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Objectives: To evaluate the effectiveness of radiomic features on classifying histological
subtypes of central lung cancer in contrast-enhanced CT (CECT) images.

Materials and Methods: A total of 200 patients with radiologically defined central lung
cancer were recruited. All patients underwent dual-phase chest CECT, and the
histological subtypes (adenocarcinoma (ADC), squamous cell carcinoma (SCC), small
cell lung cancer (SCLC)) were confirmed by histopathological samples. 107 features were
used in five machine learning classifiers to perform the predictive analysis among three
subtypes. Models were trained and validated in two conditions: using radiomic features
alone, and combining clinical features with radiomic features. The performance of the
classification models was evaluated by the area under the receiver operating characteristic
curve (AUC).

Results: The highest AUCs in classifying ADC vs. SCC, ADC vs. SCLC, and SCC vs.
SCLC were 0.879, 0.836, 0.783, respectively by using only radiomic features in a
feedforward neural network.

Conclusion: Our study indicates that radiomic features based on the CECT images might
be a promising tool for noninvasive prediction of histological subtypes in central lung
cancer and the neural network classifier might be well-suited to this task.

Keywords: central lung cancer, histological subtype, computed tomography, radiomics, neural network

INTRODUCTION

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide (1). Central LC is defined
as tumors originating from the bronchial lumen or wall that usually occur in the segmental or more
proximal bronchi (2). The central LC originates from primary, secondary, and tertiary bronchus,
distinguishing it from peripheral LC that originates from bronchioles or further distance. Thus,
central LC is close to the lung hilum, associated with higher mortality and morbidity due to it’s more
likely to invade the mediastinum and main blood vessels. The LC can be divided into two main
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histological categories: small cell lung cancer (SCLC, ~25%) and
non-small cell lung cancer (NSCLC, ~75%), the NSCLC can be
further divided into two most common histological subtypes:
adenocarcinoma (ADC) and squamous cell carcinoma (SCC)
(3). SCC and SCLC are more common subtypes of central LC
than ADC (4, 5). Histological classification of LC provides
important information about tissue characteristics, which could
determine the optimal treatment and/or therapy strategies for
LC patients (6, 7). However, most central LC cases are
unresectable when diagnosis, and CT-guided needle biopsy or
bronchoscopy are frequently either unfeasible or unsuitable due
to lesions adjacent to main blood vessels or bronchial obstruction
(8). Moreover, central tumors are often heterogeneous
manifestations, and histopathological samples may therefore be
less reliable. Based on these limitations, non-invasive and
accurate histological classification for LC patients demands
special care.

In clinical practice, contrast-enhanced CT (CECT) is the
main imaging modality used to evaluate LC. CECT images
have been widely used to estimate the relationship between
imaging characteristics and histopathological information in
tumors (9). Radiomics, a high throughput data mining
approach, can exploit the non-invasive medical image data
(10). It focuses on extracting a large number of quantitative
imaging features, which can provide a detailed and
comprehensive characterization of the tumor subtypes (11).
Recently, radiomic signatures from CT images have been used
as a significant classification biomarker for LC (12-14). The
radiomics might help to uncover tumor characteristics that are
not easily appreciable by the naked eye. Some other researches
focused PET-based radiomics to predict the histological subtypes
of lung cancer (15-17). These researches selected patients with
non-small cell lung cancer or all lung cancer subtypes as target
population. Few studies focused on central LC’s association with
radiomic features and histological subtypes. In this paper, we
analyzed and classified central LC subtypes via machine learning
classifiers diagnosed from CECT images.

MATERIALS AND METHODS

Patients

This retrospective analysis study was ethically endorsed and
approved by our institutional reviewing board with a waiver of
the need for informed consent. Since standard definitions of
central and peripheral locations of lung tumors varied within
past literatures, we selected on representative method proposed
by a previous study (18) to define the central tumors for our

Abbreviations: LC, Lung cancer; SCLC, Small cell lung cancer; NSCLC, Non-
small cell lung cancer; ADC, Adenocarcinoma; SCC, Squamous cell carcinoma;
CECT, Contrast-enhanced CT; PACS, Picture archiving and communication
system; ROI, Region of interest; GLCM, Gray level co-occurrence matrix; RLM,
Run-length matrix; GLSZM, Gray level size matrix; LASSO, Least absolute
shrinkage and selection operator; ROC, Receiver operating characteristic; AUC,
Area under ROC curve; KNN, K-Nearest Neighbor; LDA, Latent Dirichlet
Allocation; SVM, Support Vector Machine; LR, Logistic Regression; FNN,
Feedforward Neural Network; SD, Standard deviation; CI, Confidence intervals.

study. Central tumors were defined as the center of mass was
within the hilar structures and peripheral tumors as the center of
mass was within the parenchyma, with zero minimal contact
with hilar structures. Patients with central LC who received blind
diagnosed by two experienced radiologists (H. Li and H. Liu with
10 years of experience in lung CT interpretation) between
January 2014 and June 2019 were selected for the cohort. Their
histopathological subtypes were confirmed by surgical resections
or bronchoscopies with transbronchial biopsies in our hospital.
513 such patients were selected from our institution’s database.
Demographics (age, gender), smoking histories, and aggressive
cancer characteristics (pleural effusion and pericardial effusion
viewed from CT images) were selected as clinical features for
further diagnostic analysis. Exclusion criteria chosen by our
radiologists included: (1) patients received LC treatments; (2)
unsatisfactory image quality due to severe artifacts; and (3)
absent of contrast-enhanced CT imaging. A total of 200
patients with central LC were such screened for further
processing (i.e. ADC: 55 patients; SCC: 66 patients; SCLC: 79
patients) (detailed clinical features see Table 1).

CT Scanning Parameters

Patients included in this study were scanned as part of a routine
clinical examination. Dual-phase chest CECT scans were
acquired using various CT machine manufacturers including
GE, Phillips, Siemens, and Toshiba. The acquisition parameters
were set consistently as follows: Voltage 120 kVp (range 100-140
kVp), exposure time 751 ms (range 500-1782 ms), tube current
333 mA (range 100-752 mA, the thickness of the slice 1.0 mm
(range 1.0 mm-2.0 mm). Although various contrast agents
including Omnipaque, Isovue, Optiray, and Ultravist were used
for the enhanced CT scans, contrast agent protocols (100 mL,
iodide bromide 370 mg/mL at a rate of 2.5 mL/s) were relatively
constant throughout all scans. All scan-based protocols were
triggered at 100 HU in the thoracic aorta with subsequent
scanning of the enhancement phase approximately 30-35s
delay after the trigger.

Tumor Segmentation

All thinnest CT original data were loaded to the Picture
Archiving and Communication System (PACS) and then
transferred to PHILIPS post-processing workstation for further
analysis by J. Wang (a radiographer). All arterial CECT scans
were reconstructed into an image series by using a thin slice
thickness (1 mm) and mediastinal convolution kernels (standard
B). The ITK-SNAP software (www.itksnap.org) was used to
perform manual region of interest (ROI) mapping in the
arterial enhancement phase images in chest CECT due to its
best discriminating ability in tumors and other tissues. When
data was transferred to ITK-SNAP software, all the images were
anonymity for all readers. A three-dimensional ROI mapping
including whole tumor was performed by an experienced
radiologist (H. Li with 10 years of experience in lung CT
interpretation) and double-check by H. Liu (10 years of
experience in lung CT interpretation). A lung window level
(window width at 1500 HU and window level at -500HU) was
set for the tumor segmentation. All ROIs carefully excluded
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TABLE 1 | Summary of the patient data in our cohort.

Cohort
ADC SCcC

Age, mean+SD (years) 60.29+9.67 62.61+6.32
Gender, no. (%)

Male 33 (16.50%) 59 (29.50%)

Female 22 (11.00%) 7 (3.50%)
History of smoking, no. (%)

yes 14 (7.00%) 61 (30.50%)

no 41 (20.50%) 5 (2.50%)
Pleural effusion, no. (%)

yes 14 (7.00%) 14 (7.00%)

no 41 (20.50%) 52 (26.00%)
Pericardial effusion, no. (%)

yes 5 (2.50%) 2 (2.50%)

no 50 (25.00%) 64 (32.00%)

Total P values

SCLC (79)
60.82+9.98 61.26+8.85 0.603

0.001
53 (26.50%) 145 (72.50%)
26 (13.00%) 55 (27.50%)

<0.001
33 (16.50%) 108 (54.00%)
46 (23.00%) 92 (46.00%)

0.274
26 (13.00%) 54 (27.00%)
53 (26.50%) 146 (73.00%)

<0.001

27 (13.50%)
52 (26.00%)

34 (17.00%)
166 (83.00%)

SD, standard deviation; ADC, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer.

nearby compressed lung tissues and mediastinal tissues of the
tumors as much as possible on arterial phase CECT. Because all
the tumorous lesions were near the hilum, some vessels could not
be excluded completely in the contours.

Feature Extraction

3D radiomic features were extracted from the segmented ROI
images from the original images and corresponding ROI masks
using the Pyradiomics package (Pyradiomics plugin to 3D Slicer,
version 1.30, default parameters) (19). These features included
first-order histogram features (n = 18), second-order texture
features (i.e. gray level co-occurrence matrix [GLCM, n = 24],
gray level dense matrix [GLDM, n = 14], gray level size matrix
[GLSZM, n = 16], nearest neighbor gray tone difference matrix
[NGTDM, n=5], gray level run length matrix [GLRLM, n=16]),
and shape-based features (n = 14). In total 107 radiomic features
were captured from whole-tumor volume for further processing.
Median values were calculated to remove outliers and
standardize data.

Feature Selection and Modeling

Five different machine learning techniques were used to classify
histological subtypes of central lung cancer using radiomic
features. They included Support Vector Machine (SVM) (the
RBF kernel was used), Logistic Regression (LR), K-Nearest
Neighbor (KNN), Latent Dirichlet Allocation (LDA), and
feedforward neural network (FNN) (default Levenberg-
Marquardt algorithm was used). FNN in this study has three
layers: one input (whose neurons correspond to features), one
hidden (with 10 hidden nodes), and one output (whose neurons
correspond to subtypes). We applied the least absolute shrinkage
and selection operator (LASSO) technique to select radiomic
features with the strongest classification powers in the training
set. After feature selection, a small set of selected features were
used as the input of each classifier to classify ADC vs SCC, ADC
vs SCLC, and SCC vs SCLC. The machine learning procedures
were performed using MATLAB (Matlab R2016a; Mathworks,
Natrick, Mass). We trained and validated the models in two
conditions: using radiomic features alone (radiomic models), and

combining clinical features (variables from Table 1) with
radiomic features (integrated models) using 10-fold cross-
validation. In this method, each time we select one fold as the
testing set, the rest folds as the training set, thus the training set
occupies 90% of the whole dataset each time. The workflow of
classification analysis was shown in Figure 1.

Statistical Analysis

Numerical data were expressed as means + SDs. Inter-group
differences in the mean values were assessed with t-test or chi-
square test for clinical characteristics. The statistical significance
was set at p < 0.05 (two-tailed). The interclass correlation
coefficient was used to compare the consistency between the
two radiologists. 30 randomly selected samples were outlined by
our radiologists, and three radiomic features from three
categories were selected to calculate the interclass
correlation coefficient.

The diagnostic performance of models was evaluated by the
area under the receiver operating characteristic (ROC) curve
(AUC) and accuracy. 95% confidence intervals (CI) were
calculated for the best AUC values. To obtain more stable
performance, we used 10-fold cross-validation and reported
the average performance of all folds. To obtain optimal models
for each classification task, additional 100-round 10-fold cross-
validations were followed for verification of the reproducibility of
the predicted results.

RESULTS

Patient Characteristics
The statistics of clinical features were shown in Table 1. These
clinical features were included in the integrated model.

Interobserver Agreement of

Radiomic Features

The interclass correlation coefficients between the two
radiologists ranged from 0.91 to 0.98, showing high
interobserver agreement.
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The Optimal Models in Three
Classification Tasks
Table 2 shows the models” performance for classifying ADC
vs SCC, ADC vs SCLC, and SCC vs SCLC, with and without
clinical data, and using varying classifiers. The FNN classifier
outperformed other classifiers in all three tasks using only
radiomics features (The ROC curves are shown in Figure 2).
The AUC and accuracy were 0.879 (95% CI: 0.826-0.931)
and 70.6%, respectively, for classifying ADC vs. SCC.
They were 0.836 (95% CI: 0.767-0.905) and 72.7%,
respectively, for ADC vs. SCLC, and 0.783 (95% CI: 0.700-
0.867) and 62.5%, respectively, for SCC vs. SCLC. Additional
100-round 10-fold cross-validations were performed
for verification of the reproducibility of these results. The
ROC curves of the 100-round cross-validations were
reproducible in the FNN classifier of the three optimal
models (Figure 3).

For integrated models, our results showed that the AUC of
clinical data was slightly lower than that of non-clinical data (for
details, see Table 2).

DISCUSSION

Oncologists always seek to analyze the subtypes of cancer cells
in LC patients. For unresectable tumors, the conventional
method of biopsy (CT-guided needle or bronchoscopy)
might not be an ideal option for the patient, since a
pathological assessment performed on a specimen may be
either unavailable or inaccurate. Thus, in this study, we
tested an alternative computational method for histological
subtyping in central LCs. Our results show that machine
learning methods may have a potential capacity to subtype
the central LC in cancer cells level prior to biopsies or
operations. Among the five classifiers, FNN, a neural
network-based approach, yielded the best results in the three
classification tasks. Recently, deep learning methods have been
widely applied in a variety of tasks and have outperformed
many standard most classification and regression methods
(20). Junior et al. utilized three machine-learning classifiers,
showed that the highest testing performance in the
histopathological pattern recognition of LC was obtained by

TABLE 2 | The performance of different models in three classification tasks.

ADC vs. SCC ADC vs. SCLC SCC vs. SCLC
AUC accuracy AUC accuracy AUC accuracy

Without clinical data

KNN 0.623 0.604 0.569 0.530 0.649 0.604
LDA 0.735 0.731 0.716 0.698 0.696 0.687
SVM 0.571 0.525 0.583 0.516 0.634 0.525
LR 0.795 0.575 0.778 0.545 0.686 0.587
FNN 0.879* 0.706 0.836* 0.727 0.783* 0.625
With clinical data

KNN 0.524 0.487 0.565 0.570 0.534 0.570
LDA 0.716 0.708 0.735 0.723 0.641 0.630
SVM 0.571 0.525 0.574 0.504 0.503 0.457
LR 0.726 0.644 0.776 0.588 0.631 0.577
FNN 0.793 0.619 0.825 0.682 0.723 0.573

ROC, receiver operating characteristic; AUC, the area under ROC curve; ADC, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer.

*means the highest AUC in each classification task.
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neural networks (21). Our results combined with this previous
study showed that the neural network classifier might display
better performance than traditional machine learning in
histological subtyping tasks.

In the classification of ADC vs. SCC and ADC vs. SCLC, the
radiomic model showed a high performance (AUC of ADC vs.
SCC: 0.879 and ADC vs. SCLC:0.836). The ADC subtype has
distinct histologic characteristics with the other two subtypes.
For example, ADC is associated with glandular architecture,
whereas intercellular bridging and individual cell keratinization
are prominent for SCC (4, 22). Moreover, the SCLC of
neuroendocrine carcinoma whose cells have traits similar to
those of nerve cells and hormone-producing cells (23),
significantly differ from ADC. The underlying reason for the
variability of radiomics features based on CECT may be
correlated to biological heterogeneity within the tumor tissue.
CT heterogeneity can be quantified using radiomics analysis,
which reflects the coarseness and regularity that result from local

spatial variations in image brightness. The spatial variations in
image brightness may be enhanced by the intravenously injected
contrast agent, which may result in the variable radiomics
features (24, 25). Wu et al. extracted 440 radiological features
from CT images of NSCLC to classify ADC vs. SCC. The
accuracy was 0.7, and the AUC value was 0.72 (14). Haga et al.
utilized a volume of interest method to analyze the subtype of
early-stage non-SCLCs by different observers. The AUC values
averaged over the different observers were 0.725 + 0.070 (26).
Zhu et al. used the LASSO logistic regression model to select five
key features to construct the radiomic signature for histological
subtype classification. The AUC of the radiomic signature to
distinguish between lung ADC vs. SCC in validation cohorts was
0.893 (27). A multiphasic CECT study showed that the AUC of
radiomics models in classifying ADC vs. SCLC were 0.857, 0.855,
and 0.864 in non-enhanced, arterial phase, and venous phase,
respectively (28). It is well known that histological tumor
classification could arrange more detailed optimal treatment
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and/or therapy strategies for cancer patients in clinical practice.
Recent advancement in LC therapies are characterized by the
discovery of targetable mutations and histology-based
therapeutic regimen selection (29, 30). For example,
pemetrexed chemotherapy is the preferred treatment for stage
IV lung ADC. More importantly, histology classification
increases the likelihood of identifying patients with targetable
mutations like EGFR mutations, which occur primarily in ADC
(22). Our study combined with previous studies implies that
noninvasive histology classification of ADC vs. the other two
subtypes (i.e. SCC and SCLC) by radiomic features acquired
from CECT images has promising clinical applications for
oncologic diagnosis and treatment guidance.

Studies focused on classifying SCC vs. SCLC were rare. A
previous study showed weak performance in classifying these
two subtypes, in which the AUCs of the models in nonenhanced,
arterial and venous phases were 0.657, 0.619, and 0.664 using
supervised machine learning models (28). Our models also showed
weaker performance in classifying SCC vs. SCLC than the other
two classification models. The relatively lower AUCs of classifying
SCC vs. SCLC can be attributed to the fact that SCC and SCLC
share similar pathological structures; both have a dense tumor cell
arrangement with few stromal components. Although the
performance of classifying SCC vs. SCLC is not as strong as the
other two classification tasks, our results utilizing neural network
classifiers were still promising (AUC=0.783). As for the integrated
models, we found that the AUCs with clinical data was slightly
lower than that those non-clinical data, indicating that the addition
of clinical and qualitative imaging factors to the predicting model
did not significantly improve the model’s performance. It may be
that these clinical characteristics are not significantly important for
the predictive performance of the models. Some clinical features
were selected by LASSO, but the corresponding performance
decreased, suggesting that their combination weakens the
model’s predictive performance due to data compatibility.

Our study has some limitations: First, we could not eliminate
the possibility of including small regions of normal tissue or vessels
in our segmentations. Additionally, our segmentations might be
not completely reproducible due to variations in manual
segmentation. In the future, an automated segmentation method
should be applied to avoid this problem. Second, although we used
a 10-fold cross-validation method, an independent cohort should
be recruited for validation in the future. Third, the FNN method in
this study was a primary neural network using three layers, and
additional layers could yield improved results. Fourth, our
relatively small sample size limited the expansion of the radiomic
signatures, accordingly, a larger cohort should be recruited in
future studies. Fifth, this study utilized a retrospective single-
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