsequently, PCA was carried out based on the genes
constructing the risk score and the genes constructing the
immune score (Figure 4D). The result confirmed that the
genes were highly associated with the immune score gene set.
Moreover, many immune checkpoint genes (CLL2, CD4, CD80,
CD86, CXCR4, ICOSLG, IL6, IL10, LGALS9, PDCD1LG2,
TGFB1, TNFRSF9, and TNFSF4) were also found to be more
highly expressed in the high risk score group than in the low risk
score group in the training cohort (Supplementary Figure S8).

Correlation of The Risk Score and
Immune Cells
There was a high correlation between the risk score and
immunity according to the GO and GSEA analyses. Therefore,
we investigated which immune cells were important for the
immune processes in the glioma microenvironment. Thus,
ssGSEA analysis was performed based on a gene list of
immune cells summarized by Gabriela et al. (25). Pearson
correlation analysis was performed between immune cell
enrichment scores and the risk score. There was a significantly
high correlation between the survival of pernicious immune cells
(26) and the risk score: Macrophage cells (r = 0.817, P <0.001)
and neutrophils (r = 0.582, P <0.001) (Figures 4E, F and
Supplementary Table S2). However, the enrichment score of
neutrophils could not achieve a significant prognostic impact on
overall survival (P=0.787; log rank test) in the training cohort.
The risk score also correlated significantly with other immune
cells, including T follicular helper (TFH) B cells (r = −0.083,
P = 0.059), B cells (r = 0.078, P = 0.072), and natural killer cells
(r = −0.027, P = 0.537). In summary, in the tumor
microenvironment, immune cell enrichment correlated highly
with the risk score.
DISCUSSION

The immune microenvironment in glioma is not well
understood, such that interactions between the host immune
system and the tumor, as well as the molecular pathogenesis of
glioma, await better characterization. Personalized drugs,
including multimodal immunotherapy, represent a reasonable,
optimal, and flexible method to induce long-term tumor control
(27). The identification of predictive and prognostic biomarkers
for glioma could help to optimize therapy decisions. In this
study, we analyzed the gene expression profiles from 525 GBM
tumors and identified a robust TF gene signature that is relevant
to immune-related processes. The signature- based risk score
exerted its prognostic stratifying ability either in the training or
validation cohorts, and could distinguish gliomas with different
mutations or CNV patterns. Notably, a positive correlation was
observed between the risk score and mesenchymal genes of
glioma, while a negative correlation was observed between the
risk score and proneural genes. Moreover, the risk score
demonstrated high correlation with the immune score. In
Frontiers in Oncology | www.frontiersin.org 8
accordance with our risk score, mesenchymal glioma
demonstrated worst prognosis while proneural glioma had the
best prognosis (7). Many kinds of cancers that undergo
epithelial-to-mesenchymal transition (EMT) show significant
enrichment of multiple immune targets (28, 29), which further
validated the high correlation with immunity in the
glioma scenario.

Genes constituting our signature could be regarded as
alternative targets, alone or in combination, according to their
regulatory nature and prognostic significance. For instance,
the TDO-AHR pathway is active in human brain tumors, in
which it could suppress anti-tumor immune responses and was
associated with malignant progression and poor survival (30).
The FAS-FAS ligand system in human brain tumors was shown
to be involved not only in apoptotic processes, but also in the
promotion of angiogenic and proinflammatory responses (31).
FHL2 interacts with EGFR and EGFRvIII to increase their levels
and promotes glioma growth (32). ID1 regulates multiple tumor-
promoting pathways, such as invasiveness and self-renewal in
glioblastoma (33). PRRX1 could potentiate glioma-initiating cells
via DRD2-mediated ERK and AKT activation (34). SNAIL2 and
TWIST1 act as inducers for cell‑invasiveness and EMT in GBM
(35, 36). Furthermore, multiple targetable immune checkpoint
genes were expressed at higher levels in the high risk score group.
For example, increased expression of CCL2 might activate
neutrophils through the IL6-STAT3-PDL1 signaling cascade
(37). B7 and CD28 family cell surface molecules (CD80 and
CD86) have important functions in T-cell tolerance and
activation (38). ICOSLG, a member of the B7 family of
costimulatory molecules related to CD80/CD86, regulates CD4
and CD8 T-cell responses via interaction with its receptor, ICOS,
on activated T cells (39). PDCD1LG2 (PD-L2)-specific T (CD4
or CD8) cells support anti-cancer immunity directly by killing
their target cells (38). Gliomas result in the upregulation of B7-
H1 expression in tumor-infiltrative macrophages and circulating
monocytes by modulating autocrine and paracrine IL10
signaling, which produces an immunosuppressive phenotype
(40). Gagner et al. suggested that inhibition of CXCR4
regulated tumoral, stem cell, and immune mechanisms via
adjunctive CXCR4 antagonists, which might help to overcome
antiangiogenic therapy resistance, benefiting patients with GBM
(41). Liu et al. suggested that the LGALS9-Tim-3 pathway might
be critical in the immuno-evasion of glioma and might be a
potent target for immunotherapy in patients with glioma (42). It
was reported that SD‑208, a TGFB1 inhibitor, could enhance the
immunogenicity and inhibit the growth and invasiveness of
murine and human glioma cells (43). In multiple immune cell
subsets, TNFRSF9 (CD137) provides a costimulatory signal,
suggesting that combination therapy comprising CD137
antibodies with therapeutic antibodies and/or vaccination
might improve cancer treatment (42). TNFSF4 (OX40L, as
known as CD134) has been reported to regulate the T-cell
response, leading to a study of OX40L inhibition combined
with other checkpoint blockades (44). Microarrays for gene
expression profiling and other quantitative methods (such as
RNA-seq) are being used to facilitate the targeting signature gene
April 2021 | Volume 11 | Article 657531
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expression in GBM. The alternative expression patterns of these
genes might facilitate future drug design.
CONCLUSION

The TF signature has significant prognostic value in different
cohorts or subgroups of patients with GBM. The analysis of TF
genes might allow the systematic prioritization of different types
of immunotherapeutic strategies. The TF signature could be used
to identify those patients who might respond to a certain
strategy, thus allowing selective enrichment of potential
responders during small-scale or early clinical trials.
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